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Abstract—The art of composing music can be automated 

with deep learning along with the knowledge of a few implicit 

heuristics. In this proposed paper, we aim at building a model 

that composes Carnatic oriented contemporary tune, that is 

based on the features of given training song. It implements the 

task of automated musical composition using a pipeline where 

various key features of the resultant tune are constructed 

separately step by step and finally combined into a complete 

piece. LSTM models were used for creating four different 

modules namely, the Tune module, the Motif module, the 

Endnote module, and the Gamaka module. Four models were 

built namely - Motif, Tune, End Note, and Gamaka whose 

training accuracy was 86%, 98%, 60%, and 72% respectively. 

Our work focuses primarily on generating a user friendly 

Carnatic music composer that accepts the initial user phrase to 

compose a simultaneous sequence of notes and motifs for the 

required duration. 

 
Index Terms—RNN-LSTM, composition, deep learning, 

Carnatic music, AI.  

 

I. INTRODUCTION 

The music we hear is often associated with different 

emotions or vibes based on the psychological relations the 

sound has with these emotions. The appeal of a song can be 

controlled by a few concrete sets of attributes of the musical 

tune, whereas composing a song oriented to a certain feeling 

requires taking a lot many dynamic factors into 

consideration. Although art is irreplaceable, we aim to 

achieve maximum closeness to the musical interpretation of 

the human brain. Indian Classical Music boasts of one of the 

vastest and complex musical structures in the world with a 

repository of protocols and restrictions on note progressions 

called Ragas. Ragas provide unique identities to musical 

phrases. Each Raga has a set of note intervals that every 

phrase of music must adhere to, which can be interpreted as 

an analogy to the musical scale system in Western Music. 

Sounds become music when frequencies start possessing a 

distinct rhythm or timed melody and the sounds signify a 

certain message or emotion that creates a mellifluous pattern 

of notes. Music is treated like a puzzle by the brain which 
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seeks to identify any note or rhythm patterns that give rise to 

some extent of familiarity within. Determining whether the 

song possesses appeal, is governed by the process of solving 

this puzzle. Repeating patterns of note lengths play a major 

role in making the song familiar as it progresses. These 

groups of repeating note lengths are known as motifs. 

Motifs were successfully identified in the training corpora 

and were passed as one of the four main parameters which 

determine the quality of the outcome of this experiment. 

Intuitively, a song can be split into several phrases with 

noticeable end notes that have a prominent influence over 

the sounding of the song. Ending notes are primal to the 

construction of a phrase, as no matter how many variations 

of note patterns make up the phrase - it all boils down to 

how it concludes.  

The key difference between western music and Indian 

music is the presence of gamakas [1]. Gamakas can be 

understood as continuous pitch movements from one 

monophonic note to another. They are represented as a 

combination of a monophonic note and a fixed note. This 

transition between notes while gliding over other transient 

notes engendering rapid pitch changes was achieved in our 

model through Pitch bends. Using an RNN-LSTM 

technology was ideal since every note in the sequence 

depends upon the context determined by the previous notes, 

which basically requires the presence of memory. The 

number of notes determining the context of the tune also 

varies depending on the Raga. Hence the presence of the 

forget gate enabled the training of determining the size of 

the context i.e. the number of notes considered while 

predicting the next note in the sequence. 

 

II. RELATED WORKS 

Over the past few years Music Information Retrieval has 

progressed like wildfire with the development of music 

recognition software like Shazam [2] and AI Music 

composition software such as AIVA (AI generated 

emotional tracks) (www.aiva.ai) and JukeDeck 

(https://www.jukedeck.com/), gradually changing the way 

the world interprets music. Magenta’s ML Jam 

(https://magenta.tensorflow.org/) is an RNN- based music 

composition software that can generate both drum grooves 

and melody. Recurrent Neural Networks( RNNs ) pave way 

for the incorporation of long term dependencies in music 

composition. In CONCERT [3] an RNN based music 

composition software, the system makes note based 

predictions trained by 10 popular Bach pieces. This model 

fell short of grasping the structure of the entire piece due to 

lack of memory, popularly known as the vanishing gradient 

issue. To overcome this shortcoming the use of LSTM 
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(Long short term memory) [4] was advocated and is 

currently being put into use in computer- generated music. 

Though these technologies are gaining momentum in the 

west, the concept of AI-generated eastern classical music is 

still developing due to the lack of digital musical data for 

popular eastern pieces. In this paper, we aim to compose 

Indian classical music with manually crafted data sets in 

various Carnatic ragas. Extant research in Carnatic music 

gave us an insight of motif spotting which has been used to 

identify catchphrases in aalap phrases [5]. Another approach 

to identify and classify motifs uses dynamic time warping 

and HMM-based classification applied on a time series of 

notes [6]. While the mentioned research on motifs is note-

based and aims to identify catchphrases, in this paper we 

have incorporated Motif prediction in the timing domain. 

The structure of Gamakas has been very efficiently 

explained as a combination of constant pitch notes and 

transient notes [7]. Gamakas have rightly analyzed to be a 

part of a note (svara) and the precision of notes which 

contain svaras have been studied earlier [8], but not much of 

research has been done so far on how to predict where 

Gamakas must be placed in a musical piece and this paper 

makes a novice attempt at understanding this aspect of 

Carnatic Music. 

 

III. DATA PROCESSING 

A. MIDI Representation of Data 

The ragas that we worked with for our tasks are 

Hamsadhwani and Mohanam whose catchphrases were 

extracted through Raga Surabhi, a Carnatic raga 

identification platform (http://www.ragasurabhi.com/). The 

Hamsadhwani varnam - Jalajakshi was also MIDI 

encoded as our training corpus. Digital musical data are 

represented as MIDI (Musical Instrument Digital Interface) 

[9]. Music is represented as a series of events represented by 

MIDI messages that occur at certain time instants. The time 

is represented using MIDI clock values. Other important 

information about the song such as tempo and time signature 

are stored as headers in the MIDI file. Data processing was 

implemented using the py_midicsv library [11] midicsv in 

python. The first 8 rows of the converted file contain the 

header information and each of the following rows contain a 

MIDI message sorted in the order of increasing MIDI clock 

values. 

 

 
Fig. 1. CSV format of converted MIDI file. 

 

The CSV file format contains the following attributes (Fig. 

1). 

– Track: Multiple MIDI channel can be present in a 

single file. 

– Channel: represents different instruments identified by 

an unique number. 

– MIDI Clock: Gives the time instant at which the MIDI 

event occurred 

– MIDI Command: Gives the type of MIDI message. 

MIDI Command has the following values: 

 Note on c: Indicates the note being played 

 Note off c: Indicates termination of an existing off 

note. 

 Pitch bend c: Gives pitch bend magnitude 

 End of Track: Message signifying that the track 

has ended. 

– Note: The note played represented by its index number. 

Lowest note value starts from 0 (Sa note of the lowest 

octave). 

– Velocity: The loudness of the note. 

 

IV. DATA CLEANSING AND PRE PROCESSING 

The universally accepted fundamental unit of music is a 

beat (talam), which we have further divided into steps, as 

one beat is divided into 96 MIDI Clocks. The number of 

steps making up a bar is determined by the time signature. 

Depending upon the number of steps per beat, MIDI clock 

values were quantized to the nearest step and then scaled 

down to step values.  The data set was cleaned by removing 

noisy channels which did not contribute to the main melody.  

 

 
Fig. 2. Units in one bar of music. 

 

An octave is a set of 12 semitones that form a perfect 

interval. Since the musical progression of notes is 

independent of the octave they are in, all notes were shifted 

down to the first three octaves to maintain homogeneity. 

These three octaves were chosen after analysis of 

contemporary music and human vocal ranges. Harmonies 

were differentiated from the lead tune using note velocities, 

with the highest velocity being the melody. Notes were 

made to fill all empty spaces present and notes were 

trimmed without allowing overlap so that we had a sequence 

of continuous notes without gaps, for the subsequent 

calculation of note lengths. In Carnatic music, every song 

falls into one of the 12 categories of Shruti or scale. 

Transpose refers to the scaling up or down of notes so as to 

modify the Shruti of a song. Table I gives the 12 notes of 

Carnatic music in comparison to western notes. 

In our model, every song present in the training set was 

transposed, each phrase acting as one separate unit being fed 
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into the training model. This is done with the set of 

distinctly identifiable end notes that resolve each phrase, 

giving a conclusion to the previous set of notes. An end note 

is characterized as the largest note appearing towards the 

end of a sequence of bars put together as per our logical 

assumptions. 

 
TABLE I: CARNATIC SWARAS IN THE WESTERN MUSIC SCALE 

Name Sa Ri Ga Ma Pa Da Ni 

Carnatic Sa Ri1 Ri2 Ga2 Ga3 Ma1 Ma3 Pa Da1 Da2 Ni1 Ni2 

Western C C# D D# E F F# G G# A A # B 

 

V. PROPOSED METHODOLOGIES AND IMPLEMENTATION 

A. Tune Model 

The tune prediction model was constructed to compose a 

sequence of notes of given length n that resolve into the 

given input end note. N-gram sequences were generated 

from phrases starting from n = 2, till n = sizeOfPhrase. The 

size of the input vector (sizeOfPhrase) was assumed to be 

11 as there are 12 semitones in an octave, and the minimum 

output span was fixed to be 1. Each n-gram sequence was 

padded with the required number of zeros to match input 

vector dimension. Phrases longer than the length of this 

input vector were fragmented using a sliding window of 

size 11, which was shifted by one step each iteration. 

(See Fig. 3)   

 

 
Fig. 3. n-gram sequence padding. 

 

Finally, the padded n-gram sequence was split into X 

(input) and Y (output) vectors such that last n notes of n-

gram sequence would be separated from the n-gram 

sequence as Applying different output spans, gave us a 

rough idea of the different kinds of tunes that can be 

generated by this model. We chose an output span of 3, as 

we felt it yielded the most favorable results. Each sequence 

in the total set of n-gram sequences gave rise to a variety of 

possible combinations in the set of output notes when 

splitting into X and Y, wherein each combination was 

labeled with a number. The model was trained with only 

these combinations of output notes, and hence only the note 

sequences present in the input song can appear in the tune 

produced and the similarity to the input song is enforced. 

 

 
Fig 4. Padded N-gram sequences. 

 

The process of selecting an output sequence with respect 

to class probabilities was randomized to select one from the 

top three most probable occurrences. This was done to avoid 

picking the same, most probable class in each iteration 

which leads to over-fitting and consequently leads to the 

model constantly composing similar-sounding tunes. The 

output class is then decoded to retrieve the notes of the 

melody, and these notes are further appended to the input 

vector to establish continuity and hence obtain a complete 

phrase as the output. This process is repeated until the 

required number of notes are generated. 

 
Fig. 5. LSTM topology description of tune model. 

 

B. End Note Prediction  

The end note module was built to make the process of 

reverse composition by the Tune model more dynamic in 

nature. As elucidated, the tune module takes the input of an 

end note and works backward to compose a musical phrase 

to make the phrase sound sensible and complete. 

 

 
Fig. 6. End notes: input and output vectors. 

 

As the most pivotal part of the tune was the end note, we 

built an LSTM model to enable relevant endnote prediction 

for each consequent phrase. The whole song was split into 

bars of 4 beats, where each beat can contain either three or 

four steps. An end note score was given to each assignment, 

depicting the relevance of the combination of bars into one 

phrase. If the score was greater than 0.5, the split was 

considered to be valid, else the combination of two or more 

bars was considered to be a phrase, which is repeated until a 

desirable score is reached. End notes were calculated to be 

the longest note towards the end of a phrase. This 

assumption was made after sufficient research done on 

various Carnatic and Indian film songs, which yielded the 

most desirable results. (See (1)) 

EndNoteScore=
Position

BarLength
∗ BarsAccumulated    (1) 

endNoteScore ranges from 0 to 1 and is the deciding 

factor of the end note. BarsAccumulated signifies the count 

of bars in the phrase chained together so far. 

position is taken as the farthest note which is longer than 

a beat. Some phrases have a set of introductory notes that 

are present in the bar preceding the first bar of the phrase. 

The last few notes of the bar may belong to the following 
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phrase. Hence, position / lengthOfBar gives a measure of 

the length of the note towards the end of a bar. 

As the phrase becomes lengthier we are further moving 

away from the right split and endNoteScore is made to be 

directly proportional to BarsAccumulated. 

The first note for which endNoteScore exceeds 0.5 is 

taken to be the end note for the corresponding phrase. Once 

the end notes of each phrase were identified, consequent 

phrases were paired up to form the X(input) and y(output). 

X comprised of all the end notes for odd phrases and Y for 

the end notes of even phrases. To make the working of the 

model more dynamic there exists a provision for the user to 

give a leading phrase to begin with, whose endnote will be 

considered the end note of the predicted song. This way, the 

semantics of classical music were maintained and 

aberrations were evaded successfully.  

C. Motif Detection 

The motif is the smallest structural unit in music, 

possessing a thematic identity. It is a reflection of the basic 

feel and idea behind any musical composition, which can be 

a salient, recurring note or groove pattern. A rhythmic 

groove is a repeating pattern in any song, which determines 

it's genre. The motif model aims to compose a groove which 

can be understood as a vector of note lengths corresponding 

to the notes generated by the Tune prediction model. Say 

notes were to appear with the following note lengths (values 

given in steps) in a set of phrases.    

 

2 2 1 1 2 4 4  -  Phrase 1 

2 2 1 1 2 4 4  -  Phrase 2 

4 2 2 1 1 4    -    Phrase 3 

 

We notice that the pattern, 2 2 1 1 is very common and 

this can be called as the rhythmic motif of the above 4 lines 

of music. For model training, the note lengths of all the 

respective notes are taken. They are grouped into bars which 

are further grouped by combining the set of notes such that 

sum of their note lengths equals 16 steps, since processed 

data contains note lengths in units of steps. Due to the 

unpredictable nature of motifs which can be dispensed 

across more than one bar, bars were combined so that these 

are not ignored. At the same time, two separate phrases 

cannot share a single motif. Hence, we have adopted a 

different approach to group bars into phrases. Usually, lines 

in music occur in pairs or triplets, such that each member of 

the pair or triplet have identical time grooves (see Fig. 7). 

 

 
Fig. 7. Motif grouping. 

 

Hence the bars can be grouped into phrases such that the 

phrases form pairs or triplets with other phrases. The 

phrases which do not find pairs are allowed to exist as 

singleton phrases. Motifs that start at the first count of a beat 

(Samam) and those that occur with a delay of few or more 

steps sound different and ought to be contrasted. Hence sub 

sequences are generated starting from positions that are on 

the beat. Motifs can be of any duration and any number of 

notes. Hence all on beat sub sequences of all lengths are 

generated and their number of occurrences are counted. Top 

n most occurring motifs are finalized, with n being the 

number of motifs which is a variable that can be changed 

according to requirements. Each finalized motif is assigned 

an alphabetical label and their occurrence in the phrases are 

replaced with their corresponding alphabetical labels.  

 

 
Fig. 8. Motif nomenclature and note lengths. 

 

 
Fig. 9. Different grooves with motifs. 

   

This helps since when the group of notes constituting a 

motif is substituted by a single alphabet, it becomes a single 

entity when viewed by the LSTM and this is later decoded 

to be a vector of corresponding note lengths. The starting 

note length is arbitrarily picked from all the starting notes of 

the labeled set of phrases, where the probability of selecting 

a start note depends upon its frequency of occurrence. Since 

the labeled phrases are in use, a possibility of the starting 

note being a motif alphabet is also introduced. When the 

LSTM predicts a note of odd length, every following even 

note lengths occur at odd intervals disrupting the groove. As 

the LSTM cannot possibly learn to bring the groove back to 

even intervals, when the LSTM generates an odd note length, 

it is complimented with another odd note based on a certain 

probability. This probability is calculated based upon the 

occurrence of odd notes in the input bars. 

D. Gamakam Module 

Gamakas are ornamentations applied to the basic tune in 

Indian classical music. They are similar to the usage of 

grace notes in western music. In contrast to western music 

where the use of grace notes are quite infrequent, their use is 

much more frequent and laid out with more complexity in 

Indian classical music. Gamakams are variations in the pitch 

of the note involving oscillations between the primary note 

and the secondary or transient notes. Each raga lays down a 

specific framework within which gamakams can be used 

which include what specific notes and specific types of 

gamakams can be used on them. 

This module is the final module in the pipeline, which 

takes the end tune produced by the modules as mentioned 

earlier and adds gamakams according to the notes present in 

the main tune. There are more than 15 types of gamakams in 

present-day Carnatic music. In the viewpoint of how the 

model learns, these 15 types can be narrowed down into 4 

types (Fig. 10)  
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Fig. 10. Types of gamakams. 

 

 Type 1: Involves a subtle nudge of the transient 

note before rapidly returning to the primary note. 

The pitch stays constant at the transient note 

initially for a transient period for the transient 

note's presence to be felt 

 Type 2: The pitch oscillates once from primary to 

transient and then returns to the primary note. 

 Type 3: A slow and sliding transition from the 

transient note to the primary note. 

 Type 4: Persistent oscillation between the transient 

note and the primary note. The oscillation begins 

with the primary note and ends with the primary 

note. This can be interpreted as vibrato in western 

music. 

 

The transition from one note to another in pitch follows a 

straight line, whose slope can be modified to achieve 

different desired results. Gamakams can be emulated using 

straight notes which are quick and short spanned. When it 

comes to adding gamakams during the composition stage, 

the use of the pitch bend facility provides better results. 

Pitch bend signals are given along with corresponding 

magnitudes at instants of MIDI clocks which add or subtract 

the overall pitch of the instrument's output equally 

irrespective of which note is played or the number of notes 

being played. A pitch bend of magnitude 8191 is equivalent 

to the change of one-octave pitch. Hence pitch bend of 

8191/12 equals one semitone or one note of pitch change.   

The required change in pitch is achieved by (2) 
 

   Changepitch = 8191 +
𝑛∗8191

12
                      (2) 

 

where n is the number of notes. 

The model predicts the class that may appear in the 

corresponding context and this numerical class label is 

translated into the gamakam note and gamakam type. Based 

on the transient Note, the pitch bend range value that 

would transpose the current note to the gamakam note is 

calculated as follows (3): 
 

NumberOfSemitones=GamakamNote − PrimaryNote

pitchbendRange=8191 + (NumberOfSemitones ∗ 8191 12⁄ )
 

(3) 

VI. CONSOLIDATED PIPELINE 

 

 

 

 

 

 

 

 

 

Fig. 11. Pipeline of modules. 

The above figure (Fig. 11) depicts our end to end working. 

The input corpora is MIDI encoded and sent to the Tune 

module, End Note Module and Motif Module. Different 

features of the same data set are extracted in these three 

modules. The End note model extracts the end notes of the 

given song, and predicts the end notes of N-following bars 

using it's LSTM model. These predicted notes,form the 

onset of tune composition. The tune module then extracts 

the entire note sequence, which is fed into the LSTM Tune 

model, designed to predict N-notes, reversed based on the 

predicted End Note. The motif module simultaneously 

extracts the note lengths from the input dataset, and 

identifies the most frequent rhythm patterns and generates 

motifs for the predicted tunes. These three independent 

modules are amalgamated into one in our Compose method. 

This tune is then fed into the Gamakam module which has 

it's own pitch bent input dataset of the same raga. The 

Gamakam Module then predicts where, and which type of 

Gamakams need to occur.   

 

VII. RESULTS AND EVALUATION 

The pipeline (Fig. 11) of our project started with the 

training data, a mixture of various ragas being fed as input. 

The input was split into phrases and simultaneously fed to 

the Tune model which extracted the N-gram note sequence, 

the Motif Model that trained with the patterns of note 

lengths and finally the End note model whose training set 

was the phrase's end notes. The output of the combined 

model was further fed into the Gamakam module. The data 

was then test-train split and the respective models built, 

whose test and training accuracy was computed as shown in 

Table II. 
 

TABLE II: TRAIN AND TEST ACCURACY FOR THE MODELS WITH 

CONVERGING LOSS VALUE 

 Model Train Accuracy Test Accuracy  Loss 

Tune Model 91.88% 80.95% 0.2409 

Motif Model 63.56 % 75.003 % 0.9964 

End Note Model 63.23% 73.45% 0.9878 

 

VIII.  CONCLUSION 

This paper elucidates our implementation of generating 

Carnatic raga based tunes using RNN-LSTMs. We have 

used four different prediction modules for every aspect of 

our software and were successfully able to auto generate 
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various phrases of music, depending on the user's input. 

Future scope for our model includes expanding our data set, 

incorporating multiple timing and note patterns in various 

other ragas and research on other deep learning algorithms 

that could improve our model accuracy. We also believe that 

there is vast scope for this project in the commercial arena 

once the prototype can be converted into a product.  
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