


Abstract—The work describes the evaluation of selected

platforms in computing performance on a defined task. The

work includes a description of the individual platforms and

their hardware equipment. The chosen representatives are from

categories of personal computers, embedded devices and

industrial controller with on board FPGA. The evaluation of

selected platforms is executed by the rising difficulty of given

problem by changing the size of input data. In this case, it is the

resolution of the image used by the Canny edge detecting

algorithm. The result of this work is the relative comparison of

the platforms, even with the increase in the volume of data

processed by the algorithm.

This experiment can be used to simplify architecture and

hardware selection in practical applications due to presented

performance in account of time complexity of given task.

Index Terms—Image processing, LabVIEW, FPGA, cRIO.

I. INTRODUCTION

This work deals with the evaluation of hardware

equipment that can be used for fast data processing. Two

industrial platforms and three variants of personal computer

use were selected for this experiment. The industrial devices

used to exploit the FPGA (Field Programmable Gate Array)

technology but have different performance parameters.

However, the FPGA interface and the processor [1]-[3],

whose data throughput may limit the performance of the

entire device, can become a weak point for these devices. The

work includes a brief description of the LabVIEW (2017)

development tools and hardware that was used to program all

of the algorithms. The work also includes a description of

library functions for image processing.

The document also describes the algorithm itself, by means

of all its partial steps. The algorithm consists of image

conversion to the RGB (Red-Green-Blue) model, Gaussian

filtering, Sobel operator edge detection, and the Canny edge

detector itself [4]. The document also contains a description

of the design and the implementation of the experiments.

Another interesting work on a similar theme of different

approach to data processing is work of Naidila Sadashiv et al

[5]. This work compares data processing differences using

Manuscript received May 29, 2019; revised January 13, 2020.

Jakub Kolarik, Radek Martinek, Jakub Stefansky, and Petr Bilik are with

the Department of Cybernetics and Biomedical Engineering, Faculty of

Electrical Engineering and Computer Science, VSB–Technical University of

Ostrava, Ostrava, Czech Republic (e-mail: jakub.kolarik@vsb.cz,

{jakub.kolarik, radek.martinek, jakub.stefansky, petr.bilik}@vsb.cz).

Jan Nedoma is with the Department of Telecommunications, Faculty of

Electrical Engineering and Computer Science, VSB - Technical University

of Ostrava, Ostrava, Czech Republic (e-mail: jan.nedoma@vsb.cz).

cluster, grid and cloud computing.

Similar work in the field of smartphones is the work of

Raquel Trillo et al. [6], which describes the performance of

mobile platforms when launching typical mobile

applications.

II. DESCRIPTION OF INDUSTRIAL CONTROLLERS

The hardware parameters used in the experiments are

listed in the table below (please see Table I). The actual

description of the industrial platforms is included in the

subchapters. Thanks to this table, it is possible to compare the

ability of the individual platforms to effectively use their

hardware.

However, we cannot convert these parameters to a ratio

that expresses the effectiveness of the use of the available

devices per memory unit by means of indirect proportion

(time/memory size). The contribution of the FPGA chip to

the time complexity of the operation and clocking cannot be

taken into account in this coefficient

TABLE I: DESCRIPTION OF PLATFORMS.

Platform NI myRIO

1900

IC - 3173 Dell Vostro 5568

Processor Dual-core AR

Corte A9

Dual-core

Intel i7 2,2GHz

Intel Core

i5-7200U

Non-volatile

memory

512MB 64 GB 256 GB SSD

Operation

memory

256MB

533MHz

8 GB 8 GB

FPGA chip Xilinx Artix-7 Xilinx Kintex-7

XC7K160T

-

USB

interface

2x USB 2.0

Hi-Speed

2x USB 3.0 3x USB 3.0

OS system RTOS Windows

Embedded Standard

7

NI Linux Real-Time

Windows 10 Pro

A. LabVIEW Environment

The LabVIEW environment consists of two basic parts, a

front panel and a block diagram. Both panels are

interconnected. The front panel represents the user interface

of the application being created. Specifies the appearance and

behavior of the application relative to the user. Displays

controls and indicators to control runtime and view

application results and statuses. The second part is a block

diagram in which the necessary algorithm is implemented

using graphical elements that can be interconnected by data

links. The shape and color of the data link indicates the data

type and type of the object, such as an array or cluster, and

others. The selected control and indication elements from the

front panel are automatically displayed on the block diagram

side. These elements can then be interconnected with other

Comparison of Computing Performance of Image

Processing on Different HW Platforms

Jakub Kolarik, Radek Martinek, Jakub Stefansky, Petr Bilik, and Jan Nedoma

368doi: 10.18178/ijmlc.2020.10.2.944

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

mailto:jakub.kolarik@vsb.cz

elements from the library functions palette.

B. FPGA Programmable Chip

FPGA is a programmable chip. FPGA has the same

flexibility as running software on a processor system but is

not limited by the number of processor cores. Unlike

processors, processing is naturally parallel. Therefore, each

independent processing task is dedicated to a certain part of

the chip and can work independently without the influence of

other logical blocks. As a result, the performance of one part

of the application is not affected when additional processing

is added. The main advantage is that the program is

implemented by hardware and therefore does not run in the

operating system. This enables very fast output response

based on the input signal.

Each chip consists of a finite number of predefined

resources with programmable jumpers to implement a

reconfigurable circuit and I / O blocks that allow access to the

outside world. FPGA resources typically include several

configurable logic blocks, fixed-function logic blocks such as

multiplication blocks, and embedded RAM blocks.

Configurable Logic Blocks (CLB) are the FPGA base

logic unit. Sometimes also referred to as logical cells, most

often include flip-flops and lookup tables (LUTs). The

flip-flop is used as a shift register, mostly to store True or

False information for the next time cycle. And LUTs provide

logical operations. LUT contains a truth table with a defined

list of outputs for each combination of inputs (AND, OR,

NAND and others).

C. NI myRIO

This is a built-in device manufactured by NI. This device is

primarily designed for academic purposes and is an industrial

solution to the compactRIO device.

The device has a configurable IO and can be connected to a

host device via USB or 802.11b wireless protocol. The

essence of the NI myRIO consists of a programmable system

on the Zynq-7010 SoC chip (Fig. 1), which includes the

ARM Cortex-A9 dual-core processor and the Xilinx Artix-7

programmable gate array. The real-time operating system

runs on the processor side.

Fig. 1. NI myRIO [1].

D. NI FlexRIO

NI FlexRIO is hardware made by National Instrument. Its

main advantage is the direct connection of a suitable input

data source with the FPGA. Due to this feature, the associated

time lag occurring during the data transfer to the FPGA chip

through the processor is avoided. The data thus processed can

then be transferred to the processor for further processing.

The FPGA chip can be programmed using LabVIEW

without the use of external programs. The module is

connected to the computer via a PCI or PCI express bus. For

full use of the NI FlexRIO potential, there is a Camera Link

NI 1483 module adapter with Camera Link 1.2 standard

support. The maximum data throughput of this combination

of modules is 850 MB/s.

E. NI Industrial Controller

Industrial controllers (Fig. 2) are also interesting NI

products. They offer high levels of processing power and

connectivity for automated image processing, data

acquisition, and control applications in extreme

environments. Industrial Controllers (IC) [7] are

high-performance, fanless controllers that provide

connectivity for communication and synchronization to

automation equipment. You can use LabVIEW system design

software to create, debug, and deploy logic to both the

onboard FPGA and the processor.

Fig. 2. NI IC-317x [7].

III. DESCRIPTION OF THE ALGORITHMS APPLICATION

This chapter includes a description of the algorithm used to

compare HW platforms. The individual parts are described

according to the complexity of the mathematical and logical

operations they use. IC are high-performance, fanless

controllers that provide connectivity for communication and

synchronization to EtherCAT and Ethernet CompactRIO

chassis, EtherCAT motion drives, GigE Vision and USB3

Vision cameras, and other automation equipment. Controllers

369

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

also have onboard isolated, transistor‐transistor logic (TTL),

and differential digital I/O. You can use LabVIEW system

design software to create, debug, and deploy logic to both the

onboard FPGA and the processor. LabVIEW contains over

950 signal processing, analysis, control, and mathematics

functions to accelerate development.

One of the first and most frequently used colour models is

RGB. Each pixel in the image of this model is composed of

three values that correspond to the representation of red,

green and blue. CMY (Cyan-Magenta-Yellow) is an

alternative model to RGB. Another way of writing a colour is,

for example, the HSV (hue-saturation-value) model, which

indicates colour using colour tone, saturation, and brightness.

However, it is necessary to convert the image to a grayscale

model for edge detection. According to formula (1), the

brightness level for the grayscale model is calculated. The

weight coefficients are set according to the sensitivity of the

human eye.

𝑌 = 0,299 ∙ 𝑅 + 0,587 ∙ 𝐺 + 0,114 ∙ 𝐵 (1)

Filtration is conducted for the purpose of noise reduction,

smoothing, highlighting and edge detection. Convolution

describes the image passage through a linear filter, which is

the basis for image function filtering. The image is processed

as a product of the mask coefficients with the values of the

input image with the surroundings O; this procedure is

performed sequentially for each pixel of the image.

 (2)

Formula (2) is a mathematical description of the discrete

convolution used for filter application. The output image is

𝑔𝑏(𝑢, 𝑣). The convolutional mask is h with a size equalling to

mxn where 𝑚 = 2 ∙ 𝑎 + 1 and 𝑛 = 2 ∙ 𝑏 + 1, 𝑎, 𝑏 ∈ 𝑁. The

mask dimensions are odd so that the pixel calculated could be

in the middle of the mask. The most commonly used mask is

a square mask where a=b.

A. Gaussian Filter

This type of filter is called Gaussian smoothing that uses a

convolution mask. Where the pixels closer to the centre have

a higher weight than the marginal ones. The weight

distribution follows from the Gaussian curve. The filtration

rate is based on parameter σ, which indicates the slope of the

Gaussian curve. Fig. 3 shows a Gaussian curve for a 1D

signal.

Fig. 3. Gaussian function.

For detection of edges is used algorithm which evaluate

changes in brightness of nearby pixels. Gradient is vector

with given value and direction. Edge detection is performed

by the Sobel operator using a 3×3 convolution mask (formula

3). For edge detection, one vertical edge mask Gy and one

horizontal edge mask Gx are used.

 𝐺𝑦 = (
1 2 1
0 0 0

−1 −2 −1
) , 𝐺𝑥 = (

−1 0 1
−2 0 2
−1 0 1

) (3)

The two-dimensional Gaussian distribution is defined from

minus to plus infinity, but when implementing discrete
convolution, it is necessary to confine to the most commonly

used 5×5 pixel area where the central pixel is (0.0). When

calculating mask coefficients, individual values must be

normalized. The normalized coefficients must be 1 after the

sum of the sum, so it is always necessary to divide the result

by adding the sum of the coefficients in the matrix

(formula 4).

 ℎ(𝑥, 𝑦) =
1

2∙𝜋∙𝜎2 ∙ 𝑒𝑥𝑝 (−
𝑥2+𝑦2

2∙𝜎2
) (4)

B. Sobel Operator

An edge is defined as a location with a sudden change in

the brightness value of the image function 𝑓𝑏(𝑢, 𝑣). To find

these changes, partial derivatives are used, and the change of

the function is indicated by its gradient as vector ∇𝑓𝑏. The

gradient determines the direction of the greatest growth of the

function and the steepness of this growth (formula 5).

 ‖ℎ(𝑥, 𝑦)‖ = √(
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑢
)

2

+ (
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑣
)

2

 (5)

The direction is given by the angle 𝜑 between the

coordinate axis u and the radius to the point (𝑢, 𝑣), in radians

(formula 6).

 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑢
𝜕𝑓𝑏(𝑢,𝑣)

𝜕𝑣

) (6)

The formulas are for continuous image function but are

also adjusted for discrete image functions. Try practical

calculations to decide if a pixel lies on the boundary of an

object. In a single beep, a pixel beyond the boundary can be

expected if the gradient size is above the desired threshold.

This procedure is subject to fines. The first is that the

boundaries of the object come out to be thicker than one pixel.

And this procedure does not solve the problem of pre-filling

and removing unnecessary border areas. These available

solutions imitate the Canny Edge detector.

Local gradient operators are used to search for edges,

which approximate the first partial derivative. It is assumed

that the pixels with a high gradient value are edgewise. Then,

these pixels merge into boundaries and direction of the vector

𝜔 is perpendicular to the gradient direction. An example is

shown at 0

Fig. 4. Example of edge gradient.

370

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

C. Canny Edge Detector

Detection according to this algorithm consists of several

steps [9]. At the beginning of the algorithm, significant edges

are found to avoid omission or duplicate detection.

Depending on the localization criterion, the actual and found

edge position is then assessed, and such a deviation must be

minimal. The last step is the requirement for one response,

which is focused on shaded and particularly non-smooth

edges not covered by the first requirement.

Edge search is predominantly performed in the basic two

matrix dimensions. This edge detection is mainly performed

by the Sobel operator. Then the gradient and the gradient

angle of all pixels are calculated, so we can find the local

maxima.

The last step of the algorithm is thresholding. It is

advisable to use hysteresis thresholding that prevents the

edges from being disconnected. The thresholding process

evaluates the pixels according to the upper and lower

thresholds and distinguishes the real edge from the

background. This effectively eliminates lonely pixels.

D. Image Processing on FPGA

NI offers ready-made libraries and tools for working with

the FPGA. These functions are divided into several

categories according to their specific focus in the chain of

processes that comprise image processing [10].

 Basic functions ensuring communication. They attend

to the transfer of information between the FPGA and

the processor using FIFO memory.

 Image processing functions to change the contrast,

brightness, pixel inversion and image segmentation by

thresholding.

 Filtering functions that are used for image smoothing,

noise removal, edge detection, or entering a

convolution mask.

 Functions of morphological operations such as

dilation or erosion of grayscale images.

 Functions for color image processing, histogram

creation or thresholding.

 Arithmetic and logic character functions that are used

for bit operations such as adding, subtracting, or

multiplying the image by a constant.

 Analytic functions that only work with an image with

pixels in grayscale or described by a binary value.

IV. TEST IMPLEMENTATION

The test contains the use of the Canny Edge Detection

algorithm to determine the time complexity of this algorithm

for each of the aforementioned platforms. This test was

chosen because of its high demands on computing

performance, which may result in platform deficiencies. The

input data will be in three different resolutions in order to

compare the results when increasing task complexity and to

analyze the trends [11], [12]. The chosen resolutions were

320×240, 640×480 and 1280×720. To ensure comparability

between tests, the code used in single-core and multi-core test

was written without use of the NI Library functions.

On the myRIO and IC platforms, there are two SW

(software) parts, one program runs on the RT processor and

the other on the FPGA. Completely identical programs,

except for minor differences in frequency and reference

settings, will run on both platforms.

Two SCTL loops are used to perform the Canny detector.

In the case of IC, the sufficient size of the FPGA chip allowed

both clock loops to 90MHz. Formula 6.1 shows the period of

this loop 11.11 µs. In contrast, myRIO loops can only be set

to 55MHz. The frequency therefore depends on the

complexity of the code and the size of the chip used.

A. Real Time Application

Fig. 5. Time complexity of Canny edge detection algorithm including array

operations.

Fig. 6. Time complexity of Canny edge detection algorithm including array operations.

Fig. 7. Time complexity of Canny edge detection algorithm.

371

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

At the beginning, the program will initialize the camera for

continuous scanning, image resolution and configuration of

other parameters. The next step is uploading the FPGA

application to the chip and running it. Based on the reference

made to the FPGA application, two memories are initialized.

The first memory is the DMA (Direct Memory Access) FIFO

(First In-First Out) that is set to make the Host to Target

transmission, representing the transfer from the RT processor

to the FPGA chip. The second memory with the Target to

Host transmission type transfers the data from the FPGA chip

to the RT processor. The size of both memories corresponds

to the number of pixels of the image scanned (see Fig. 4).

After these initialization steps, a sequence that will ensure

sequential processing of the subtasks is run.

The FPGA application used the Single-Cycle Time (SCTL)

main loop to optimize the codes for the FPGA platform. The

content of this loop is then performed according to the

specified clocking frequency. Due to the use of this loop, it

was not possible to work with a decimal floating-point.

B. Evaluation of Performance Tests

The results of the tests enabled a comparison of the

platforms according to the effectiveness of their hardware in

the standardized image processing task. Fig. 5 shows the time

complexity of the entire test. In the case of non-PC platforms,

the next time stamp (please see Fig. 6) was measured. This

represents the time complexity of the detection algorithm

without a delay caused by data transformation before and

after the algorithm execution. This delay consists in

converting a 2D field to a 1D field, and a reverse

transformation after performing the Canny edge detector.

TABLE II: THE VALUES OF THE CCT AND THE CHROMATICITY

COORDINATES FOR THE SELECTED EXCITATION WAVELENGTHS.

*Single - Single core processor; Multi – Dual core processor; NI – LabView

Library function.

Fig. 8. Source image for detection algorithms.

To compare and highlight the effectiveness of HW

platforms [13], the relative determination of time complexity

according to the worst outcome (PC - single processor) was

used. The Table II shows that, in the case of IC, the relative

time complexity is maintained. Fig. 8 shown source image,

Fig. 9 the result of Sobel edge detection algorithm and Fig. 10

the result of Canny detection algorithm.

Fig. 9. The result of Sobel edge detection algorithm.

Fig. 10. The result of Canny detection algorithm.

V. CONCLUSION

Based on the results, it is obvious that the results of the

industrial system using the FPGA chip come out significantly

better than in the case of using a personal computer. However,

these results may not be so disadvantageous for a personal

computer due to a possible inefficient interpretation of the

detection algorithm. When using the NI libraries, up to a fifty

percent time saving was achieved compared to using the

actual algorithm implementation on a single processor core.

When comparing the times measured, the IC overhead on

the processor side is less than 2 ms, while the time overhead

from the process side of the much less powerful myRIO is

less than 24 ms. These data show that, in the case of myRIO,

the processing time is most affected by the performance of

the RT processor used other hardware components running

under the processor.

Another limitation may be the transfer method, where the

IC uses the PCIe between the processor and the FPGA, and

myRIO uses transmission via the High performance AXI

protocol.

Future research could include other platform, operating

systems, programming languages and various number of

basic algorithms. These tests would evaluate usability of

hardware and software architecture in specific cases of

applications.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

JS conducted the research and experiment as part of his

 Relative time complexity [%]

Platform
Detection algorithm Array manipulation included

320x240 640x480 1280x720 320x240 640x480 1280x720

PC

Single - - - - - -

Multi 77.4 75.3 90.4 78.4 75.4 90.6

NI 64.7 65.0 63.8 66.0 65.7 64.5

myRIO 10.5 12.3 13.1 66.0 65.7 64.5

IC 3.8 3.6 3.8 4.5 4.6 5.3

372

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

Bachelors’s work under supervision of RM, PB supported all

this research by necessary hardware and guidance in specific

LabVIEW problematics, JN drafted the manuscript and

contributed to the interpretation of the results, JK wrote the

paper, made revisions and designed the figures, all authors

had approved the final version.

ACKNOWLEDGMENT

This article was supported by the Ministry of Education of

the Czech Republic (Projects No. SP2019/85). This work was

supported by the European Regional Development Fund in

the Research Centre of Advanced Mechatronic Systems

project, project number CZ.02.1.01/0.0/0.0/16_019/0000867

within the Operational Programme Research, Development

and Education.

This article was supported by the project SP2019/107,

Development of algorithms and systems for control,

measurement and safety applications V" of Student Grant

System, VSB-TU Ostrava.

REFERENCES

[1] N. H. Shan and A. Hazanchuk, "Adaptive edge detection for real-time

video processing using FPGAs," Global Signal Processing, vol. 7, no.

3, pp. 2-3, 2004.

[2] M. Eric and M. N. Cirstea, "FPGA design methodology for industrial

control systems—A review," IEEE Transactions on industrial

Electronics, vol. 54, no. 4, pp. 1824-1842, 2007.

[3] A. Shuichi, T. Maruyama, and Y. Yamaguchi, "Performance

comparison of FPGA, GPU and CPU in image processing," in Proc.

International Conference on Field Programmable Logic and

Applications, 2009.

[4] M. Raman and H. Aggarwal, "Study and comparison of various image

edge detection techniques," International Journal of Image Processing,

vol. 3, no. 1, pp. 1-11, 2009.

[5] S. Naidila and K. S. M. Dilip, "Cluster, grid and cloud computing: A

detailed comparison," in Proc. 2011 6th International Conference on

Computer Science & Education, 2011, pp. 477-482.

[6] T. Raquel, I. Sergio, and M. Eduardo, "Comparison and performance

evaluation of mobile agent platforms," in Proc. Third International

Conference on Autonomic and Autonomous Systems, IEEE, 2007, pp.

41-41.

[7] IC-317x User Manual. (2017). National Instrument. [Online].

Available: http://www.ni.com/pdf/manuals/375285c.pdf

[8] N. S. Ranjan et al., "Design and implementation of real time video

image edge detection system using MyRIO," International Journal of

Advanced Research in Electrical, Electronics and Instrumentation

Engineering, vol. 5, pp. 1793-1800, 2016.

[9] K. L. Amruta and V. G. Sangam, "Canny edge detection algorithm,"

International Journal of Advanced Research in Electronics and

Communication Engineering, vol. 5, no. 5, pp. 1292-1295, 2016.

[10] X. Qian et al., "A distributed canny edge detector: Algorithm and

FPGA implementation," IEEE Transactions on Image Processing, vol.

23, no. 7, pp. 2944-2960, 2014.

[11] V. Lyashenko et al., "Study of composite materials for the engineering

using wavelet analysis and image processing technology,"

International Journal of Mechanical and Production Engineering

Research and Development, vol. 7, no. 6, 2017, pp. 445-452.

[12] A. F. Dwi, T. W. Purboyo, and R. E. Saputra, "Cotton texture

segmentation based on image texture analysis using gray level

co-occurrence matrix (GLCM) and euclidean distance," International

Journal of Applied Engineering Research, vol. 13, no. 1, 2018, pp.

449-455.

[13] J. D. Owens et al., "A survey of general‐purpose computation on

graphics hardware," Computer Graphics Forum., vol. 26, no. 1, UK:

Blackwell Publishing Ltd, 2007.

Jakub Kolarik was born in 1992 in Ostrava, Czech Republic. He received

his bachelor degree at the VSB–Technical University of Ostrava, the

Department of Cybernetics and Biomedical Engineering in 2014. Two years

later at the same department, he received his master degree in the field of

control and information systems. He is currently pursuing his Ph.D in

technical cybernetics. His current research interest includes development of

alternative systems for MRI triggering, methods of fetal ECG monitoring,

analysis of vibrations caused by biological function of human body and also

vibration analysis of road traffic.

Jakub Stefansky was born in 1992 in Ostrava, Czech Republic. He received

his bachelors degree at the VSB–Technical University of Ostrava, the

Department of Cybernetics and Biomedical Engineering in 2018. He is now

also in the VSB–Technical University of Ostrava.

Radek Martinek was born in 1984 in the Czech

Republic. In 2009 he received a master degree in

information and communication technology from the

VSB-TU of Ostrava. Since 2012 he has worked there

as a research fellow. In 2014 he successfully

defended his doctoral thesis titled: The Use of

Complex Adaptive Methods of Signal Processing for

Refining the Diagnostic Quality of the Abdominal

Fetal Electrocardiogram. He has worked as an

associate professor at the VŠB-TUO Technical University of Ostrava since

2017.

Petr Bilik was born in 1968. He received his master degree in power

electronics from VSB Technical University in1991, he finished his PhD

study in the field of Technical Cybernetics in 2004. From 2000 until 2012 he

worked as the head of Power Quality Measurement System department in

commercial company. Currently he is vice-head of Department of

Cybernetics and Biomedical Engineering. His main interests are automated

test and measurement systems design, data acquisition, graphical

programming.

Jan Nedoma was born in 1988 in Prostejov. In 2012 he received a bachelor

degree from VSB-Technical University of Ostrava, Faculty of Electrical

Engineering and Computer Science, Department of Telecommunications.

Two years later, he received his master degree in the field of

Telecommunications in the same workplace. He is currently an assistant

professor of Department of Telecommunications at VSB-Technical

University of Ostrava. He works in the field of fiber-optic sensor systems.

373

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

