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Abstract—The work describes the evaluation of selected 

platforms in computing performance on a defined task. The 

work includes a description of the individual platforms and 

their hardware equipment. The chosen representatives are from 

categories of personal computers, embedded devices and 

industrial controller with on board FPGA. The evaluation of 

selected platforms is executed by the rising difficulty of given 

problem by changing the size of input data. In this case, it is the 

resolution of the image used by the Canny edge detecting 

algorithm. The result of this work is the relative comparison of 

the platforms, even with the increase in the volume of data 

processed by the algorithm. 

This experiment can be used to simplify architecture and 

hardware selection in practical applications due to presented 

performance in account of time complexity of given task. 

 
Index Terms—Image processing, LabVIEW, FPGA, cRIO. 

 

I. INTRODUCTION 

This work deals with the evaluation of hardware 

equipment that can be used for fast data processing. Two 

industrial platforms and three variants of personal computer 

use were selected for this experiment. The industrial devices 

used to exploit the FPGA (Field Programmable Gate Array) 

technology but have different performance parameters. 

However, the FPGA interface and the processor [1]-[3], 

whose data throughput may limit the performance of the 

entire device, can become a weak point for these devices. The 

work includes a brief description of the LabVIEW (2017) 

development tools and hardware that was used to program all 

of the algorithms. The work also includes a description of 

library functions for image processing. 

The document also describes the algorithm itself, by means 

of all its partial steps. The algorithm consists of image 

conversion to the RGB (Red-Green-Blue) model, Gaussian 

filtering, Sobel operator edge detection, and the Canny edge 

detector itself [4]. The document also contains a description 

of the design and the implementation of the experiments. 

Another interesting work on a similar theme of different 

approach to data processing is work of Naidila Sadashiv et al 

[5]. This work compares data processing differences using 
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cluster, grid and cloud computing. 

Similar work in the field of smartphones is the work of 

Raquel Trillo et al. [6], which describes the performance of 

mobile platforms when launching typical mobile 

applications. 

 

II. DESCRIPTION OF INDUSTRIAL CONTROLLERS 

The hardware parameters used in the experiments are 

listed in the table below (please see Table I). The actual 

description of the industrial platforms is included in the 

subchapters. Thanks to this table, it is possible to compare the 

ability of the individual platforms to effectively use their 

hardware.  

However, we cannot convert these parameters to a ratio 

that expresses the effectiveness of the use of the available 

devices per memory unit by means of indirect proportion 

(time/memory size). The contribution of the FPGA chip to 

the time complexity of the operation and clocking cannot be 

taken into account in this coefficient   

 
TABLE I: DESCRIPTION OF PLATFORMS. 

Platform NI myRIO 

1900 

IC - 3173 Dell Vostro 5568 

Processor Dual-core AR 

Corte A9  

Dual-core 

Intel i7 2,2GHz 

Intel Core 

i5-7200U 

Non-volatile 

memory 

512MB 64 GB 256 GB SSD 

Operation 

memory 

256MB 

533MHz 

8 GB 8 GB 

FPGA chip Xilinx Artix-7 Xilinx Kintex-7 

XC7K160T 

- 

USB 

interface 

2x USB 2.0 

Hi-Speed 

2x USB 3.0 3x USB 3.0 

OS system RTOS Windows 

Embedded Standard 

7 

NI Linux Real-Time 

Windows 10 Pro 

A.   LabVIEW Environment 

The LabVIEW environment consists of two basic parts, a 

front panel and a block diagram. Both panels are 

interconnected. The front panel represents the user interface 

of the application being created. Specifies the appearance and 

behavior of the application relative to the user. Displays 

controls and indicators to control runtime and view 

application results and statuses. The second part is a block 

diagram in which the necessary algorithm is implemented 

using graphical elements that can be interconnected by data 

links. The shape and color of the data link indicates the data 

type and type of the object, such as an array or cluster, and 

others. The selected control and indication elements from the 

front panel are automatically displayed on the block diagram 

side. These elements can then be interconnected with other 
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elements from the library functions palette. 

B.   FPGA Programmable Chip 

FPGA is a programmable chip. FPGA has the same 

flexibility as running software on a processor system but is 

not limited by the number of processor cores. Unlike 

processors, processing is naturally parallel. Therefore, each 

independent processing task is dedicated to a certain part of 

the chip and can work independently without the influence of 

other logical blocks. As a result, the performance of one part 

of the application is not affected when additional processing 

is added. The main advantage is that the program is 

implemented by hardware and therefore does not run in the 

operating system. This enables very fast output response 

based on the input signal. 

Each chip consists of a finite number of predefined 

resources with programmable jumpers to implement a 

reconfigurable circuit and I / O blocks that allow access to the 

outside world. FPGA resources typically include several 

configurable logic blocks, fixed-function logic blocks such as 

multiplication blocks, and embedded RAM blocks. 

Configurable Logic Blocks (CLB) are the FPGA base 

logic unit. Sometimes also referred to as logical cells, most 

often include flip-flops and lookup tables (LUTs). The 

flip-flop is used as a shift register, mostly to store True or 

False information for the next time cycle. And LUTs provide 

logical operations. LUT contains a truth table with a defined 

list of outputs for each combination of inputs (AND, OR, 

NAND and others). 

C.   NI myRIO 

This is a built-in device manufactured by NI. This device is 

primarily designed for academic purposes and is an industrial 

solution to the compactRIO device. 

The device has a configurable IO and can be connected to a 

host device via USB or 802.11b wireless protocol. The 

essence of the NI myRIO consists of a programmable system 

on the Zynq-7010 SoC chip (Fig. 1), which includes the 

ARM Cortex-A9 dual-core processor and the Xilinx Artix-7 

programmable gate array. The real-time operating system 

runs on the processor side. 

 

 
Fig. 1. NI myRIO [1]. 

D.   NI FlexRIO 

NI FlexRIO is hardware made by National Instrument. Its 

main advantage is the direct connection of a suitable input 

data source with the FPGA. Due to this feature, the associated 

time lag occurring during the data transfer to the FPGA chip 

through the processor is avoided. The data thus processed can 

then be transferred to the processor for further processing. 

The FPGA chip can be programmed using LabVIEW 

without the use of external programs. The module is 

connected to the computer via a PCI or PCI express bus. For 

full use of the NI FlexRIO potential, there is a Camera Link 

NI 1483 module adapter with Camera Link 1.2 standard 

support. The maximum data throughput of this combination 

of modules is 850 MB/s. 

E.   NI Industrial Controller 

Industrial controllers (Fig. 2) are also interesting NI 

products. They offer high levels of processing power and 

connectivity for automated image processing, data 

acquisition, and control applications in extreme 

environments. Industrial Controllers (IC) [7] are 

high-performance, fanless controllers that provide 

connectivity for communication and synchronization to 

automation equipment. You can use LabVIEW system design 

software to create, debug, and deploy logic to both the 

onboard FPGA and the processor.  

 

 
Fig. 2. NI IC-317x [7]. 

 

III.   DESCRIPTION OF THE ALGORITHMS APPLICATION 

This chapter includes a description of the algorithm used to 

compare HW platforms. The individual parts are described 

according to the complexity of the mathematical and logical 

operations they use. IC are high-performance, fanless 

controllers that provide connectivity for communication and 

synchronization to EtherCAT and Ethernet CompactRIO 

chassis, EtherCAT motion drives, GigE Vision and USB3 

Vision cameras, and other automation equipment. Controllers 

369

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020



also have onboard isolated, transistor‐transistor logic (TTL), 

and differential digital I/O. You can use LabVIEW system 

design software to create, debug, and deploy logic to both the 

onboard FPGA and the processor. LabVIEW contains over 

950 signal processing, analysis, control, and mathematics 

functions to accelerate development.  

One of the first and most frequently used colour models is 

RGB. Each pixel in the image of this model is composed of 

three values that correspond to the representation of red, 

green and blue. CMY (Cyan-Magenta-Yellow) is an 

alternative model to RGB. Another way of writing a colour is, 

for example, the HSV (hue-saturation-value) model, which 

indicates colour using colour tone, saturation, and brightness. 

However, it is necessary to convert the image to a grayscale 

model for edge detection. According to formula (1), the 

brightness level for the grayscale model is calculated. The 

weight coefficients are set according to the sensitivity of the 

human eye. 

𝑌 = 0,299 ∙ 𝑅 + 0,587 ∙ 𝐺 + 0,114 ∙ 𝐵 (1) 

Filtration is conducted for the purpose of noise reduction, 

smoothing, highlighting and edge detection. Convolution 

describes the image passage through a linear filter, which is 

the basis for image function filtering. The image is processed 

as a product of the mask coefficients with the values of the 

input image with the surroundings O; this procedure is 

performed sequentially for each pixel of the image. 
 

         (2) 
 

Formula (2) is a mathematical description of the discrete 

convolution used for filter application. The output image is 

𝑔𝑏(𝑢, 𝑣). The convolutional mask is h with a size equalling to 

mxn where 𝑚 = 2 ∙ 𝑎 + 1  and 𝑛 = 2 ∙ 𝑏 + 1, 𝑎, 𝑏 ∈ 𝑁. The 

mask dimensions are odd so that the pixel calculated could be 

in the middle of the mask. The most commonly used mask is 

a square mask where a=b. 

A.   Gaussian Filter 

This type of filter is called Gaussian smoothing that uses a 

convolution mask. Where the pixels closer to the centre have 

a higher weight than the marginal ones. The weight 

distribution follows from the Gaussian curve. The filtration 

rate is based on parameter σ, which indicates the slope of the 

Gaussian curve. Fig. 3 shows a Gaussian curve for a 1D 

signal. 
 

 
Fig. 3. Gaussian function. 

 

For detection of edges is used algorithm which evaluate 

changes in brightness of nearby pixels. Gradient is vector 

with given value and direction. Edge detection is performed 

by the Sobel operator using a 3×3 convolution mask (formula 

3). For edge detection, one vertical edge mask Gy and one 

horizontal edge mask Gx are used. 

 

       𝐺𝑦 = (
1 2 1
0 0 0

−1 −2 −1
) , 𝐺𝑥 = (

−1 0 1
−2 0 2
−1 0 1

)              (3) 

 

The two-dimensional Gaussian distribution is defined from 

minus to plus infinity, but when implementing discrete 
convolution, it is necessary to confine to the most commonly 

used 5×5 pixel area where the central pixel is (0.0). When 

calculating mask coefficients, individual values must be 

normalized. The normalized coefficients must be 1 after the 

sum of the sum, so it is always necessary to divide the result 

by adding the sum of the coefficients in the matrix 

(formula 4). 

       ℎ(𝑥, 𝑦) =
1

2∙𝜋∙𝜎2 ∙ 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2∙𝜎2
)                         (4) 

B.   Sobel Operator 

An edge is defined as a location with a sudden change in 

the brightness value of the image function 𝑓𝑏(𝑢, 𝑣). To find 

these changes, partial derivatives are used, and the change of 

the function is indicated by its gradient as vector ∇𝑓𝑏. The 

gradient determines the direction of the greatest growth of the 

function and the steepness of this growth (formula 5). 

       ‖ℎ(𝑥, 𝑦)‖ = √(
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑢
)

2

+ (
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑣
)

2

                    (5) 

The direction is given by the angle 𝜑  between the 

coordinate axis u and the radius to the point (𝑢, 𝑣), in radians 

(formula 6). 

     𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑢
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑣

)                                   (6) 

The formulas are for continuous image function but are 

also adjusted for discrete image functions. Try practical 

calculations to decide if a pixel lies on the boundary of an 

object. In a single beep, a pixel beyond the boundary can be 

expected if the gradient size is above the desired threshold. 

This procedure is subject to fines. The first is that the 

boundaries of the object come out to be thicker than one pixel. 

And this procedure does not solve the problem of pre-filling 

and removing unnecessary border areas. These available 

solutions imitate the Canny Edge detector. 

Local gradient operators are used to search for edges, 

which approximate the first partial derivative. It is assumed 

that the pixels with a high gradient value are edgewise. Then, 

these pixels merge into boundaries and direction of the vector 

𝜔 is perpendicular to the gradient direction. An example is 

shown at 0 

 

Fig. 4. Example of edge gradient. 
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C.   Canny Edge Detector 

Detection according to this algorithm consists of several 

steps [9]. At the beginning of the algorithm, significant edges 

are found to avoid omission or duplicate detection. 

Depending on the localization criterion, the actual and found 

edge position is then assessed, and such a deviation must be 

minimal. The last step is the requirement for one response, 

which is focused on shaded and particularly non-smooth 

edges not covered by the first requirement. 

Edge search is predominantly performed in the basic two 

matrix dimensions. This edge detection is mainly performed 

by the Sobel operator. Then the gradient and the gradient 

angle of all pixels are calculated, so we can find the local 

maxima. 

The last step of the algorithm is thresholding. It is 

advisable to use hysteresis thresholding that prevents the 

edges from being disconnected. The thresholding process 

evaluates the pixels according to the upper and lower 

thresholds and distinguishes the real edge from the 

background. This effectively eliminates lonely pixels. 

D.   Image Processing on FPGA 

NI offers ready-made libraries and tools for working with 

the FPGA. These functions are divided into several 

categories according to their specific focus in the chain of 

processes that comprise image processing [10]. 

 Basic functions ensuring communication. They attend 

to the transfer of information between the FPGA and 

the processor using FIFO memory. 

 Image processing functions to change the contrast, 

brightness, pixel inversion and image segmentation by 

thresholding. 

 Filtering functions that are used for image smoothing, 

noise removal, edge detection, or entering a 

convolution mask. 

 Functions of morphological operations such as 

dilation or erosion of grayscale images. 

 Functions for color image processing, histogram 

creation or thresholding. 

 Arithmetic and logic character functions that are used 

for bit operations such as adding, subtracting, or 

multiplying the image by a constant.  

 Analytic functions that only work with an image with 

pixels in grayscale or described by a binary value. 

 

IV.   TEST IMPLEMENTATION 

The test contains the use of the Canny Edge Detection 

algorithm to determine the time complexity of this algorithm 

for each of the aforementioned platforms. This test was 

chosen because of its high demands on computing 

performance, which may result in platform deficiencies. The 

input data will be in three different resolutions in order to 

compare the results when increasing task complexity and to 

analyze the trends [11], [12]. The chosen resolutions were 

320×240, 640×480 and 1280×720. To ensure comparability 

between tests, the code used in single-core and multi-core test 

was written without use of the NI Library functions. 

On the myRIO and IC platforms, there are two SW 

(software) parts, one program runs on the RT processor and 

the other on the FPGA. Completely identical programs, 

except for minor differences in frequency and reference 

settings, will run on both platforms. 

Two SCTL loops are used to perform the Canny detector. 

In the case of IC, the sufficient size of the FPGA chip allowed 

both clock loops to 90MHz. Formula 6.1 shows the period of 

this loop 11.11 µs. In contrast, myRIO loops can only be set 

to 55MHz. The frequency therefore depends on the 

complexity of the code and the size of the chip used. 

A.   Real Time Application 

 

Fig. 5. Time complexity of Canny edge detection algorithm including array 

operations. 

 

 
Fig. 6. Time complexity of Canny edge detection algorithm including array operations. 

 

 
Fig. 7. Time complexity of Canny edge detection algorithm. 
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At the beginning, the program will initialize the camera for 

continuous scanning, image resolution and configuration of 

other parameters. The next step is uploading the FPGA 

application to the chip and running it. Based on the reference 

made to the FPGA application, two memories are initialized. 

The first memory is the DMA (Direct Memory Access) FIFO 

(First In-First Out) that is set to make the Host to Target 

transmission, representing the transfer from the RT processor 

to the FPGA chip. The second memory with the Target to 

Host transmission type transfers the data from the FPGA chip 

to the RT processor. The size of both memories corresponds 

to the number of pixels of the image scanned (see Fig. 4). 

After these initialization steps, a sequence that will ensure 

sequential processing of the subtasks is run.  

The FPGA application used the Single-Cycle Time (SCTL) 

main loop to optimize the codes for the FPGA platform. The 

content of this loop is then performed according to the 

specified clocking frequency. Due to the use of this loop, it 

was not possible to work with a decimal floating-point. 

B.   Evaluation of Performance Tests 

The results of the tests enabled a comparison of the 

platforms according to the effectiveness of their hardware in 

the standardized image processing task. Fig. 5 shows the time 

complexity of the entire test. In the case of non-PC platforms, 

the next time stamp (please see Fig. 6) was measured. This 

represents the time complexity of the detection algorithm 

without a delay caused by data transformation before and 

after the algorithm execution. This delay consists in 

converting a 2D field to a 1D field, and a reverse 

transformation after performing the Canny edge detector. 
 

TABLE II: THE VALUES OF THE CCT AND THE CHROMATICITY 

COORDINATES FOR THE SELECTED EXCITATION WAVELENGTHS. 

 
*Single - Single core processor; Multi – Dual core processor; NI – LabView 

Library function. 

 

 
Fig. 8. Source image for detection algorithms. 

 

To compare and highlight the effectiveness of HW 

platforms [13], the relative determination of time complexity 

according to the worst outcome (PC - single processor) was 

used. The Table II shows that, in the case of IC, the relative 

time complexity is maintained. Fig. 8 shown source image, 

Fig. 9 the result of Sobel edge detection algorithm and Fig. 10 

the result of Canny detection algorithm. 

 

 
Fig. 9. The result of Sobel edge detection algorithm. 

 

 
Fig. 10. The result of Canny detection algorithm. 

 

V. CONCLUSION 

Based on the results, it is obvious that the results of the 

industrial system using the FPGA chip come out significantly 

better than in the case of using a personal computer. However, 

these results may not be so disadvantageous for a personal 

computer due to a possible inefficient interpretation of the 

detection algorithm. When using the NI libraries, up to a fifty 

percent time saving was achieved compared to using the 

actual algorithm implementation on a single processor core. 

When comparing the times measured, the IC overhead on 

the processor side is less than 2 ms, while the time overhead 

from the process side of the much less powerful myRIO is 

less than 24 ms. These data show that, in the case of myRIO, 

the processing time is most affected by the performance of 

the RT processor used other hardware components running 

under the processor. 

Another limitation may be the transfer method, where the 

IC uses the PCIe between the processor and the FPGA, and 

myRIO uses transmission via the High performance AXI 

protocol. 

Future research could include other platform, operating 

systems, programming languages and various number of 

basic algorithms. These tests would evaluate usability of 

hardware and software architecture in specific cases of 

applications. 
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