


Abstract—The art of composing music can be automated

with deep learning along with the knowledge of a few implicit

heuristics. In this proposed paper, we aim at building a model

that composes Carnatic oriented contemporary tune, that is

based on the features of given training song. It implements the

task of automated musical composition using a pipeline where

various key features of the resultant tune are constructed

separately step by step and finally combined into a complete

piece. LSTM models were used for creating four different

modules namely, the Tune module, the Motif module, the

Endnote module, and the Gamaka module. Four models were

built namely - Motif, Tune, End Note, and Gamaka whose

training accuracy was 86%, 98%, 60%, and 72% respectively.

Our work focuses primarily on generating a user friendly

Carnatic music composer that accepts the initial user phrase to

compose a simultaneous sequence of notes and motifs for the

required duration.

Index Terms—RNN-LSTM, composition, deep learning,

Carnatic music, AI.

I. INTRODUCTION

The music we hear is often associated with different

emotions or vibes based on the psychological relations the

sound has with these emotions. The appeal of a song can be

controlled by a few concrete sets of attributes of the musical

tune, whereas composing a song oriented to a certain feeling

requires taking a lot many dynamic factors into

consideration. Although art is irreplaceable, we aim to

achieve maximum closeness to the musical interpretation of

the human brain. Indian Classical Music boasts of one of the

vastest and complex musical structures in the world with a

repository of protocols and restrictions on note progressions

called Ragas. Ragas provide unique identities to musical

phrases. Each Raga has a set of note intervals that every

phrase of music must adhere to, which can be interpreted as

an analogy to the musical scale system in Western Music.

Sounds become music when frequencies start possessing a

distinct rhythm or timed melody and the sounds signify a

certain message or emotion that creates a mellifluous pattern

of notes. Music is treated like a puzzle by the brain which

Manuscript received August 25, 2019; revised January 10, 2020.

Hari Kumar is with the Ericsson Research Labs, Ericsson, India (e-mail:

n.hari.kumar@ericsson.com).

P. S Ashwin and Haritha Ananthakrishnan are with the Computer

Science Engineering Department of SSN College of Engineering, Chennai,

TamilNadu, India (e-mail: ashwin16015@cse.ssn.edu.in,

haritha16038@cse.ssn.edu.in).

seeks to identify any note or rhythm patterns that give rise to

some extent of familiarity within. Determining whether the

song possesses appeal, is governed by the process of solving

this puzzle. Repeating patterns of note lengths play a major

role in making the song familiar as it progresses. These

groups of repeating note lengths are known as motifs.

Motifs were successfully identified in the training corpora

and were passed as one of the four main parameters which

determine the quality of the outcome of this experiment.

Intuitively, a song can be split into several phrases with

noticeable end notes that have a prominent influence over

the sounding of the song. Ending notes are primal to the

construction of a phrase, as no matter how many variations

of note patterns make up the phrase - it all boils down to

how it concludes.

The key difference between western music and Indian

music is the presence of gamakas [1]. Gamakas can be

understood as continuous pitch movements from one

monophonic note to another. They are represented as a

combination of a monophonic note and a fixed note. This

transition between notes while gliding over other transient

notes engendering rapid pitch changes was achieved in our

model through Pitch bends. Using an RNN-LSTM

technology was ideal since every note in the sequence

depends upon the context determined by the previous notes,

which basically requires the presence of memory. The

number of notes determining the context of the tune also

varies depending on the Raga. Hence the presence of the

forget gate enabled the training of determining the size of

the context i.e. the number of notes considered while

predicting the next note in the sequence.

II. RELATED WORKS

Over the past few years Music Information Retrieval has

progressed like wildfire with the development of music

recognition software like Shazam [2] and AI Music

composition software such as AIVA (AI generated

emotional tracks) (www.aiva.ai) and JukeDeck

(https://www.jukedeck.com/), gradually changing the way

the world interprets music. Magenta’s ML Jam

(https://magenta.tensorflow.org/) is an RNN- based music

composition software that can generate both drum grooves

and melody. Recurrent Neural Networks(RNNs) pave way

for the incorporation of long term dependencies in music

composition. In CONCERT [3] an RNN based music

composition software, the system makes note based

predictions trained by 10 popular Bach pieces. This model

fell short of grasping the structure of the entire piece due to

lack of memory, popularly known as the vanishing gradient

issue. To overcome this shortcoming the use of LSTM

MellisAI - An AI Generated Music Composer Using

RNN-LSTMs

N. Hari Kumar, P. S Ashwin, and Haritha Ananthakrishnan

247doi: 10.18178/ijmlc.2020.10.2.927

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

mailto:ashwin16015@cse.ssn.edu.in
http://www.aiva.ai/
https://www.jukedeck.com/

(Long short term memory) [4] was advocated and is

currently being put into use in computer- generated music.

Though these technologies are gaining momentum in the

west, the concept of AI-generated eastern classical music is

still developing due to the lack of digital musical data for

popular eastern pieces. In this paper, we aim to compose

Indian classical music with manually crafted data sets in

various Carnatic ragas. Extant research in Carnatic music

gave us an insight of motif spotting which has been used to

identify catchphrases in aalap phrases [5]. Another approach

to identify and classify motifs uses dynamic time warping

and HMM-based classification applied on a time series of

notes [6]. While the mentioned research on motifs is note-

based and aims to identify catchphrases, in this paper we

have incorporated Motif prediction in the timing domain.

The structure of Gamakas has been very efficiently

explained as a combination of constant pitch notes and

transient notes [7]. Gamakas have rightly analyzed to be a

part of a note (svara) and the precision of notes which

contain svaras have been studied earlier [8], but not much of

research has been done so far on how to predict where

Gamakas must be placed in a musical piece and this paper

makes a novice attempt at understanding this aspect of

Carnatic Music.

III. DATA PROCESSING

A. MIDI Representation of Data

The ragas that we worked with for our tasks are

Hamsadhwani and Mohanam whose catchphrases were

extracted through Raga Surabhi, a Carnatic raga

identification platform (http://www.ragasurabhi.com/). The

Hamsadhwani varnam - Jalajakshi was also MIDI

encoded as our training corpus. Digital musical data are

represented as MIDI (Musical Instrument Digital Interface)

[9]. Music is represented as a series of events represented by

MIDI messages that occur at certain time instants. The time

is represented using MIDI clock values. Other important

information about the song such as tempo and time signature

are stored as headers in the MIDI file. Data processing was

implemented using the py_midicsv library [11] midicsv in

python. The first 8 rows of the converted file contain the

header information and each of the following rows contain a

MIDI message sorted in the order of increasing MIDI clock

values.

Fig. 1. CSV format of converted MIDI file.

The CSV file format contains the following attributes (Fig.

1).

– Track: Multiple MIDI channel can be present in a

single file.

– Channel: represents different instruments identified by

an unique number.

– MIDI Clock: Gives the time instant at which the MIDI

event occurred

– MIDI Command: Gives the type of MIDI message.

MIDI Command has the following values:

 Note on c: Indicates the note being played

 Note off c: Indicates termination of an existing off

note.

 Pitch bend c: Gives pitch bend magnitude

 End of Track: Message signifying that the track

has ended.

– Note: The note played represented by its index number.

Lowest note value starts from 0 (Sa note of the lowest

octave).

– Velocity: The loudness of the note.

IV. DATA CLEANSING AND PRE PROCESSING

The universally accepted fundamental unit of music is a

beat (talam), which we have further divided into steps, as

one beat is divided into 96 MIDI Clocks. The number of

steps making up a bar is determined by the time signature.

Depending upon the number of steps per beat, MIDI clock

values were quantized to the nearest step and then scaled

down to step values. The data set was cleaned by removing

noisy channels which did not contribute to the main melody.

Fig. 2. Units in one bar of music.

An octave is a set of 12 semitones that form a perfect

interval. Since the musical progression of notes is

independent of the octave they are in, all notes were shifted

down to the first three octaves to maintain homogeneity.

These three octaves were chosen after analysis of

contemporary music and human vocal ranges. Harmonies

were differentiated from the lead tune using note velocities,

with the highest velocity being the melody. Notes were

made to fill all empty spaces present and notes were

trimmed without allowing overlap so that we had a sequence

of continuous notes without gaps, for the subsequent

calculation of note lengths. In Carnatic music, every song

falls into one of the 12 categories of Shruti or scale.

Transpose refers to the scaling up or down of notes so as to

modify the Shruti of a song. Table I gives the 12 notes of

Carnatic music in comparison to western notes.

In our model, every song present in the training set was

transposed, each phrase acting as one separate unit being fed

248

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

into the training model. This is done with the set of

distinctly identifiable end notes that resolve each phrase,

giving a conclusion to the previous set of notes. An end note

is characterized as the largest note appearing towards the

end of a sequence of bars put together as per our logical

assumptions.

TABLE I: CARNATIC SWARAS IN THE WESTERN MUSIC SCALE

Name Sa Ri Ga Ma Pa Da Ni

Carnatic Sa Ri1 Ri2 Ga2 Ga3 Ma1 Ma3 Pa Da1 Da2 Ni1 Ni2

Western C C# D D# E F F# G G# A A # B

V. PROPOSED METHODOLOGIES AND IMPLEMENTATION

A. Tune Model

The tune prediction model was constructed to compose a

sequence of notes of given length n that resolve into the

given input end note. N-gram sequences were generated

from phrases starting from n = 2, till n = sizeOfPhrase. The

size of the input vector (sizeOfPhrase) was assumed to be

11 as there are 12 semitones in an octave, and the minimum

output span was fixed to be 1. Each n-gram sequence was

padded with the required number of zeros to match input

vector dimension. Phrases longer than the length of this

input vector were fragmented using a sliding window of

size 11, which was shifted by one step each iteration.

(See Fig. 3)

Fig. 3. n-gram sequence padding.

Finally, the padded n-gram sequence was split into X

(input) and Y (output) vectors such that last n notes of n-

gram sequence would be separated from the n-gram

sequence as Applying different output spans, gave us a

rough idea of the different kinds of tunes that can be

generated by this model. We chose an output span of 3, as

we felt it yielded the most favorable results. Each sequence

in the total set of n-gram sequences gave rise to a variety of

possible combinations in the set of output notes when

splitting into X and Y, wherein each combination was

labeled with a number. The model was trained with only

these combinations of output notes, and hence only the note

sequences present in the input song can appear in the tune

produced and the similarity to the input song is enforced.

Fig 4. Padded N-gram sequences.

The process of selecting an output sequence with respect

to class probabilities was randomized to select one from the

top three most probable occurrences. This was done to avoid

picking the same, most probable class in each iteration

which leads to over-fitting and consequently leads to the

model constantly composing similar-sounding tunes. The

output class is then decoded to retrieve the notes of the

melody, and these notes are further appended to the input

vector to establish continuity and hence obtain a complete

phrase as the output. This process is repeated until the

required number of notes are generated.

Fig. 5. LSTM topology description of tune model.

B. End Note Prediction

The end note module was built to make the process of

reverse composition by the Tune model more dynamic in

nature. As elucidated, the tune module takes the input of an

end note and works backward to compose a musical phrase

to make the phrase sound sensible and complete.

Fig. 6. End notes: input and output vectors.

As the most pivotal part of the tune was the end note, we

built an LSTM model to enable relevant endnote prediction

for each consequent phrase. The whole song was split into

bars of 4 beats, where each beat can contain either three or

four steps. An end note score was given to each assignment,

depicting the relevance of the combination of bars into one

phrase. If the score was greater than 0.5, the split was

considered to be valid, else the combination of two or more

bars was considered to be a phrase, which is repeated until a

desirable score is reached. End notes were calculated to be

the longest note towards the end of a phrase. This

assumption was made after sufficient research done on

various Carnatic and Indian film songs, which yielded the

most desirable results. (See (1))

EndNoteScore=
Position

BarLength
∗ BarsAccumulated (1)

endNoteScore ranges from 0 to 1 and is the deciding

factor of the end note. BarsAccumulated signifies the count

of bars in the phrase chained together so far.

position is taken as the farthest note which is longer than

a beat. Some phrases have a set of introductory notes that

are present in the bar preceding the first bar of the phrase.

The last few notes of the bar may belong to the following

249

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

phrase. Hence, position / lengthOfBar gives a measure of

the length of the note towards the end of a bar.

As the phrase becomes lengthier we are further moving

away from the right split and endNoteScore is made to be

directly proportional to BarsAccumulated.

The first note for which endNoteScore exceeds 0.5 is

taken to be the end note for the corresponding phrase. Once

the end notes of each phrase were identified, consequent

phrases were paired up to form the X(input) and y(output).

X comprised of all the end notes for odd phrases and Y for

the end notes of even phrases. To make the working of the

model more dynamic there exists a provision for the user to

give a leading phrase to begin with, whose endnote will be

considered the end note of the predicted song. This way, the

semantics of classical music were maintained and

aberrations were evaded successfully.

C. Motif Detection

The motif is the smallest structural unit in music,

possessing a thematic identity. It is a reflection of the basic

feel and idea behind any musical composition, which can be

a salient, recurring note or groove pattern. A rhythmic

groove is a repeating pattern in any song, which determines

it's genre. The motif model aims to compose a groove which

can be understood as a vector of note lengths corresponding

to the notes generated by the Tune prediction model. Say

notes were to appear with the following note lengths (values

given in steps) in a set of phrases.

2 2 1 1 2 4 4 - Phrase 1

2 2 1 1 2 4 4 - Phrase 2

4 2 2 1 1 4 - Phrase 3

We notice that the pattern, 2 2 1 1 is very common and

this can be called as the rhythmic motif of the above 4 lines

of music. For model training, the note lengths of all the

respective notes are taken. They are grouped into bars which

are further grouped by combining the set of notes such that

sum of their note lengths equals 16 steps, since processed

data contains note lengths in units of steps. Due to the

unpredictable nature of motifs which can be dispensed

across more than one bar, bars were combined so that these

are not ignored. At the same time, two separate phrases

cannot share a single motif. Hence, we have adopted a

different approach to group bars into phrases. Usually, lines

in music occur in pairs or triplets, such that each member of

the pair or triplet have identical time grooves (see Fig. 7).

Fig. 7. Motif grouping.

Hence the bars can be grouped into phrases such that the

phrases form pairs or triplets with other phrases. The

phrases which do not find pairs are allowed to exist as

singleton phrases. Motifs that start at the first count of a beat

(Samam) and those that occur with a delay of few or more

steps sound different and ought to be contrasted. Hence sub

sequences are generated starting from positions that are on

the beat. Motifs can be of any duration and any number of

notes. Hence all on beat sub sequences of all lengths are

generated and their number of occurrences are counted. Top

n most occurring motifs are finalized, with n being the

number of motifs which is a variable that can be changed

according to requirements. Each finalized motif is assigned

an alphabetical label and their occurrence in the phrases are

replaced with their corresponding alphabetical labels.

Fig. 8. Motif nomenclature and note lengths.

Fig. 9. Different grooves with motifs.

This helps since when the group of notes constituting a

motif is substituted by a single alphabet, it becomes a single

entity when viewed by the LSTM and this is later decoded

to be a vector of corresponding note lengths. The starting

note length is arbitrarily picked from all the starting notes of

the labeled set of phrases, where the probability of selecting

a start note depends upon its frequency of occurrence. Since

the labeled phrases are in use, a possibility of the starting

note being a motif alphabet is also introduced. When the

LSTM predicts a note of odd length, every following even

note lengths occur at odd intervals disrupting the groove. As

the LSTM cannot possibly learn to bring the groove back to

even intervals, when the LSTM generates an odd note length,

it is complimented with another odd note based on a certain

probability. This probability is calculated based upon the

occurrence of odd notes in the input bars.

D. Gamakam Module

Gamakas are ornamentations applied to the basic tune in

Indian classical music. They are similar to the usage of

grace notes in western music. In contrast to western music

where the use of grace notes are quite infrequent, their use is

much more frequent and laid out with more complexity in

Indian classical music. Gamakams are variations in the pitch

of the note involving oscillations between the primary note

and the secondary or transient notes. Each raga lays down a

specific framework within which gamakams can be used

which include what specific notes and specific types of

gamakams can be used on them.

This module is the final module in the pipeline, which

takes the end tune produced by the modules as mentioned

earlier and adds gamakams according to the notes present in

the main tune. There are more than 15 types of gamakams in

present-day Carnatic music. In the viewpoint of how the

model learns, these 15 types can be narrowed down into 4

types (Fig. 10)

250

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

Fig. 10. Types of gamakams.

 Type 1: Involves a subtle nudge of the transient

note before rapidly returning to the primary note.

The pitch stays constant at the transient note

initially for a transient period for the transient

note's presence to be felt

 Type 2: The pitch oscillates once from primary to

transient and then returns to the primary note.

 Type 3: A slow and sliding transition from the

transient note to the primary note.

 Type 4: Persistent oscillation between the transient

note and the primary note. The oscillation begins

with the primary note and ends with the primary

note. This can be interpreted as vibrato in western

music.

The transition from one note to another in pitch follows a

straight line, whose slope can be modified to achieve

different desired results. Gamakams can be emulated using

straight notes which are quick and short spanned. When it

comes to adding gamakams during the composition stage,

the use of the pitch bend facility provides better results.

Pitch bend signals are given along with corresponding

magnitudes at instants of MIDI clocks which add or subtract

the overall pitch of the instrument's output equally

irrespective of which note is played or the number of notes

being played. A pitch bend of magnitude 8191 is equivalent

to the change of one-octave pitch. Hence pitch bend of

8191/12 equals one semitone or one note of pitch change.

The required change in pitch is achieved by (2)

 Changepitch = 8191 +
𝑛∗8191

12
 (2)

where n is the number of notes.

The model predicts the class that may appear in the

corresponding context and this numerical class label is

translated into the gamakam note and gamakam type. Based

on the transient Note, the pitch bend range value that

would transpose the current note to the gamakam note is

calculated as follows (3):

NumberOfSemitones=GamakamNote − PrimaryNote

pitchbendRange=8191 + (NumberOfSemitones ∗ 8191 12⁄)

(3)

VI. CONSOLIDATED PIPELINE

Fig. 11. Pipeline of modules.

The above figure (Fig. 11) depicts our end to end working.

The input corpora is MIDI encoded and sent to the Tune

module, End Note Module and Motif Module. Different

features of the same data set are extracted in these three

modules. The End note model extracts the end notes of the

given song, and predicts the end notes of N-following bars

using it's LSTM model. These predicted notes,form the

onset of tune composition. The tune module then extracts

the entire note sequence, which is fed into the LSTM Tune

model, designed to predict N-notes, reversed based on the

predicted End Note. The motif module simultaneously

extracts the note lengths from the input dataset, and

identifies the most frequent rhythm patterns and generates

motifs for the predicted tunes. These three independent

modules are amalgamated into one in our Compose method.

This tune is then fed into the Gamakam module which has

it's own pitch bent input dataset of the same raga. The

Gamakam Module then predicts where, and which type of

Gamakams need to occur.

VII. RESULTS AND EVALUATION

The pipeline (Fig. 11) of our project started with the

training data, a mixture of various ragas being fed as input.

The input was split into phrases and simultaneously fed to

the Tune model which extracted the N-gram note sequence,

the Motif Model that trained with the patterns of note

lengths and finally the End note model whose training set

was the phrase's end notes. The output of the combined

model was further fed into the Gamakam module. The data

was then test-train split and the respective models built,

whose test and training accuracy was computed as shown in

Table II.

TABLE II: TRAIN AND TEST ACCURACY FOR THE MODELS WITH

CONVERGING LOSS VALUE

 Model Train Accuracy Test Accuracy Loss

Tune Model 91.88% 80.95% 0.2409

Motif Model 63.56 % 75.003 % 0.9964

End Note Model 63.23% 73.45% 0.9878

VIII. CONCLUSION

This paper elucidates our implementation of generating

Carnatic raga based tunes using RNN-LSTMs. We have

used four different prediction modules for every aspect of

our software and were successfully able to auto generate

251

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

various phrases of music, depending on the user's input.

Future scope for our model includes expanding our data set,

incorporating multiple timing and note patterns in various

other ragas and research on other deep learning algorithms

that could improve our model accuracy. We also believe that

there is vast scope for this project in the commercial arena

once the prototype can be converted into a product.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Haritha Ananthakrishnan and PS Ashwin actively

participated in the implementation of the project and worked

simultaneously on separate models and integrated them in

the end. Ashwin worked on the Motif and Gamakam

modules, and Haritha worked on the Tune model integration

and End Note models. Ashwin helped with content

procurement for the paper, and Haritha drafted the paper in

accordance to the templates and consolidated the outputs

and screenshots.

ACKNOWLEDGMENT

We would like to thank Mrs. Vedavalli, a Veena teacher

and Music director Kavin for their valuable inputs regarding

our project. Mrs. Vedavalli gave us an insight about how to

further elaborate our data set with different kinds of songs

and ragas and encouraged us to take the implementation

further, while Mr. Kavin suggested a few additions to make

our product market ready, and to maximize usage by film

and music directors.

REFERENCES

[1] R. S. Jayalakshmi, “Gamakas explained in Sangita-sampradaya-

pradarsini of Subbarama Diksitar,” Doctoral dissertation, Madras

University.

[2] A. Wang, “The Shazam music recognition service,” Communications

of the ACM, vol. 1, 2006.

[3] P. Rao, J. C. Ross, V. Pandit et al., “Classification of melodic motifs

in raga music with time-series matching,” Journal of New Music

Research, vol. 43, no. 1, pp. 115-131, 2014.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”

Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[5] V. Ishwar, S. Dutta, A. Bellur, and H. A. Murthy, “Motif spotting in

an alapana in carnatic music,” ISMIR, pp. 499-504, 2013.

[6] I. Simon and S. Oore. (2017). Performance RNN: Generating music

with expressive timing and dynamics. [Online]. Available:

https://magenta.tensorflow.org/performance-rnn

[7] V. S. Viraraghavan, R. Aravind, and H. A. Murthy, “A statistical

analysis of gamakas in carnatic music,” ISMIR, pp. 243-249, 2017.

[8] V. S. Viraraghavan, R. Aravind, and H. A. Murthy, “Precision of sung

notes in carnatic music,” ISMIR, pp. 499-505, 2018.

[9] International MIDI Association. MIDI musical instrument digital

interface specification 1.0. Los Angeles. 1983.

[10] Walker J. Midi-csv. URL: http://www. fourmilab.

ch/webtools/midicsv/(hämtad 2017-05-20). 2008.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits

unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

N. Hari Kumar is a senior researcher in artificial

intelligence at Ericsson Research. He received his

bachelor’s degree in information and technology from

Anna University, India.

He is currently focusing on big data, IoT and

machine intelligence technologies. He joined Ericsson

in 2008 as a software engineer. He holds 11+ patents

in his area of expertise. He is an active member of 3GPP 5G

Standardization body.

P. S Ashwin is pursuing her bachelor of engineering

at SSN College of Engineering, Chennai, Tamil Nadu

India, majoring in computer science engineering.

He has participated and won many national level

Hackathons, like the Smart India Hackathon, and VIT

Hackathon.

Haritha Ananthakrishnan is pursuing her

bachelor of engineering at SSN College of

Engineering, Chennai, Tamil Nadu India, majoring in

computer science engineering.

Ms. Ananthakrishnan has worked on multiple

projects in the domain of machine learning, natural

language processing and deep learning, and has

published a paper with CLEF in the CEUR-WS

journal on Early detection of anorexia and self harm

using RNN-LSTMs and SVM Classifiers, Author profiling in Arabic, and

Classification of insincere questions for FIRE 2019.

252

International Journal of Machine Learning and Computing, Vol. 10, No. 2, February 2020

https://magenta.tensorflow.org/performance-rnn
https://creativecommons.org/licenses/by/4.0/

