
 

Abstract—The controller area network with flexible data-

rate (CAN FD) inherits the primary features of a controller 

area network (CAN); thus, exploring the possibility of 

establishing a hybrid CAN and CAN FD network is essential. 

To develop the CAN FD network effectively, this study 

proposed a machine learning K-means data clustering method. 

The K-means method algorithms, the squared Euclidean 

distance was used to cluster CAN FD data. The results showed 

that the proposed system was compatible with current CAN 

vehicle networks. Experiments on processing five data 

quantities of CAN FD data verified that the K-means 

algorithms could effectively reduce the data loss rate of the 

CAN FD network by changing the priority of various CAN FD 

data according to the clustering result. Specifically, given CAN 

FD arbitration phase rate = 1 Mbps, for the data phase rate = 2 

and 4 Mbps, the data loss rates were reduced by 7.49% and 

8.34%, respectively, by using the squared Euclidean distance 

algorithm. 

 

Index Terms—Controller area network, controller area 

network with flexible data-rate, machine learning, K-means. 

 

I.   INTRODUCTION 

The rapid development of the electronics, semiconductor, 

and communications industries has enhanced the 

requirements for intelligent vehicle electronics. Consumers 

wish to drive cars that are dynamic, comfortable, 

economical, and exhibit in-car entertainment facilities. To 

improve product competitiveness, automakers incorporate 

additional electronic control systems into automobiles such 

as electronic stability program (ESP) and passive entry 

passive start (PEPS). Therefore, the vehicle network is no 

longer limited to a low-speed interface. The increasing 

bandwidth requirements pose challenges for designers, and 

the proposed solutions require that vehicle networks feature 

high-speed data transmission. The concept of a conventional 

controller area network (CAN) [1] similarly requires high-

speed data transmission. However, because the maximum 

transmission rate of a CAN is 1 Mbps (usually the actual 

maximum usage rate of the vehicle CAN system is 500 

Kbps), the substantial increase in electronic control units 

(ECU) has resulted in a sharp increase in the CAN busload 

rate, leading to insufficient network bandwidth and 

impairing the reliability and immediacy of message 

transmission. 
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Machine learning is a multidisciplinary subject that 

emerged 20 years ago. It involves numerous disciplines such 

as probability theory, statistics, approximation theory, 

convex analysis, and computational complexity theory [2], 

[3]. The primary methods are K-means, fuzzy, linear 

regression, and neural networks. 

Currently, machine learning is primarily used in the 

analysis of big data and cloud computing [4]-[9]. However, 

the development of unmanned vehicles requires additional 

sensors and vehicle electronics; therefore, integrating 

machine learning and artificial intelligence (AI) software to 

control vehicle hardware is a crucial topic for future 

development. Scant research has been conducted to integrate 

machine learning approaches into controller area network 

with flexible data-rate (CAN FD) scheduling methods. 

Conversely, introducing machine learning into an embedded 

system would definitely increase the R&D costs. To 

thoroughly improve the R&D efficiency of embedded 

software, numerous research institutes or business operators 

promote the standardization of interfaces and the circulation 

and reuse of machine learning software. 

Wisely applying vehicle networks and machine learning 

technology to embedded-system simulations and tool 

development can improve the R&D efficiency of machine 

learning software. Therefore, based on the K-means 

clustering method, this study developed a new CAN FD 

vehicle communication network message scheduling system. 

The system was designed in line with the current vehicle 

network requirements and could be used in the verification 

and testing of On-Board Diagnostics (OBD) II simulators 

and analyzers for industrial vehicles. This study developed 

an embedded system based on NXP LPCXpresso54618 and 

32-bit Cortex-M4 microcontrollers; additionally, this study 

explored and established a CAN FD scheduling method, 

which was incorporated into a new generation of machine 

learning. Previously, industries and academic units rarely 

adopted a CAN FD method. This study added the CAN FD 

function to vehicle network ECU nodes (engine revolutions 

per minute (RPM), vehicle speed, oxygen sensor voltage, 

and engine coolant temperature) and developed two 

different CAN/CAN FD gateways (embedded OBD-II 

CAN/CAN FD gateway and embedded diagnostic 

CAN/CAN FD gateway) to verify the relevant functions and 

practicality of the system designed in this study. 

 

II.   SYSTEM PRINCIPLES 

A.   Machine Learning 

K-means clustering is an unsupervised learning method 

that classifies data into clusters. Specifically, it trains data 

without predefined labels. K-means is the most basic 
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method of all partition clustering methods and is applied in 

the vehicle communication [10]. 

The K-means clustering method first specifies the number 

of clusters and gradually reduces the error value of the 

objective function by repeated operations to obtain the final 

clustering result. Specifically, K-means minimizes the 

squared distance difference between each data point and the 

cluster center. Subsequent processing, such as data 

compression and classification, is deployed according to the 

cluster centers. In this study, the squared Euclidean distance 

of K-means uses the following method to determine distance. 

Equation (1) is the formula of the squared Euclidean 

distance. The squared Euclidean distance is used to calculate 

the minimum distance between points in each cluster and the 

cluster center. The cluster center is the average value of all 

the points in each cluster. 

 

𝑑(𝑥, 𝑦) = ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (1) 

  

The process of K-means method used in this study is as 

follows: 

1) Step 1: Set the data to contain K clusters and K initial 

cluster centers. 

2) Step 2: Assign the samples in the sample set to the 

nearest cluster according to a minimum distance 

strategy. 

3) Step 3: Use the sample mean in each cluster as the new 

cluster center. 

4) Step 4: Repeat steps 2 and 3 until the cluster center does 

not change. 

5) Step 5: This process is completed. K clusters are 

obtained. 

B.   CAN FD Bus Communication Protocol 

CAN FD is an extension of the original CAN protocol 

specified in ISO 11898-1. Bosch developed the protocol in 

2011 and released it in 2012. 

CAN FD inherits the primary features of CAN. CAN 

adopts a two-wire serial communication protocol. CAN 

exhibits high security because of numerous characteristics 

including non-destructive arbitration technology, 

decentralized real-time control, and reliable error handling 

and detection mechanisms. However, CAN’s bandwidth and 

data length are limited. CAN FD compensates for CAN’s 

limitations of bandwidth and data length. The two primary 

differences between CAN FD and CAN are the following: 

1) Flexible rate 

CAN FD uses two bit rates. From the bit rate switch (BRS) 

field in the control field to the ACK field (including cyclic 

redundancy check (CRC)), the CAN FD uses a variable rate, 

and the remaining part uses the original CAN rate. Each rate 

exhibits a set of bit timings to define the register. In addition 

to using different bit time units TQ, the allocation ratio of 

each bit time segment can also be different. 

2) New data length 

CAN FD substantially expands the data length. The data 

length code (DLC) supports up to 64 bytes. The data length 

is the same as the original CAN when the DLC is less than 

or equal to 8 bytes. However, non-linear growth occurs if 

the DLC is ever larger than 8 bytes. Therefore, the 

maximum data length can be up to 64 bytes, as shown in 

Table I. 

 
TABLE I: ENCODING SCHEME OF DLC 

 
Byte 

number 

Code of data length 

DLC3 DLC2 DLC1 DLC0 

IS
O

 1
1

8
9

8
-1

 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

P
ro

p
o

sa
l 

fo
r 

A
d

d
it

io
n

al
 C

o
d

es
 

In
 C

A
N

 F
D

 

12 1 0 0 1 

16 1 0 1 0 

20 1 0 1 1 

24 1 1 0 0 

32 1 1 0 1 

48 1 1 1 0 

64 1 1 1 1 

 

III.   SYSTEM DESIGN 

A. System Architecture 

 
Fig. 1.  System architecture. 

 

Fig. 1 shows the system architecture of this study. In this 

study, the vehicle network can be divided into Part A—the 

CAN FD/CAN gateway design and the OBD-II CAN FD 

network design and Part B—the design of K-means 

clustering and the verification of OBD-II CAN FD network. 

The ECU sim2000 OBD simulator in this study used four 

parameters, namely engine RPM, vehicle speed, oxygen 

sensor voltage, and engine coolant temperature, to simulate 

the data of vehicles’ CAN FD ECUs. 
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In Part A, data of the engine RPM, vehicle speed, oxygen 

sensor voltage, and engine coolant temperature from a 

sim2000 OBD simulator were converted to CAN FD signals 

by using CAN/CAN FD Gateway 1. Four ECU nodes were 

associated with the four parameters. The four ECU nodes 

exhibited individual CAN digital instruments. Each of the 

four ECUs was also a gateway, which could convert CAN 

FD signals into CAN signals and transmit them to CAN 

digital instruments for subsequent verification. 

In Part B, K-means machine learning was applied to the 

design of data clustering. According to the data volume of 

CAN FD, the proposed K-means clustering method 

classified and changed the CAN FD identifier. The K-means 

method also reduced the data loss rate of the CAN FD 

network. CAN FD/CAN gateway 2 converted the ECU data 

in the CAN FD network into CAN signals and transmitted 

them to a commercial VeDiS II handheld vehicle diagnostic 

system to verify the OBD-II data in the CAN FD network. 

B. Design of K-means Clustering 

 
Fig. 2.  Process of K-means data clustering. 

 

The data clusters were first generated by a K-means 

method, and then the data were introduced into the CAN FD 

network. MATLAB2016a was used to cluster CAN FD data 

with the K-means method, and Visual Studio C# (C Sharp) 

was used to generate random CAN FD data and calculate 

the data loss rate of CAN FD. Specifically, through the C# 

graphical user interface, the data length, data cycle, and data 

quantity of CAN FD were generated by the program field. 

Accordingly, uncluttered random CAN FD data were 

generated. In addition to outputting data, the system can 

calculate the data loss rate before and after clustering. Fig. 2 

displays the K-means data clustering process. 

For clustering CAN FD data by K-means, the initial data 

were generated using a self-designed CAN FD data 

generator that applied the squared Euclidean distance and 

the sum of absolute differences. The CAN FD data in 

various data quantities were clustered by the two methods; 

the results were compared. The data quantities for this study 

were 100, 200, 300, 400, and 500 pieces of data. 

The software architecture of K-means clustering can be 

divided into three parts—pre-processing, solution, and post-

processing. 

1) Pre-processing 

A self-designed CAN FD data generator generated 

random data in the CAN FD data format. Only the data 

length of new CAN FD data was randomly assigned. 

2) Solution 

Five different CAN FD data quantities were divided into 

10 clusters by the squared Euclidean distance and the sum of 

absolute differences. The two methods were also used to 

find the suitable number of iterations for each data quantity. 

Subsequently, the results of the 10 clusters were associated 

with different CAN FD ID priorities. The CAN FD ID 

allocation was that data of short cycle and short data length 

were assigned high priority, and data of long cycle and long 

data length were assigned low priority. 

3) Post-processing 

MATLAB was used to export text and graphical results 

and to compare simulation results. The results were 

converted and exported in XMT format. 

a) CAN FD Random Data Generator 

The CAN FD random data generator exhibited functions 

including the generation of random data of CAN FD, the 

calculation of CAN FD data loss rate, and the calculation of 

CAN FD network bandwidth load. The configuration of 

these three functions is introduced in the following sections.  

The random parameter allocation for the CAN FD 

random data generator was assigned as follows: 

1) Data cycle: 50–100 ms.  

2) Data length: 12, 16, 20, 24, 32, 48, and 64 Bytes. 

3) Data ID: 1–2015. 

The data loss rate is calculated as (2). 

 

𝐃𝐚𝐭𝐚 𝐥𝐨𝐬𝐭 =
𝐃𝐚𝐭𝐚 𝐓𝐨𝐭𝐚𝐥 𝐑𝐞𝐜𝐞𝐢𝐯𝐞 𝐐𝐮𝐚𝐧𝐭𝐢𝐭𝐲

𝐃𝐚𝐭𝐚 𝐓𝐨𝐭𝐚𝐥 𝐓𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐨𝐧 𝐐𝐮𝐚𝐧𝐭𝐢𝐭𝐲
 (2) 

  

The total number of data packets transmitted was derived 

from the sum of the total transmission time divided by each 

data cycle of CAN FD. Table II lists the number of 

messages in the CAN FD network generated by the CAN 

FD random data generator for data quantities of 100, 300, 

and 500 pieces of data. 
 

TABLE II: NUMBER OF MESSAGES FOR FIVE CAN FD DATA QUANTITIES 

IN THE CAN FD NETWORK 

CAN FD data quantity Number of messages/s 

100 1419 

300 4145 

500 6965 

 

In Part 3, the bandwidth load rate of CAN FD network is 

calculated as (3). In (3), 𝐶𝑚 is the worst-case transmission 

time (WCTT) of a CAN FD message. 𝑇𝑚  is the cycle of 

each CAN FD message [11]. 
 

𝑩𝒖𝒔𝒍𝒐𝒂𝒅 = ∑
𝑪𝒎

𝑻𝒎
𝒎

 (3) 
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The calculation of 𝑪𝒎  is as shown in (4). 𝑻𝒔  is the 

transmission time of the arbitration phase in the CAN FD 

frame, and the maximum transmission bandwidth is 1 Mbps. 

𝑻𝒇 is the transmission time of the data phase in the CAN FD 

frame, and the maximum transmission bandwidth is 8 Mbps. 
 

𝑪𝒎 = 𝑻𝒔 + 𝑻𝒇 (4) 

Equation (6) shows the calculation of 𝑇𝑠. 𝑡𝑥 is the bit rate 

of the arbitration phase. The maximum bit rate is 1 Mbps. 
 

            𝑻𝒔 = [
(𝑺𝑶𝑭 + 𝑰𝑫 + 𝒓𝟏 + 𝑰𝑫𝑬 + 𝑬𝑫𝑳 + 𝒓𝟎 +

𝑩𝑹𝑺
𝟐

+
𝑪𝑹𝑪𝒅𝒆𝒍

𝟐 ) ∗ 𝟏. 𝟐

𝒕𝒙

]

+
𝑨𝑪𝑲 + 𝑫𝑬𝑳 + 𝑬𝑶𝑭 + 𝑰𝑭𝑺

𝒕𝒙

 

(5) 

  

In the CAN FD frame, two options exist for the number 

of bits in the CRC field depending on data length and type. 

If the data length is less than or equal to 16 bytes, 𝑇𝑓  is 

calculated as (6). 𝑡𝑦  is the bit rate of the data phase. The 

maximum bit rate is 8 Mbps. 

 

𝑻𝒇 =
[(𝑫𝒇 +

𝑩𝑹𝑺
𝟐

+ 𝑬𝑺𝑰 + 𝑫𝑳𝑪 +
𝑪𝑹𝑪𝒅𝒆𝒍

𝟐 ) ∗ 𝟏. 𝟐] + 𝑪𝑹𝑪𝟏𝟕 + 𝟓

𝒕𝒚

 (6) 

  

If the data length is higher than 16 bytes, 𝑇𝑓 is calculated as (7). 

 

𝑻𝒇 =
[(𝑫𝒇 +

𝑩𝑹𝑺
𝟐

+ 𝑬𝑺𝑰 + 𝑫𝑳𝑪 +
𝑪𝑹𝑪𝒅𝒆𝒍

𝟐 ) ∗ 𝟏. 𝟐] + 𝑪𝑹𝑪𝟐𝟏 + 𝟔

𝒕𝒚

 (7) 

  

Table III lists the names of bit fields in the CAN FD 

frame and the lengths of bit fields. 

According to the algorithm steps and (1) in Section 2.1, 

the data were classified into 10 clusters, and the optimal 

numbers of iterations for five different data quantities of 

CAN FD (100, 300, and 500 pieces of data) were identified 

in advance. 

 
TABLE III: BIT FIELDS IN THE CAN FD FRAME AND THEIR LENGTHS 

Field name Length (bits) 

SOF (Start of Frame) 1 

ID (Identifier) 11 

r1(Reserved Bit 1) 1 

IDE (Identifier Extension Bit) 1 

EDL (Extended Data Length) 1 

r0(Reserved Bit 0) 1 

BRS (Bit Rate Switch) 1 

CRCdel (CRC Delimiter) 1 

ACK (Acknowledge) 1 

DEL (Delimiter) 1 

EOF (End of Frame) 7 

IFS (Interframe Spacing) 3 

DLC (Data Length Code) 4 

ESI (Error State Indicator) 1 

b) K-means data clustering—squared Euclidean 

distance algorithm 

Fig. 3 shows the sum of minimum distances between 

clusters associated with different numbers of iterations for 

100 pieces of CAN FD data clustered using the squared 

Euclidean distance method. After 750 iterations, the distance 

between the clusters was short and stable; thus, the number 

of iterations was set as 750 in the experiment. 

Fig. 4 shows 300 pieces of CAN FD data clustered using 

the squared Euclidean distance method. The distance 

between clusters was short and stable after 1200 iterations; 

thus, the number of iteration was set to be 1200 in the 

experiment. 

 

 
Fig. 3.  Distance between clusters as a function of the number of iteration 

(100 pieces of CAN FD data). 

 
Fig. 4. Distance between clusters as a function of the number of iteration 

(300 pieces of CAN FD data). 

 

Fig. 5 shows the 500 pieces of CAN FD data clustered 

using the squared Euclidean distance method. The distance 

between clusters was short and stable after 750 iterations; 

thus, the number of iteration was set to be 750 in the 

experiment. 

 
Fig. 5.  Distance between clusters as a function of the number of iteration 

(500 pieces of CAN FD data). 
 

Table IV lists the iteration numbers for associated CAN 

FD data quantities. 

 
TABLE IV:  ITERATION NUMBERS OF CAN FD 

CAN FD data quantity Optimal iteration number 

100 750 

300 1200 

500 750 

 

IV.   SYSTEM TEST 

In addition to the verification of the effect of K-means 

clustering on data loss, this section also presents the 

verification of CAN FD nodes, CAN nodes, and gateways. 
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Fig. 6 shows the system designed in this study. 
 

 
Fig. 6.  Network system designed in this study. 

 
Fig. 7.  Distribution of 100 pieces of CAN FD data. 

 
Fig. 8.  Distribution of 300 pieces of CAN FD data. 

 
Fig. 9.  Distribution of 500 pieces of CAN FD data 

 
Fig. 10.  Priority of CAN FD data. 

 

To improve the stability of the CAN FD network, this 

study used K-means clustering to reduce the data loss rate of 

the CAN FD network, thereby improving the security of the 

communication network. The machine learning method, K-

means clustering, was incorporated into the CAN FD 

network of the LPC54618 microcontroller to improve the 

transmission performance of the overall communication 

network. K-means was adopted to test five different 

quantities of CAN FD messages (100, 300, and 500 pieces 

of data) by using two algorithms and two CAN FD network 

rates. The effect of data clustering on data loss rate in CAN 

FD network was observed by using a LPC54618 

microcontroller. Fig. 7-9 show the distributions of the three 

quantities of CAN FD data before data clustering.   

From the distributions of the five sets of CAN FD data, 

the lengths of the CAN FD data were 12, 16, 20, 24, 32, 48, 

and 64 bytes, all of which were evenly allocated to the 

cycles of 50 to 100 ms. 

The K-means method was then used to perform data 

clustering by using two algorithms, namely the squared 

Euclidean distance and the sum of absolute differences. The 

five quantities of CAN FD data were clustered by the two 

algorithms, and each data quantity was divided into 10 

clusters. Fig. 10 shows the priority of CAN FD data after 

clustering. The cluster exhibiting the shortest CAN FD data 

length and the shortest data cycle was designated as the first 

cluster and was assigned the highest priority ID, and the rule 

was applied to the remaining clusters to reduce the priority 

of each CAN FD data ID. 

The following sections introduce the verification and 

testing of CAN FD data clustering by using two algorithms 

of K-means—the squared Euclidean distance and the sum of 

absolute differences. 

1) K-means data clustering—squared Euclidean 

distance method 

Fig. 11-Fig. 13 show the test results of different quantities 

of CAN FD data (100, 300, and 500 pieces of data) clustered 

by the K-means Squared Euclidean distance method. 

 
Fig. 11.  Results of clustering 100 pieces of CAN FD data by using the 

squared Euclidean distance method. 

 
Fig. 12.  Results of clustering 300 pieces of CAN FD data by using the 

squared Euclidean distance method. 
 

 
Fig. 13.  Results of clustering 500 pieces of CAN FD data by using the 

squared Euclidean distance method. 

 

After data clustering, these CAN FD data were imported 
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into the CAN FD network of the LPC54618 microcontroller. 

The data loss rate before and after data clustering was tested 

using two CAN FD data rates. The results indicated that due 

to the clock rate limit of LPC54618, different random data 

sets exhibited different improvement effects for data loss 

rate. Therefore, the data loss rates derived from the 

LPC54618 microcontroller were the average values of 

repeatedly testing on each datum for five times. Equation (2) 

was used for calculation, and the busload rate was calculated 

by equations (3)–(7) given a CAN FD arbitration phase rate 

= 1 Mbps, Table V and Table VI list the data loss rates of 

the data phase rates of 2 and 4 Mbps, respectively. 

 
TABLE V: DATA LOSS RATES AFTER USING THE SQUARED EUCLIDEAN 

DISTANCE ALGORITHM FOR DATA CLUSTERING 

Number of pieces of CAN FD data 100 300 500 

busload rate 29.6% 79.79% 142.63% 

Successful reception rate (before clustering) 62.19% 58.72% 40.52% 

Successful reception rate (after clustering) 69.68% 61.35% 42.56% 

Reduction in data loss rate 7.49% 2.63% 2.04% 

 
TABLE VI: DATA LOSS RATES AFTER USING THE SQUARED EUCLIDEAN 

DISTANCE ALGORITHM FOR DATA CLUSTERING 

Number of pieces of CAN FD data 100 300 500 

busload rate 17.1% 46.62% 82.6% 

Successful reception rate (before clustering) 64.37% 60.42% 59.49% 

Successful reception rate (after clustering) 72.71% 66.29% 61.80% 

Reduction in data loss rate 8.34% 5.87% 2.31% 

 

In the case of CAN FD data phase rate = 2 Mbps, due to 

bandwidth overload, data loss rates associated with 500 

pieces of data were relatively high. However, the data loss 

rates were still declined after data clustering. For 100 and 

300 pieces of data, the reduction in data loss rates was 

evident. In the case of the CAN FD data phase rate = 4 

Mbps, due to the elevation in bandwidth, the data loss rate 

was lower than that of the CAN FD data phase rate = 2 

Mbps. After data clustering, the data loss rates for the five 

data quantities were substantially reduced. 

 

V.   CONCLUSION  

To meet the requirements of complex vehicle network in 

the future market, this study adopted the machine learning 

K-means method to establish the network ID configuration 

of CAN FD, and the configuration was imported into the 

CAN FD network of LPC54618 microcontroller. 

Additionally, different data priority was assigned to CAN 

FD data. According to the experiment results in the fourth 

chapter, in the case of 100–500 pieces of CAN FD data, 

given the CAN FD arbitration phase rate = 1 Mbps, for the 

data phase rates = 2 and 4 Mbps, the squared Euclidean 

distance algorithm reduced the data loss rates by 7.49% and 

8.34%, respectively. The results indicated that the overall 

performance of CAN FD network could be improved by 

using the K-means squared Euclidean distance algorithm to 

assign high data priority of CAN FD IDs to the short length 

and short cycle of CAN FD data. 
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