
Abstract—Amazon Elastic Compute Cloud (EC2) gives
access to resources in the form of instances. EC2 Spot Instances
(SIs) offer spare compute capacity at steep discounts compared
to reliable and fixed price on-demand instances. However, SIs
are unreliable since they can be reclaimed by EC2 at any given
time, with a two-minute interruption notice. In this paper, we
propose a container migration-based solution to build reliable
compute environments on top of unreliable EC2 instances. Our
solution leverages recent findings on performance and behavior
characteristics of EC2 SIs. We compare the performance of our
algorithm to that of state-of-the-art algorithms, by running a
real-life workflow application constrained by user-defined
deadline and budget parameters. The results show that our
solution is able to build reliable virtual compute environments
on top of EC2 on-demand-, spot block, and SI purchasing
models, and successfully conclude submitted workflow
applications with budget and deadline constraints, for a
worse-case scenario.

Index Terms—Amazon EC2, cloud computing, reliability,
migration of containers.

I. INTRODUCTION

Cloud computing is a relatively new
distributed-computing paradigm that offers users easy access
to resources from anywhere and at anytime, and in a
pay-as-you-go manner [1], [2]. Cloud computing exploits
virtualization to provision computational resources in the
form of Virtual Machine (VM) instances [3]. Cloud provider
Amazon EC2 offers four ways to pay for compute instances,
namely1 : 1) On-demand; 2) Spot Instances (SIs); 3) Reserved
instances; and 4) Dedicated hosts. Reserved instances and
dedicated hosts are the two most expensive alternatives and
imply the payment of a yearly fee (of hundreds to thousands
of dollars). On-demand instances allow users to pay for
compute capacity by hours without long-term commitments,
but the hourly fee is a bit higher than that of options 2 and 3.
On the other hand, SIs allow users to bid for idle resource
capacity for up to 90% off the on-demand price. The trade-off
is that if the current spot price is greater than the user's bid
price or if EC2 lacks resources for on-demand or reserved
instances, SIs will be reclaimed with a two minutes
notification. Spot block are a new model of instances that are
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promised to run continuously for a finite duration (1 to 6
hours). Pricing is based on the requested duration and the
available capacity, which is typically 30% to 45% less than
on-demand instances. Despite the cheapest alternative, SIs
provide no guarantee with respect to termination time. Recent
observations on the reliability of SIs show that interruption
rate can be as much as 34% in some EC2 datacenters, with a
total of 8.58% of SIs being interrupted within 20 minutes [4].
Taking into account that EC2 in particular, and Cloud in
general, has been progressively adopted to run a wide range
of applications encompassing various domains, such as
science, and that much of these applications may run for
hours [5], [6], providing reliability to compute environments
built on top of EC2 SIs becomes critical.

This paper considers the problem of scheduling scientific
workflow applications on on-demand, spot block, and SIs
under budget and deadline constraints. Schedules of
workflow tasks on SIs may result in significant monetary cost
reduction although at the expenses of compute availability.
As such, one needs for an effective solution to mitigate
resource failures (i.e., SIs unreliability) and fulfill user
requests regarding to monetary cost and time. Our solution
proposes a reliability-aware scheduling algorithm that uses
containers [7] on top of EC2 instances to build virtual
compute environments. Unreliability of underlying EC2
instances is masked by migrating containers from one
just-reclaimed SI to another available EC2 instance. To the
best of our knowledge, this is the first attempt to leverage
migration of containers to deal with EC2 SIs interruptions
and provide reliable compute environments to end users. The
rest of the paper is organized as follows. Section II discusses
related work. Section III introduces a proposal overview, by
describing the system, workflow applications, scheduling
algorithm, and feasibility of migration of containers. Section
IV presents the tested scenario by characterizing the
simulator, the workloads, the algorithms used for comparison,
the SI interruptions, and performance metrics. Section V
presents and discusses the obtained results. Conclusions are
presented in Section VI.

II. RELATED WORK

Scientific applications and experiments are commonly
expressed as workflows. A workflow application is typically
described by a graph consisting of a certain number of tasks
(or nodes), with various computation and data needs, and a
set of edges that represent control and data dependencies [8].
In particular, many of workflow applications fall in the
category of Directed Acyclic Graph (DAG) [9], where the
nodes represent the temporal relations between the tasks. Fig.
1 shows the structure of the Montage workflow, a typical
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scientific workflow application that delivers science-grade
mosaics of the sky to the community composed of both
professional and amateur astronomers [10].

Fig. 1. Montage workflow [10].

Workflow scheduling in Cloud computing systems is a
well-known NP-complete problem [11], which refers to the
process of spatial and temporal mapping of workflow tasks
onto resources in order to satisfy some or multiple
performance criterion. Comparing to older distributed
computing models, Cloud computing addresses many
technical and economic advantages. From the scientists point
of view, cloud computing provides many resources as they
need, when they need them and for as long as they need them.
Additionally, since Clouds apply the utility model, scientists
pay only for what they use. In spite of this, Clouds such as
EC2 have been the target of relevant research over the last
years towards the execution of scientific applications.
Deepak et al. [12] proposed an adaptive, just-in-time
scheduling algorithm to schedule scientific workflows on
spot and on-demand instances. The aim is to minimize
execution time and monetary costs. Eventual interruption of
SIs is mitigated by means of replication of tasks. Authors
show the effectiveness and robustness of their solution by
means of extensive sets of simulations. Replication of tasks is
a fault tolerance technique that applies redundancy. Sampaio
and Barbosa [13] recently showed that the technique leads to
increase of monetary costs since it implies the use of
additional resources. Also Long et al. [14] addressed the
problem of SIs unreliability caused by the fluctuations of the
bidding prices (i.e., SI may be terminated at any time when
the bidding price is lower than the spot price). Aiming at
minimizing the total renting monetary cost under deadline
constrains, authors propose to construct schedules for
workflows with both non-preemptive and preemptive tasks
on spot block and on-demand instances. A scheduling
algorithm is proposed to determine the block time for SIs and
to improve the task-to-instance mapping. Sets of experiments
showed promising results regarding the reduction of average
monetary costs, compared to scheduling strategies with only
on-demand instances. Unfortunately, authors consider only

EC2 spot block instances, and ignore the competitiveness of
SIs in terms of monetary costs. Zhou et al. [15] developed a
probabilistic framework named Dyna for the scheduling of
scientific workflows. The objective is to minimize the
monetary cost while satisfying workflows deadline
guarantees. Authors also presented a hybrid instance
configuration refinement mechanism of spot and on-demand
instances for price dynamics. To analyze the proposal, Dyna
framework was deployed on Amazon EC2 and experiments
were carried out. Authors concluded that their solution was
able to execute workflows at lower monetary costs compared
to state-of-the-art approaches, while meeting users'
requirements. Nonetheless, the solution lacks SIs
unreliability due to out-of-bid and resources scarcity events,
which causes premature termination of running tasks. Unlike
the solutions reported above, in this paper we propose to
leverage migration of containers to build reliable compute
environments on top of on-demand, spot block, and
unreliable SIs. The aim is to run scientific workflow
applications subject to budget and deadline constraints.

III. SYSTEM OVERVIEW

This section provides a formal description of the proposed
solution to build reliable compute environments on top of
EC2 on-demand, spot block, and unreliable SIs.

A. Cloud Service Provider
We envision a typical Cloud service provider (CSP) such

as that of Amazon EC2. The considered CSP is represented in
Fig. 2. In this scenario, sets of resources are available to users
in the form of VM instances that are provisioned and charged
per time unit. As defined by EC2, the price of instances is
stated according to the type (i.e., power) of VMs. Thus, the
higher cost is assigned to the most powerful VM (i.e., faster
and/or higher number of processors), while less powerful
VMs are cheaper. Three renting model instances are
considered, namely: 1) on-demand; 2) spot block; and 3) SIs.
While on-demand model is the more expensive alternative,
SIs are the cheaper. SIs are considered unreliable since they
can be reclaimed by EC2 with a two-minute interruption
notification. Tasks running on SIs are abruptly terminated in
the moment of instance interruption. Containers are deployed
on top of VM instances. A container has fully access to
resources of relative VM. The set of containers form the
user's virtual cluster executing environment. The CSP
operating model is as follows: a) a user submits a set of
workflow applications and defines deadline and budget
constraints for each one; then, b) the CSP handles the request
by providing the necessary VMs to run the tasks under the
specified constraints. Workflow deadlines activate right after
submission and the CSP has no prior knowledge of when
workflow applications arrive. In order to deal with users’
requests, CSP implements four modules, namely: a)
scheduler; b) type and payment model selector; c) container
controller; and d) interrupt event handler. When a workflow
is submitted, the CSP passes it to the scheduler, which starts
by decomposing it into a set of tasks. Then, the scheduler
selects the type (i.e., t2.small, etc.) and payment model (i.e.,
on-demand, etc.) instance to run each task and instructs the
type and payment model module to handle the VM requests.
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After VM deployment, the container controller module
launches the containers and starts the tasks. A container
encapsulates the task execution environment and is the unit of
migration in the system. Each container runs a single task and
can be multiplexed among various tasks over time as one task
finishes executing and another one gets ready to start. The
interrupt event handler monitors interruption notifications.

Fig. 2. Cloud service provider.

B. Enhancing Computing Reliability
The solution proposed in this paper leverages containers to

build reliable compute environments on top of unreliable
EC2 SIs. Containers in Linux are a virtualization technique
that provides isolation of processes. Linux containers are
implemented primarily via cgroups and namespaces to
feature resource management, isolation, and security. While
cgroups can be used to resize and limit the resources of a
container, and to terminate all processes inside of it,
namespaces provide isolation between processes that are not
part of the same container [16]. Nowadays, several Linux
based container management tools exist, such as LXC,
OpenVZ, and Docker [17].

A container is much more lightweight than a VM because
the isolation of processes is implemented at the operating
system level [7]. As a result, containers exhibit similar
performance to that of native execution, a fact that extends to
the case of containers running inside VMs2 . Moreover, since
a container is much more lightweight than a VM, migration
of containers is faster to accomplish than that of migration of
VMs. Ma, Yi, and Li [18] showed that live migration of
containers running various real applications can be
accomplished within few tens of seconds at most, a value that
can be reduced to less than 5 seconds if one uses distributed
storage systems. Furthermore, deployment and booting of
containers is concluded within a couple of seconds. These
container operating properties are essential and constitute an
opportunity to enhance reliability of compute environments,
because the time needed to complete the migration of a
container is much less than the two-minute SI interruption
notice.

C. Workflow Application Model
Users submit scientific workflow applications that are

expressed as DAGs. A DAG can be modeled by a tuple

2https://blogs.vmware.com/performance/2014/10/docker-containers-perf
ormance-vmware-vsphere.html

G = < T, E >, where T is the set of n tasks of the workflow
application, such that T = {t1, t2, …, tn}. The set of edges E
represent the data dependencies among tasks, where each
dependency indicates that a child task cannot be executed
before all its parent tasks finish successfully and transfer the
required child input data. For the sake of simplicity, we
assume that all workflow data is stored in a shared cloud
storage system (e.g., Amazon S3), and the intermediate data
transfer times are known or can be estimated. The data
transfer times between the shared storage and the containers
are equal for different containers so that task placement
decisions do not impact the runtime of the tasks. The runtime
estimates and the CPU computational needs for the workflow
tasks are known. Due to heterogeneity of VM instance types,
a task may present different execution times. Only workflows
for which all tasks are finished within deadline and budget
constraints are considered complete.

D. Scheduling Algorithm

ALGORITHM I: MISER SCHEDULING ALGORITHM

1 Procedure MISER
2 for ti,j ∈ ReadyToExecuteList do
3 determine ranku(ti, j) ⊳ (1)
4 VMfree ← free resources
5 c ← 0
6 while ReadyToExecuteList.size > 0 && VMfree > 0 do

7 j ← next workflow mod c++ ⊳ round-robin

8 ti,j ← task with highest ranku(ti, j)

9 VMaccept ← instance model policy ∩ VMfree

10 VMaccept ← CP ∩ VMaccept ⊳ (2)

11 VMaccept ← DP ∩ VMaccept ⊳ (3)

12 for VMK ∈ VMaccept do

13 determine Q(ti, VMK) ⊳ (7)

14 VMsel ← instance VMK with highest Q
15 assign ti,j to VMsel

16 update Δcost(j)

17 VMfree ← VMaccept – VMsel

18 remove ti,j from ReadyToExecuteList

Algorithm I presents MISER, the best-effort
multi-workflow deadline- and budget-constrained scheduler
algorithm proposed in this paper. MISER works in two
phases, namely: a) task selection; and b) VM instance
selection. In the first phase (line 2 and 3 of Algorithm I), a
priority is assigned to each ready-to-execute task, ranku(ti,j),
based on its critical path [19], as specified by (1), where

)( itET is the average execution time of task ti, belonging to
workflow j, on available EC2 instance types (e.g. t2.small,
t2.medium, t2.xlarge, t2.2xlarge) with different performance
and prices, sic , is the average communication time between

tasks ti and its successor ts, which can be calculated as the
average network bandwidth and latency among instance
pairs.

  jsturanksic
itsuccst

itETjiturank ,,)(∈∀
max)(),(  . (1)

Then, a round-robin-based strategy is applied to select the
ready-to-execute task with the highest priority from each

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

142



workflow (lines 7 and 8 of Algorithm I). The rationale is to
avoid starvation of workflow applications, and guarantee that
all of them participate in the current scheduling round. A
scheduling round ends when there are no more free resources
to allocate tasks or when all the ready-to-execute tasks are
finally scheduled. On phase two, a VM instance model (e.g.,
on-demand, spot block, and unreliable SI) and type (e.g.,
t2.small, etc.) is selected to run the task. First, the instance
pricing model is chosen based on the scheduling reason (line
9 of Algorithm I). Three policies apply, namely: a) a new task
ti can be scheduled on any instance model; b) a task forced to
migrate from just-reclaimed SI can be allocated into any
already running instance model or into new on-demand or
spot block instance models. The rationale behind b)
scheduling policy is SIs are interrupted mainly due to scarcity
of capacity in the datacenter [4]. So, if one SI is being
reclaimed by EC2 it is likely that more SIs follow the same
destiny. Second, the VM instance type is selected based on
monetary cost and deadline policies (lines 10 and 11 of
Algorithm I). VM instance candidates that do not comply
with monetary cost and deadline policies are out of the
candidate set VMaccept. Equation 2 shows the monetary cost
policy CP(ti, j), where Costmin(ti, j) is the minimum execution
cost of task ti of workflow j among all instance candidates,
and ΔCost(j) is the spare budget which is determined as the
difference between remaining budget at scheduling round,
and the cheapest monetary cost assignment for unscheduled
tasks belonging to workflow j.

)(),(min),( jCostjitCostjitCP Δ+= . (2)

The deadline policy DP(ti, j) is shown by (3), where a
sub-deadline is assigned to task ti, which is determined
recursively by traversing the task graph upwards, starting
from the exit task. It depends on the minimum execution time
of task ts, successor of ti, ETmin(ts), among available instances,
on the average communication time sic , , on the maximum

migration time MTmax(ts) for all successor tasks of ti, and on
the migration time for task ti, MTmax(ti). Θ(ts) is a Bernoulli
variable, which is one if successor task ts can be allocated on
SI, and is zero otherwise. The rationale is that sub-deadline
considers the eventual need of migrating successor tasks
allocated to unreliable SIs. The same rationale applies to the
eventual necessity to migrate task ti. Just like the well-known
HEFT algorithm [20], the rationale for the minimum
execution time ETmin(ts) relates to the possibility of reducing
execution costs, since expanding the sub-deadline assigned to
task ti allows the scheduler to exploit idle slots between two
already scheduled tasks on a VM instance, as long as
precedence constraints are preserved.
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The next step consists of testing each VMk ∈ VMaccept in
order to obtain VMsel as the most appropriated VM instance to
allocate task ti (lines 12 to 15 of Algorithm I). To assist in

such decision making, three relative quantities are defined,
namely time quality TQ, monetary cost quality CQ, and
reliability quality RQ. These three quality parameters are
normalized in order to make each one to fall into [0, 1]
interval. TQ is determined as shown by (4), where
FT(ti, j, VMk) represents the finish time for task ti running on
VMk instance, and FTmax(ti, j) and FTmin(ti, j) are the maximum
and minimum execution times determined among all
available instance types and pricing models, respectively.

),(min),(max
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


 . (4)

CQ is calculated as shown by (5), where Cost(ti, j, VMk) is
the monetary cost for executing task ti on VMk instance, and
Costmax(ti, j) and Costmin(ti, j) are the maximum and minimum
monetary costs determined among all available instance
types and pricing models, respectively.

),(min),(max

),(min),,(
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
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RQ is computed as shown by (6), where χ is: a) zero for
on-demand or spot block instances; or b) the cumulative
distribution function CDFlogn (μ is the mean and σ is the
standard deviation). χmax(ti, j) and χmin(ti, j) are the maximum
and minimum values of χ among all available instances,
respectively. CDFlogn tends to the unity as FT(ti, j, VMk)
moves towards SI aging. The rationale is to favor selection of
fresh SIs over long- running ones, since probability of a SI be
reclaimed increases with aging. A log-normal probability
distribution was selected because the curve fitted well with
the data provided by recent studies on performance and
behavior characterization of Amazon EC2 SIs [4].
Parameters μ and σ can be adjusted online based on historical
data.
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Finally, utility function Q is determined as shown by (7),
which combines TQ, CQ, and RQ.
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++

=
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Q is used to obtain the best balance between time,
monetary cost, and reliability. MISER selects the VM
instance model and type VMsel that provides the highest value
of Q.

In order to deal with interruptions of SIs, MISER is
combined with a monitoring mechanism (i.e., interrupt event
handler module in CSP) that is responsible for handling EC2
notification events regarding SI reclaims. Therefore, MISER
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algorithm will run when: a) there are ready-to-execute tasks;
and b) an interruption notification event is received from EC2.
The objective is to make sure that all tasks allocated into
now-reclaimed SIs can be re-scheduled and finished within
their deadlines.

IV. EVALUATION AND SIMULATION SCENARIO

This section describes the characteristics of the evaluation
scenario in terms of SIs reliability, instance prices, workloads,
metrics, scheduling algorithms for performance comparison,
and simulation setup.

A. Description of SIs Reliability
Pham, Ristov, and Fahringer have recently conducted an

extensive set of experiments aiming at characterizing SIs
reliability on three different EC2 datacenters [4]. The
evaluation resulted in a variety of findings. These findings
revealed a spot request fulfillment rate of more than 99.2% in
most of the datacenters considered. Once an SI is provisioned
and deployed, it can be interrupted by EC2 after no-capacity
or low-bid-price status messages. Characterizing SI
interruptions, authors reported that some datacenters had
similar interruption rates of approximately 12.5%, while
others resulted in 34.0% interruptions. Regarding the running
time of deployed SIs with interruption, half of all interrupted
SIs run at least 3 hours, a value that can decrease to less than
1.5 hours in datacenters. Additional examination concerning
how long SIs run until interruption indicates in worse
datacenters 95.2% of SIs run at least the first 20 minutes.
Based on these findings, we generated a set of reliability
periods which were then assigned to SIs launched by the CSP.
Also, spot requests are fulfilled in no more than 4 seconds.
The generation of the reliability set considered the region
with the worse performance and behavior to deeply test the
effectiveness of our solution.

B. Description of Workloads
The Pegasus project made available a set of realistic

workflows from diverse scientific applications. These
workflows are available in DAG in XML (DAX) format,
under different sizes (i.e., number of tasks). A DAX file
characterizes in detail the structure, data and computational
requirements for a specific workflow. This study leverages
the Montage workflow structure from the Pegasus project, a
general engine for computing mosaics of input images in the
Flexible Image Transport System (FITS) format. Since it is a
realistic workflow, the Montage has been used in current
research [9], [19], [21]. The memory used by a task was
randomly assigned implying different migration times
ranging in {8, 10, 12} seconds. Since most of Montage tasks
are small, we multiplied by 25: a) the time necessary to
execute each task in the workflow; and b) the size of files
transferred among tasks necessary. Based on this, we
generated a total of 55 workflows, summing 1375 tasks,
randomly submitted by 10 different users. Users arrive to the
system at random time instants, ranging in {10, 30, 50}% of
the minimum execution time of last submitted workflow
application. The same applies for submission of workflow
applications once the user arrives to the system.

C. EC2 Instance Types
Amazon EC2 offers extensive variety of VM instance

types, each providing different amount of resources in terms
of CPU, GPU, and memory. In this paper, we have
considered the VM instance types shown in Table I. The price
of each instance was taken from Amazon EC2 website at the
time of writing this paper. Billing characteristics are as
follows: 1) if a SI is interrupted in the first hour, the user is
not charged for that usage; 2) if the SI is interrupted in any
subsequent hour, the user is charged for usage to the nearest
second; 3) if SI interruption is triggered by its user then it will
be charged to the nearest second. The price of a spot block
instance depends on the specified duration (1 to 6 hours). In
this regarding, the monetary cost of spot blocks for 2, 3, 4,
and 5 hours was defined by extrapolating the known prices
for 1 and 6 hours. VM instances are interrupted the user as
soon as all their workflows are successfully finished or
unable to execute by the deadline.

TABLE I: EC2 VM INSTANCE PRICE ($)
VM

Instance
On-demand

(1h)
SI
(1h)

Spot block
(1h)

Spot block
(6h)

t2.small 0.0230 0.0069 0.0130 0.0160

t2.medium 0.0464 0.0139 0.0260 0.0320

t2.xlarge 0.1856 0.0557 0.1020 0.1300

t2.2xlarge 0.3712 0.1114 0.2040 0.2600

D. Metrics Characterization
Three metrics were defined to measure the performance of

the proposed solution. The first metric is the completion rate
of tasks (CRT), which is determined as the ratio of the
number of successfully finished tasks to the number of
submitted tasks. The second metric is the completion rate of
workflows (CRW), and is calculated as the ratio of the
number of successfully accomplished workflows to the
number of submitted workflows. The last metric is the
scheduled rate of tasks (SRT), which is computed as the ratio
of the number of scheduled tasks to the total of tasks in the
system.

A task that does not fulfill the budget and deadline
constraints defined for its relative workflow is accounted as
unfinished. A workflow is considered successfully finished
if all its tasks are finished within their deadline and budget
constraints.

E. Alternative State-of-the-Art Scheduling Algorithm
In order to better assess MISER scheduling algorithm

proposed in this paper, we have also implemented MW DBS,
a multi-workflow deadline- and budget- constrained
scheduling algorithm, recently proposed by Arabnejad and
Barbosa [19]. MW-DBS was designed to schedule multiple
workflows on heterogeneous resources. The algorithm works
in two steps: first, a ready task from each workflow is
selected and a priority based on individual deadline is
assigned; second, a suitable resource to execute the current
task that satisfies budget and deadline constraints of the
workflow is determined. MW-DBS assigns tasks only on free
resources at scheduling round, unlike MISER which is able to
plan allocations on idle slots between two already scheduled
tasks.



F. Simulator Setup
To finally evaluate the effectiveness of our solution, we

used the discrete-event Cloud simulator introduced in [2].
Discrete-event simulation guarantees the repeatability and
reproducibility of large-scale experiments, for a wide range
of application configurations in a reasonable amount of time.
The simulator implements two main entities: the Cloud
manager and the Scheduler. The Cloud manager starts and
terminates clusters of VM instances to serve users' requests.
The Cloud manager also launches and manages containers on
top of VMs according to Scheduler instructions. It is also its
duty to manage the execution of individual tasks on top of
containers. The Scheduler creates task-to-instance resource
mappings by choosing the type and renting model of VM
instances. The simulator reads workflow description files in
DAX format, from the Pegasus project [9]. For each
workflow, budget and deadline constraints where computed
by (8) and (9), respectively. Parameters mincost(j) and
maxcost(j) account for the absolute highest and lowest possible
monetary costs for running the workflow application j, and
are determined by summing the maximum and the minimum
execution costs for all tasks in that workflow.

 )(
cos

min)(
cos

max)(min)( cos j
t

j
t

BjjBudget t  . (8)

 )(min)(max)(min)( j
time

j
time

DjjDeadline time  . (9)

Parameters mintime(j) and maxtime(j) represent the absolute
highest and lowest possible execution times for the workflow
application j, and are determined based on the lowest and
highest possible makespans for available instance types.
Therefore, it is considered the processing time for the critical
path and the average communication time between tasks and
their critical parents. Sets of experiments were carried out by
varying B in {0.25, 0.75} and D in {1.0, 2.0}. The rationale is
to analyze the impact of different budgets and deadlines on
the performance of the scheduling algorithms. VM instances
which are part of the user compute environment are
terminated as soon its workflows are finished.

V. RESULTS AND ANALYSIS

For each budget B and deadline D defined, each
scheduling algorithm was executed in three different ways,
regarding the used instance models to allocate a task. For
example, MISER(OBS) means that MISER algorithm
considered cumulatively on-demand (O), spot block (B), and
SIs (S) to schedule a task. Unlike MISER, MW-DBS is
agnostic regarding reliability of SIs.

Fig. 3 shows the results for the CRT metric. The proposed
algorithm, MISER, outperforms MW-DBS for all the defined
budget and deadline constraints, reaching 100% of tasks
successfully concluded even when tasks are allocated in SIs
(i.e., the MISER(OBS) case). In turn, for low and high
budgets (i.e., B = 0.25 and B = 0.75, respectively) and low
deadline (i.e., D = 1.0), both MW-DBS(OBS) and
MW-DBS(OB) are able to successfully execute more than
99.3% of tasks. For the same low deadline, the performance
of MW-DBS(O) is more than 89% and less than 92% for low

and high budgets, respectively. Now, considering the high
deadline (i.e. D = 1), MW-DBS(O) behaves similarly to low
deadline case, which suggests that MW-DBS schedules in
more expensive instance models benefit from higher budgets,
and is less sensible to the deadline. On the other hand,
MW-DBS(OBS) and MW-DBS(OB) alternatives suffer
performance degradation with high deadline (i.e., D = 2). We
noticed that for high deadline, both MW-DBS(OBS) and
MW-DBS(OB) produce schedules in which tasks run longer,
which implies that additional VM instances need to be
launched to execute incoming workflows (a new workflow is
submitted before the last one finishes executing), incurring
extra monetary costs and eventual scarcity of resources
assigned to each user (MW-DBS only allocates tasks on
instances that are idle at the scheduling round). Additionally,
since tasks run longer for high deadline, the probability of SIs
to be interrupted by EC2 augments for MW-DBS(OBS), with
consequent impact on CRT. This performance behavior is not
observed for MW-DBS(O), in which the number of instances
to run the tasks remains almost the same, disregarding the
deadline.

Fig. 3. Completion rate of tasks (B and D parameters define the budget
and deadline for a workflow, according to (8) and (9)).

Fig. 4. Completion rate of workflows (B and D parameters define the
budget and deadline for a workflow, according to (8) and (9)).

Fig. 4 illustrates the results for CRW metric. For every
considered combination of instance models (i.e., OBS, OB,
and O), MISER outperforms MW-DBS, accomplishing
100% of workflows. Regarding MW DBS, its behavior is
similar to that of CRT, as budget and deadline evolves. In fact,
high deadline allows the scheduler to allocate tasks on
cheaper, and less powerful, VM instances, leading to tasks



running longer and to less available resources to allocate
incoming tasks.

Fig. 5 shows the results obtained for SRT. It can be
observed that MW-DBS(O) is the case that presents less
quality in finding a valid schedule map for each workflow
application in the scenario. The quality of their schedules
lightly improves with deadline. On the other hand, as
deadline evolves from low to high, the performance of
MW-DBS(OBS) and MW-DBS(OB) in finding valid
schedule maps degrades. The loss of quality is related to
longer task runtimes, less available VM instances for
incoming workflows, and eventually extra monetary costs.

As a final remark, we can observe in all figures that
MISER is able to build reliable compute environments on top
of unreliable EC2 SIs, to successfully run workflows
applications under budget and deadline constraints.

Fig. 5. Scheduled rate of tasks (B and D parameters define the budget and
deadline for a workflow, according to (8) and (9).

VI. CONCLUSIONS AND FUTURE WORK

Amazon EC2 spot instances represent a cheaper alternative
for users comparing to traditional solutions based on
on-demand purchasing model. However, the trade-off is that
SIs may be reclaimed by EC2 at anytime, with a two-minute
interrupt notification. In such cases, the state of running tasks
is lost. In order to tackle this issue, we propose the
construction of virtual compute environments on top of EC2
instances based on containers. This strategy, combined with
MISER, a SI reliability-aware multi-workflow scheduling
algorithm, that cumulatively considers budget and budget
constraints, improves the reliability of users’ compute
environments. In order to assess the performance of the
proposed solution, a set of experiments was carried out with
MISER and a state-of-the-art scheduling algorithm. Results
show the effectiveness of proposed solution in building
reliable compute environments on top of unreliable Amazon
EC2 instances.

For future work we are considering the optimization of
monetary cost or deadline parameters, according to user
expectations.
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