

Abstract—The Electrocardiogram (ECG) is considered as a

physiological signature and has previously been used for
biometric purposes. The contamination of the signal due to
noise adds undesired intra-variability in the ECG signals,
creating the need for more robust biometric systems (BSs).
With the increase of interest in the application of Deep Neural
Networks (DNN) to the medical field, new solutions are also
being explored in the identification and authentication of
individuals. The proposed architecture exploits the potential of
Convolutional Neural Networks (CNN) to identify healthy
subjects using temporal frequency analysis, i.e. spectrograms.

Index Terms—Biometrics, electrocardiogram, deep learning,
convolutional neural networks, spectrogram.

I. INTRODUCTION
The measurement of individual physical and/or behavioral

characteristics may be used for biometric purposes.
Biometric Systems (BSs) are present in our daily life, either
for identification (e.g. identification of a fingerprint in a
crime scene) or authentication (e.g. passport verification at an
airport) of a person. In the last decade, with the increase in
concerns about security, more trustworthy technologies are
demanded by the military, government, and health sectors [1],
[2].
There are several aspects that a BS should follow, such as

universality, uniqueness, permanence, measurability,
performance, acceptability and circumvention. The biometric
signal may be classified in two areas: physical (e.g.
fingerprint, biosignals), and behavioral (e.g. keystrokes, gait)
[3].
The Electrocardiogram (ECG) has the potential to be

chosen as the only source of information to a BS because it
excels in critical aspects, such as: universality, everyone
possesses a heart; uniqueness, the physical and chemical
structural differences of the heart provide differences in
electrical conduction; and circumvention, as it is extremely
difficult to counterfeit these signals [2].
In the last two years, there was an increase in research on

the biometric applications of Deep Neural Networks (DNN).
This includes many successful approaches to the recognition
of ECG signals, suggesting its usefulness for this task [4], [5].
Some of these approaches included the use of Convolutional
Neural Networks (CNN), which are known for their success
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in the fields of image recognition and natural language
processing [6]. Since the introduction of this algorithm, many
improvements have been made. A relevant example is the
DenseNet [7] , a recently proposed CNN architecture which
includes extra connections in groups of successive layers -
dense blocks.
This work takes advantage of these recent developments to

conceive a biometric identification system based on ECG
spectrograms and CNN. Our objective is to improve the
accuracy and robustness of the current systems without the
need to extract the ECG cycle. In order to evaluate the results,
this method will be validated in two different databases,
Fantasia [8] and ECG-ID [9], both acquired from PhysioNet
[10].
This paper will guide through a brief explanation of ECG

biometrics in Section II, followed by the state-of-the-art in
biometrics (Section III). The used data is described in Section
IV. Section V contains the signal processing steps and the
architecture of the used network (CNN). The results,
concerning the application of the proposed method on the two
mentioned databases, are displayed in Section VI, while a
discussion of the conclusions and future work to be made is
presented in Section VII.

II. ECG BIOMETRICS

The ECG is a recording of an electrical signal which
represents the activation of the heart muscles to trigger their
movements. Each signal is represented by different waves: (1)
P wave: Contraction of the atria; (2) PQ segment: Time
between the contraction of the atria and activation of the
ventricles; (3) QRS complex: The combination of the Q, R
and S waves, associated with the contraction of the ventricles;
(4) ST segment: Stage in which the ventricles contract; (5) T
wave: The repolarization of the ventricles [2], [4].
Differences in shape and development of the muscles for

different individuals change the electrical propagation and,
consequently, the signal morphology. This inter-variability
permits the identification of the ECG source for biometric
purposes. There are two kinds of BSs, fiducial and
non-fiducial based. The first relies on features extracted
between reference points in the cardiac cycle (e.g. temporal
intervals). As for the non-fiducial-based BSs, the ECG is
considered as a whole, considering characteristics as R-R
intervals or relative heights between waves [2], [11].
BSs that rely on biosignals often involve issues regarding

the acquisition in terms of noise and artifact contamination,
increasing the intra-subject variability. Consequently,
computing features may be arduous as the electrode material,
sensor location, movement, instrumentation of the devices,
and power-line may compromise the match between ECG
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signals from the same source [12], [13].
BSs have two temporal phases, the enrolment, which

requires an acquisition of the signal to make a template of the
person and store it in a database, and the

authentication/identification, when the same feature
extraction methods are applied to the new acquired data and a
match is given when comparing it with templates from the
same database.

Fig. 1. Flowchart of the method.

The typical BS with ECG comprises the following flow:
first, the acquired data is submitted to a feature extraction
algorithm; then, the extracted features are fed to a
classification module that compares the features to make a
decision; finally, the features and/or classifier modules are
stored in a database during the enrolment phase [14].

III. RELATEDWORK

In ECG Biometrics research, the most common fiducial
feature extraction methods identify morphological
characteristic points [15] or resort to wavelet transform[16],
discrete cosine transform [17] or Fourier transform to extract
the cycle representation coefficients [18] . The resultant
features may be submitted to a dimensional reduction method,
such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA) [19] or Dynamic Time
Warping [20]. These methods may also be incorporated in the
classification module [21], [22]. For non-fiducial approaches,
R-R intervals and PCA are commonly used for feature
extraction [22] . Ferdinando et al. [23] used a k-nearest
neighbor (kNN) classifier applied to bivariate empirical
mode decomposition for biometric identification when
emotions are considered. Besides achieving high
classification rates, this paper found how the accuracy is
affected by two spectrogram parameters: overlap percentage
and window size.
DNNs have been employed in ECG biometrics to improve

performance rates. Page et al. [24] used Neural Networks
(NNs) for both QRS detection and classification, resulting in
an accuracy of 99.96% for ECG-ID database. Eduardo et al.
[25] implemented a Deep Autoencoder to learn lower
dimensional feature representations, achieving low
identification errors on a private dataset. Zheng et al. (2017)
also used an Autoencoder to achieve 98.1% accuracy using a
self-collected database.
Salloum & Kuo [26] proposed an aggregation of Recurrent

Neural Networks (RNN) architectures for analysis and
classification after selecting QRS segments without further
feature extraction methods. For the identification problem, it
was reported nearly 100% classification accuracy using the
ECG-ID database. Zhang et al. [27] used a multiresolution
one-dimensional CNN, where the feature extraction step
comprises discrete wavelet transform, autocorrelation and
component selection, to obtain 97.2% identification rate for

the Fantasia database. Luz et al. [5] used an architecture that
fuses a 1D CNN, fed with raw ECG heartbeats, with another
CNN with two dimensions, fed with the corresponding
spectrograms, reaching state of the art performance on
off-the-person ECG biometrics.
Spectrograms and CNNs have also been applied to ECG

data in other settings, such as the detection of atrial
fibrillation [28].

IV. DATA

The data used in this paper is from two well-known public
databases from PhysioNet database [10] used extensively in
ECG biometrics studies: Fantasia and ECG-ID.
The Fantasia database consists on 40 subjects (20 young

and 20 elderly) whose signals were recorded during a single
120 min session with a sampling frequency of 250 Hz, while
watching the movie Fantasia from Disney [8].
ECG-ID database consists of 310 recordings of 90 subjects

aged from 13 to 75. While the original data ranges from 2 to
20 recordings per subject, only the first two were used, with
the purpose of having the same number of samples for each
subject and ensuring a balanced dataset. Each recording is 20
seconds long with a sampling frequency of 500 Hz [9].

Fig. 2. Two examples of spectrograms for each used database: Fantasia (left)
and ECG-ID (right).

V. METHODS

Our approach (Fig. 1) comprises 3 steps: preprocessing,
spectrogram generation and subject identification (CNN).
These steps will be explained in detail.

A. Signal Processing
The signal preprocessing step is crucial in this work, as it

makes the signals more interpretable to the neural network
and reduces the noise from undesirable sources [12] . It is
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applied to the raw data, before performing the split between
training and validation sets. First, each signal is scaled as
follows:

�� � �ϡ ��
max(x)ϡmin(x)

, where � denotes the signal.

Then, a Hann window filter is applied, so that higher
frequencies, which are associated with noise, are attenuated.
Afterwards, a sliding window subtracts its moving average to
the signal, removing baseline wandering.

B. Spectrogram Generation
A spectrogram is a visual representation of the signal

magnitude at a frequency value through time, i.e. a frequency
spectrum of a signal. That graphical representation comprises
the x-axis, time, the y-axis, frequency, and the z-axis, the
energy of each frequency at a given moment in time. The
representation of the last may be seen as a surface in 3
dimensions or with different colors in 2 dimensions. In this
work, the frequencies and correspondent magnitudes are
obtained by the application of a Fourier transform to
successive time windows resulting in a 2D matrix.
Since both databases have a significant difference in the

recording duration, the need for a minimum amount of
training and validation data requires a difference in the
parameters used for spectrogram generation between
databases.
For the Fantasia database, the signals are segmented into

chunks with a length of 1536 samples (approximate duration
of 6 seconds) and the fast Fourier transform window has a
size of 256 samples with an overlap of 87.5%. For the
ECG-ID database, the segments consist in 2048 samples
(approximately 4 seconds) and a fast Fourier transform
window size of 512, with an overlap of 93.75%. The shorter
duration of the segments is due to the need for increasing the
number of generated spectrograms for training and validation.
In both databases, all the segments are submitted to a Tukey
window with an  parameter equal to 0.5.
Once the spectrograms are generated, the frequencies

above 120 Hz are removed, the resulting matrix is resized to
80  80 and scaled by subtracting the mean and dividing by
the standard deviation. Examples of spectrograms are shown
in Fig. 2.

Fig. 3. "A 5-layer dense block with a growth rate of k = 4,” reprinted from
[7].

C. Convolutional Neural Network
The CNN is a type of NN that applies convolution

operations between kernels and a tensor. In the case of image
recognition, the image can either be provided as input to a
CNN in the form of a 2-dimensional tensor (width and
height), in case of having a single value that represents each
pixel (grayscale), or as a 3-dimensional tensor (width, height,
and number of channels), where the last dimension represents
the components of each pixel. For example, the intensities of
red, green, and blue are the three channels that can be used for
RGB images.
The kernels can be interpreted as filters which detect

shapes, edges, and other patterns that may appear in the
image. These are composed by weights that can mutate as
they learn, during the training process. In the forward
propagation step, kernels are activated by passing through an
activation function, a nonlinear function, such as the
hyperbolic tangent or the rectified linear unit (ReLU). The
latter is given by �I�(�H �) , being � the input vector. It
passes only values above zero, resembling its biological
counterpart, the action potential. This feature allows the NN
to solve nonlinear problems.
All the layers in a CNN that operate by convoluting kernels

and tensors are called convolutional layers and their output is
stack of two-dimensional feature maps.
After a convolution, a pooling layer can be used to reduce

the dimensions of the feature maps. This procedure does not
only minimize the computational effort, but also helps filters
in the detection of shapes that are submitted to translations
[6] . In this work, this operation consists on replacing
consecutive patches of size n  n by either their maximum
value (max pooling) or their average value (average pooling).
After the inputs are passed through a sequence of

convolutional and pooling layers, in order to make it possible
for the classification step to take place, the final outputs are
flattened and can pass by one or more fully connected
(regular) layers, until the class with the highest probability is
assumed as the predicted class. The fully connected layers are
simply composed of matrix multiplications between the
inputs and the weights, with an optional addition of a bias
parameter. The final activation is generally a softmax
function, given by:

�oft�I� �� �
���

���
� ����

H � � �H �H �H䁚䁚䁚�H

where � is the output vector of the neural network.
After the initialization and the first forward pass, the

network starts to learn. This learning step is done by
iteratively propagating the partial derivative of the error with
respect to the weights (i.e. backpropagation). The metric used
to calculate the error is the cross entropy (� ) between the
predicted values (��) and the ground truth (�), given by:

�(�H ��) � � ��� log �
���

� ϡ ���� log �� � .

It is possible to apply 2-dimensional CNNs to ECG data by
changing the representation of the signals from a 1D vector of
samples to a 2D matrix, using a spectrogram. This process
adds the notion of frequency and makes the inputs
interpretable to the network.
In our experiments, we compare the results of a simple

CNN and a DenseNet [7] . In this type of architecture, the
output of one layer is fed to all the following layers.
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Consequently, each dense block is the result of the
concatenation of all the previous feature maps in that same
set of layers (Fig. 3) and serves as input to the next layer. The
number of feature maps in each layer inside a dense block is
called growth rate. The transition layers, positioned between
the flow of blocks, usually perform convolution and pooling
operations. Besides allowing a more efficient use of the
network parameters, this type of architecture achieved state
of the art results on popular image recognition datasets.

Fig. 4. CNN Architecture for Fantasia Database. "Conv", "MP", and "FC"
respectively stand for convolutional, max pooling and fully connected layers.

D. Architecture
In this work, two different CNN architectures are

compared. The first one is a simple CNN with 4
convolutional layers with ReLU activations, depicted in Fig.
4. This CNN does not only serve as a baseline for comparison
with a larger network, but also to optimize the preprocessing
parameters for both networks, reducing the required
computational time. This optimization was made by an
iterative process of checking which parameters for the
construction of the spectrograms gave higher values of
accuracy for subject identification. The second CNN is a
DenseNet with 19 layers, including 3 dense blocks with 5
layers per block and a growth rate of 10, starting with 20
kernels on each convolutional layer. The outputs of the last
dense block are subsampled by a global average pooling
operation. In theory, this network should learn more complex
and diverse features, allowing better performance rates.
For both architectures, the output layer has a size which

corresponds to the number of required classes and is passed
through a softmax activation function.

TABLE I: WITHIN-SESSION CLASSIFICATION PERFORMANCE (%)
Model Database Accuracy Sensitivity Specificity
Simple
CNN Fantasia 99.42 99.42 99.98

DenseNet Fantasia 99.79 99.78 99.99
Simple
CNN ECG-ID 94.23 94.26 99.94

DenseNet ECG-ID 96.88 96.89 99.96

TABLE II: ECG-ID ACROSS-SESSION CLASSIFICATION PERFORMANCE (%)
Model Accuracy Sensitivity Specificity
Simple
CNN 73.54 72.72 99.70

DenseNet 73.28 72.46 99.70

VI. RESULTS
The proposed task is to classify ECG segments into as

many classes as individuals present in the system. For these
experiments, Adam [29] is chosen as the optimizer for both
CNNs. The Keras package [30] is used for the
implementation of the networks as a high-level wrapper for
TensorFlow [31] , a numerical computation library that
allows parallel processing.
In the case of within-session experiments, the models are

trained on 67% of the total length of the signals and validated
on the remaining 33%. For the Fantasia database,
spectrograms are randomly chosen throughout the entire
length of every signal, as the recording time is much longer
when compared to ECG-ID, of which all the generated
spectrograms were used. The total amount of spectrograms
for Fantasia is 39166 for training and 19094 for testing, while
for ECG-ID, the corresponding quantities are 25955 and
6981, respectively.
In the case of the across-session experiments in ECG-ID,

the second recording session of each individual was used for
validation, while the first one was used as the training set.
This generated 22320 spectrograms for training and 22072
for testing. All the remaining parameters were fixed.
Training was performed on two NVIDIA GeForce GTX

1080 Ti graphics cards.
The evaluation metrics were the following:

Accuracy � (�䁢� ��)�(�䁢 � �䁢� ��� ��)H

Sensitivity �
�䁢

�䁢� �� H

Specificity �
��

��� �䁢
H

where TP, TN, FP, and FN respectively stand for True
Positives, True Negatives, False Positives, and False
Negatives.

TABLE III: ACCURACY COMPARISON FOR FANTASIA DATABASE. RBF AND
RF STAND, RESPECTIVELY, FOR RADIAL BASIS FUNCTION AND RANDOM

FOREST
Work Method Accuracy (%)
[16] Wavelets and RBF NN 95.89
[33] Hand-crafted features and RF 98

[27] Wavelets and 1D CNN 97.2

Proposed Spectrograms and Small CNN 99.42

Proposed Spectrograms and DenseNet 99.79

TABLE IV: WITHIN-SESSION ACCURACY COMPARISON FOR ECG-ID
DATABASE. PCA, LDA, AND (W)NM STAND, RESPECTIVELY, FOR

PRINCIPAL COMPONENT ANALYSIS, LINEAR DISCRIMINANT ANALYSIS AND
(WEIGHTED) NEAREST MEAN

Work Method Accuracy (%)

[9] Wavelets, PCA and LDA+(W)NM
ensemble 96

[32] Wavelets and Probabilistic RF 98.79

[24] NNs for QRS detection and
classification 99.96

[26] LSTM (3 beats as input) 98.2

[26] LSTM (9 beats as input) 100

Proposed Spectrograms and Small CNN 94.23

Proposed Spectrograms and DenseNet 96.88

The performance of the proposed method reaches state of
the art on both Fantasia and ECG-ID databases, being the
values of sensitivity and specificity (Table I) within a
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reasonable range.
The results presented on Table III suggest that the

combination of deep learning and spectrograms can be used
effectively for human identification using a non-fiducial
approach, only needing a recording of 6 seconds to be able to
accurately classify a subject on a universe of 40.
As for the ECG-ID database, the used bibliography for

comparison outlined in Table IV was: Lugovaya [9], Tan &
Perkowski [32] , Page et al. [24] and Salloum & Kuo [26] .
These papers diverged in the selection of data for
cross-validation, as it ranges from 2 to 20 sessions per subject.
The first three use all the available data, while the latter only
used a single session per subject. In our work, the
characterization of this dataset uses 2 sessions per subject and
4 second segments, balancing the training data for each
individual, close to the standard of fingerprint authentication
databases.

TABLE V: ACROSS-SESSION ACCURACY COMPARISON FOR ECG-ID
DATABASE

Work Method Accuracy (%)
[26] LSTM (3 beats as input) 97
[26] LSTM (9 beats as input) 100

Proposed Spectrograms and Small CNN 73.54

Proposed Spectrograms and DenseNet 73.28

In the across-session experiments (Table V), both models
reach similar results. This may have to do with the fact that
these models were overfitting to a small training set (10s)
with a very high overlap percentage (93.75%), which
generated very similar spectrograms, not enabling the models
to learn some of the features required to better distinguish
tween subjects.
Even though our results for both architectures are not as

accurate on ECG-ID database as on Fantasia (Table III), the
accuracy is still high, offering a good basis for this
preliminary work. This could be attributed to several factors.
The first one may have occurred as a result of the variability
in the selection of data, which can be compromising the
comparison. The second is due to the larger number of
subjects, as the increase in the number of classes leads to
lower accuracy values for similar models. At last, the short
recording time, only allowing the generation of 366
spectrograms per subject, even with a considerable overlap
percentage (93.75%). This jeopardizes the training, as the
CNN requires a high amount of data to achieve good
performance. These limitations are opportunities to optimize
our method.

VII. CONCLUSION AND FUTURE WORK

Through the recognition of temporal and frequential
information existent in spectrograms, we were able to
confidently attribute small segments of ECG signals to the
subject from whom they were created. This represents
another step towards more capable and robust biometric
identification/authentication systems.
One of the advantages of this algorithm is its robustness to

variations in the moment of signal acquisition, as
spectrograms with small offsets in time were correctly
identified without the need for QRS detection.

Although the achieved results showed good performance,
there is still a considerable margin for improvement. The use
of external data for pretraining could be helpful, as it may
enable the network to learn a better latent representation of
the signal, especially in low data regimes, as is the case of the
ECG-ID database. This would likely improve its
generalization capability, allowing the system to differentiate
between more subjects and require less training samples for
each one. Further development could also be made regarding
signal acquisition and preprocessing, as the effect of noise
and artifacts present in the signal is a probable cause for
recognition error.
While this paper demonstrates there is potential in the use

of spectrograms for biometric recognition applications,
future work should include testing in data acquired in
different periods, separated by several months or years, in
order to prove the reliability of these systems over time.
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