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Research on Improved Visualization Method of Space
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Abstract—Spatial temporal data refers to data with
geographical location and time label. It has the characteristics
of multi-source, massive quantity and fast update. It is a typical
big data type. Spatial temporal data analysis is one of the core
issues in the field of big data research. In order to better
demonstrate the process and results of spatial temporal data
analysis, visual processing has become one of the important
ways of analysis. The analysis of spatial temporal big data
through visualization technology can provide insight into the
overall picture and main features of big data. However, when
using the visualization technology to analyze large-scale spatial
temporal data, the characteristics of spatial temporal big data
are not considered, so there are often line-intensive and
overlapping coverage problems in the visualization results. This
paper proposes an improved space time cube visualization
method to solve the above problems. First, cluster the spatial
temporal data and then use the space time cube visualization
method to display the clustered data. The clustering algorithm
used is the sub-trajectory clustering. The experimental results
show that the improved space time cube visualization
technology has obvious visual effects and clear global features.

Index Terms—Spatial temporal data, visualization, space
time cube, sub-trajectory clustering.

1. INTRODUCTION

With the development of computer network technology
and data acquisition technology, the application of the
Internet, geographic information system, social network and
other fields has deepened, resulting in a phenomenon of
mixed types of data. These mixed data are continuously
aggregated, resulting in a kind of the new data type ------ big
data. Such as: text data, video data, map data, spatial
temporal data. Among them, spatial temporal data is a
typical representative of such data. It contains data of
geographical location, time label and other attributes [1].
More than 80% of spatial temporal data is related to
geographical location in the real world [2], and the spatial
temporal data is rich in content. It can be used in many
application areas such as traffic management and user
behavior analysis, thus stimulating the growing demand for
spatial temporal data applications. However, the constant
aggregation of spatial temporal data poses many challenges
for data processing. For example, the point of spatial point
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and line-to-space data visualization is not clear enough.

Data visualization is a science and technology about the
visual representation of data. The visual representation of this
data is defined as a kind of information extracted in a
summary form, including various attributes and variables of
the corresponding information unit. The visualization of
spatial temporal data can often explore the potential links and
developmental changes in data. The spatial temporal data
visualization method is used to visualize the time and space
dimensions and the related information object attributes, and
to display the patterns and laws closely related to time and
space, which can analyze the spatial temporal data well.

The main purpose of spatial temporal data visualization is
to be able to process data relationships in different periods
and visualize the time dimension in a visual form, so that the
trend of geographic goals is clear at a glance. Spatial
temporal data visualization can express and interpret spatial
temporal and the evolution process of various geographical
phenomena, and further predict and simulate its changing
development trend by analyzing its development law.
Analyze the visualization results and then filter out the useful
information in the data, mine the data behind the information,
and use visual tools to represent the content covered by the
data [3].

At present, typical spatial temporal data visualization
methods are flow map and space-time cube. Flow map is a
fusion of time information flow and map. Space-time cube
visualize time, space and events in three dimensions. Both of
them have large-scale spatial temporal data items that cause
line intensive and overlapping coverage problems, which is
one of the main problems in the visualization of spatial
temporal data in the big data environment. Previous studies
have used edge bundling, scatter plots and density maps to
solve this problem. However, when the dimensions of the
null information object attributes are large, the improved
visualization method also has some shortcomings.

In order to solve the above problems, this paper optimizes
the space-time cube visualization method, divides the
trajectories by time period, clusters the target motion
trajectory in time and space, and then displays the clustering
result in space-time cube technology, which can be effective.
Avoid line intensive and overlapping coverage problems, and
intuitively analyze attribute information of multiple
dimensions of large-scale spatiotemporal data.

This paper is divided into five parts. The first part is the
introduction part, which mainly describes the research
content and research significance of this paper. The second
part introduces the related work of spatial and temporal data
visualization. The third section outlines the visualization
method and use used in this paper. The fourth section is a
visual representation of the experimental data, and the final
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section is the conclusion and future work.

II. RELATED WORKS

This section introduces some research on the visualization
of spatial temporal data, including space-time cube and flow
map, as well as some improved methods.

Spatial temporal data visualization has two typical
methods: flow map and space-time cube. In order to reflect
the behavioral changes of information objects as they
progress over time and spatial locations, the two typically
present data features through the visualization of the
properties of the information objects. Charles Joseph Minad
used flow map to showcase the export of French red wine in
1864 [4], and the width of the line indicates the number of
exports. When the data scale continues to increase, the
traditional flow map faces a lot of problems such as crossover
and coverage of primitives. In order to solve this problem,
Doantam Phan and Kevin Verbeek and others borrowed and
merged the edge bundling method in large-scale graph
visualization, and bounded the time event stream to optimize
the flow map visualization method [5], [6]. In addition,
Roeland Scheepens et al. can also solve this problem by
optimizing the Flow map by fusing the time event stream
based on density calculation [7]. Although the flow map
visualization method that integrates other methods can solve
the cross-coverage problem, it ignores the visualization of
other attributes of the data, and fails to display the
three-dimensional information of the data, and has certain
limitations.

In order to break through the limitations of the
two-dimensional plane, the space time cube visualizes time,
space and events in three dimensions. Peuquet DJ uses the
space time cube to display and analyze Napoleon's attack on
Russia, and can visually display the geographical changes,
time changes, personnel changes and special events in the
process [8]. But time and space cubes are also facing the
intensive mess caused by large-scale data. Rhyne TM et al.
combined scatter plots to optimize space-time cubes [9],
Tominski et al [10]. Merged two-dimensional and
three-dimensional visualization methods, introduced a stack
graph, and expanded the display space of multi-dimensional
attributes in space time cube. The above-mentioned various
types of space time cube are suitable for displaying
large-scale spatiotemporal data such as urban traffic GPS
data and hurricane data. However, when there are many
dimensions of the attributes of the empty information object,
the three-dimensional also faces the limitation of the display
ability.

In order to analyze multidimensional data and discover the
relationship between different attributes, scatter plot [11] or
parallel coordinates [12] are often used to map the
relationship between multidimensional attributes through
different colors and shapes. To represent different attributes.
However, scatter plots are not suitable for displaying all
dimensions at the same time, only for displaying important
dimension information. Claessen JHT et a/ [13]. Combine the
two visualization techniques of parallel coordinates and
scatter plots, and propose a new visualization method,
parallel coordinate plots (PCP), which realizes multi-angle
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analysis of multidimensional data. Geng et al also proposed
an improved parallel coordinate method for multidimensional
analysis of data [14]. Landesberger et al use clustering to
simplify line-intensive problems [15]. Kim ef a/ employ flow
visualization techniques to visualize the spatiotemporal data
[16]. Although these methods solve the line intensive
problem caused by too many dimensions to a certain extent,
they also ignore the attributes of some other dimensions, such
as time and space. Aidan Slings by et al combined
multidimensional parallel axes with traditional map mapping
methods to show good results in spatiotemporal data [17].
When analyzing and updating fast spatial temporal big
data, you must balance the spatial temporal nature of the data
with other properties that the data contains. Therefore, spatial
temporal data visualization often needs to be combined with
various visualization techniques and clustering algorithms to
better represent the multidimensional attributes of data.

III. VISUAL METHODOLOGY

In order to solve the above problems, we propose an
improved space time cube visualization method. This section
describes the data used in the space time cube visualization
method based on the sub-trajectory clustering algorithm and

its visualization process.
Data Data
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Fig. 1. Data visualization process.
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Fig. 2. Space time cube model.

A. Visualization Process

The flow-time data visualization method proposed in this
paper is as follows. The spatial temporal data is read from the
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database, and then the spatial temporal data is preprocessed.
The trajectory is divided into sub-trajectories according to the
principle of minimum description length MDL (Minimum
Description Length). The clustering method of density
clusters these sub-trajectories. Then use the space time cube
visualization method to visualize the clustered trajectory, and
finally analyze the visualization results. The basic process is
shown in Fig. 1.

B. Space Time Cube Model

The space time cube model was first proposed by
Hagerstrand. It uses geometric solid graphics to represent the
evolution of two-dimensional graphics along the time
dimension. It expresses the evolution of the target object over
time in the real plane position, and marks the time. At the
spatial coordinate point. Given a time position value, the state
of the corresponding section can be obtained from the 3D
cube, and the process of expressing the 3D space along time
can be extended. As shown in Fig. 2, the two-dimensional
coordinate axis represents the plane position space of the
spatiotemporal trajectory data in the real world, and the
one-dimensional time axis represents the change of the
position of the target with time.

C. Characteristic Point Extraction

The two most important dimensions and attributes in
spatial temporal data are time information and spatial
information. Trajectory data is a typical representative of
spatial temporal data. The target object will generate
trajectory data during the motion process. Therefore, this
paper establishes the trajectory data model to visualize and
analyze spatial temporal data.

The trajectory data is data information obtained by
sampling the motion process of one or more moving objects
in a space-time environment, including sampling point
position, sampling time, speed, etc., and the sampling point
data information constitutes trajectory data according to the
sampling sequence. The relevant definitions are as follows:

Definition 1 Trajectory data set. Given a trajectory data set
TR={TR\, TR>, ...,TRuun}, Where tnum represents the total
number of trajectories in the set, and any trajectory 7R; in the
set is represented as TR={Pi, Pa,...,Pipnum}, Where ipnum is
the total number of sample points in the i/ trajectory, and
any sample point P (1 < k<X ipnum) in the track has the
following form: Pi € (Pria* Prum*PxxPyxTXA1%...XAp), which
shows at time 7, the position of the sample point prnum in the
trajectory Pyaia is (P, B), where 1 < k <X num, and 4; (1 <i
< m) is a quantitative or qualitative attribute of the sample
point prum, such as speed, corner, efc. .

Definition 2 Characteristic point data set. Dividing a
trajectory into multiple segments, the sum of the segmented
trajectory is not necessarily the original trajectory, but also
the extraction of the original trajectory characteristic, and the
ordered characteristic point set representing a trajectory is
represented as CHTR={Pcn1, Pcn2,..., Pichnum} Where ichnum
represents the number of characteristic points of the i-th
trajectory, where P is the i-th characteristic point of the
trajectory.

Definition 3 Sub-trajectory data set. Generating a set of
sub-trajectory segments that generate all the trajectories
according to the characteristic point sets of all the trajectories,
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assuming that there are a total of /mum sub-trajectory
segments, the sub-trajectory segment set meanings
SETR={L1, La,..., Luum}, where Li=<Pei, Penit1>(1 < k<
ipnum), Peni, Peni+1 are adjacent characteristic points.

The characteristic point is defined as the point where the
behavior change in the trajectory is relatively obvious, and
the trajectory structure can be well described, and at the same
time, it should have certain simplicity and accuracy. The
algorithm for extracting characteristic points is shown in Fig.
3.

Algorithm CPE (Characteristic Points Extraction)
INPUT: A set of trajectories TR = {P; , P2 ,"** , Pipmum}

OUTPUT: A set of characteristic points CHTR;= { Pch1,.--» Pichnum }
01:Add P; into the set CHTR;; first= Py,

02:start=first; current:=first.next.next;
03:while(current.next!'=NULL)do

04:  costpar:=MDLya(Psiart , Peurren);

05:  coStuopar:i=MDLuopar(Pstart , Peurrent);

06:  iflcostyu™> cOStuopar)then

07: Add Peurens into the set CHTR;;

08: else

09: start:=start.next, current=current.next,
10: Add the Pjipnum into the set CHTR;;

Fig. 3. The algorithm for extracting characteristic points.

D. Sub-trajectory Segments Clustering Algorithm

This paper uses the spatial distance measurement method
commonly used in pattern recognition, which is the weighted
sum of the three distances of vertical distance d ,, parallel
distance d ,, and angular distance d ,. Suppose the two
trajectory segments are Li(s;, e;) and Li(s;, e;), where s, 5, €, €;
represent the start and end points of the trajectories L; and L;
respectively. ps and p. represent the projection of s; and e; on
the trajectory L; respectively. L, , L ,, L ,, L ,, respectively
represent the Euclidean distance between the corresponding
endpoints in the graph. | L; | represents the length of the
trajectory Lj, and 0 is the two sub-trajectorys Angle (0° <O <
180°). Spatial distance figure between two trajectories is as
shown in Fig. 4.

¢

7y
P,
Fig. 4. Spatial distance figure between two trajectories.
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Definition 4: The vertical distance is defined as follows:

L4112

dL(Li , Li)=
Lu+Lio

Definition 5: The parallel distance is defined as follows:
dy (Li , Lj) =MIN (L//l, L//z)
Definition 6: The angula; distance is defined as follows:

| |Lpxsin(0)i 07<60<90°

do(LisLs . i
(L) |L{,iF90°<6<180
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Definition 7: The weighted sum of the three distances is
defined as follows:

dist (Li, Lj) =w.dL (Li, Lj)
+awsdy (Li, Lj)+ wad e (Li, Lj)

By observing the set of sub-trajectory segments obtained
by segmentation of the trajectory, it can be found that the
shape of the sub-trajectory segment has irregularities, and the
set contains a large amount of noise. Since the DBSCAN
algorithm clusters by analyzing the connectivity of regional
densities, not only can cluster clusters of arbitrary shapes be
found, but also noise interference can be avoided to the
utmost in the clustering process. Therefore, the sub-trajectory
segments are aggregated by this method. The algorithm needs
to set two global parameters, namely the neighborhood radii
eps and minlns. DBSCAN searches for clusters by filtering
the eps neighborhood of each object in the sub-trajectory data
set. If the number of objects contained in the eps
neighborhood of object p is greater than or equal to minins, a
cluster with p as the core object is created. The algorithm then
iteratively clusters all objects that are directly reachable from
these core objects. This process may involve some
density-to-cluster merging. When no new objects are added
to any cluster, the process ends. The relevant definitions are
given below.

Algorithm Sub-trajectory Segments Clustering
INPUT: A set of trajectory segment STS = {L1, L2,"** , Linm},
Two parameters eps and minins.

OUTPUT: A set of clusters C= {C1, C2, **-, Cenum}.
01:clusterld = 0;

02:Mark all the sub-trajectory segments in S7S as unclassified,;
03:for each (L; €STS) do

04: if (L; is unclassified) then

05: Compute Ny(L);

06: if (|[Ne(Li)| > minlns) then

07: Assign clusterld to VX € Ny(L);

08: Insert No(Li)—{L;} into the queue Q;
09: while(Q#9) do

10: Select O; €Q and compute Ny(Q));
11: if (|[Ne(Qi)|> minlns) then

12: for each (X € N«(Q))) do

13: if (X is unclassified or noise) then
14: Assign clusterld to X;

15: if (X is unclassified) then

16: Insert X into the queue Q;
17: Remove Q; from the queue Q;

18: clusterld++;

19: else

20: Mark L; as noise;

21: Output a set of clusters C= {C1, Cs, **, Cenum }
Fig. 5. The algorithm for clustering sub-trajectory segments.

Definition 8: Eps neighborhood. The area with the radius
eps as the center of the given object p is called the eps
neighborhood of the object.

Definition 9: Core object. Within the eps neighborhood of
a given object p, if the number of sample points is greater
than or equal to minlns, the object is said to be the core
object.

Definition 10: Direct density is reachable. If the given
object g is the core object, and the object p is within the eps

119

neighborhood of the core object g, then the object p is said to
be directly reachable from the object g.

The sub-trajectory segments clustering algorithm is shown
in Fig. 5.

IV. CASE STUDIES

To verify the effectiveness of the proposed visualization
method, this paper uses two different types of data sets for
testing, one is traffic data and the other is sports data, both of
which are typical spatial temporal data.

A. Traffic Data Visualization

The traffic data comes from the Microsoft T-Drive project,
which contains the trajectory data of more than 10,000 taxis
in Beijing in 2008. The data set contains 15 million
coordinate points, and the total distance of the trajectory
reaches more than 9 million kilometers. The trajectory data of
the taxi is shown in Table I.

TABLE I: TAXI TRAJECTORY DATA

Taxi ID Date time Longitude Latitude

1 2008-02-0215:36:08 116.51172 39.92123
1 2008-02-0215:46:08 116.51135 39.93883
10357 2008-02-0213:42:25 116.45186 39.93225
10357 2008-02-0817:26:51 116.72877 40.01143

Fig. 7. Taxi trajectory heat map by time.

The heat map shown in Fig. 6 is the taxi trajectory. It can
be clearly found that the taxi has a dense running track,



multiple overlapping coverage, and it is impossible to
distinguish the congested road sections and areas. In this
paper, the sub-trajectory clustering algorithm is used to
segment and process the taxi trajectory. As shown in Fig. 7,
the area where the taxi is most densely displayed can be
clearly seen, and the location and size of the dense area
change with time. Fig. 8 shows the most congested areas at a
time. The improved visualization method solves the problem
of dense track and overlapping coverage, and can quickly
locate congestion information according to time.

Fig. 8. Taxi trajectory heat map at a certain moment.

B. Sports Data Visualization

The format of table tennis trajectory data in the
quarter-finals of the 2017 Asian Championships in Ding
Ning VS Hirano Miyuki is as follows:

TABLE II: TABLE TENNIS MATCH DATA
Win Shot X

Match Lose Y
1 0 0 1 561 188
1 0 0 2 -1439 -183
5 10 11 11 -703 756
5 10 11 12 1272 -576
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Fig. 9. "i;;ible tenriis location map.

X 1,500
Fig. 10. Table tennis location heat map by time.

As shown in Fig. 9, both players' shots overlap and overlap,
and the preferred position of the player's shot is not observed.
It is processed by the sub-trajectory clustering algorithm, and
the hitting hot spot area of the player is displayed in half. Fig.
10 shows the hot spot area of the top seven hitting position of
Hirano Miyuki. The larger the area of the red circle is, the
area hits. The more the number of balls, the red box is the
preferred hitting position of the Hirano Miyu third board.

V. DISCUSSION

Lessons Learned. The entire visualization process
provides us with invaluable experience in analyzing spatial
temporal data, and also gives us a deeper understanding of the
characteristics of spatiotemporal data. First of all, the new
visualization method proposed in this paper can fully display
the time and spatial information of spatiotemporal data.
Secondly, we also apply this visualization method to the
actual scene to analyze the athlete's game data, which can
obviously observe the preference hitting position of table
tennis players at different times. We provide them with more
scientific decisions by Analysis of table tennis match data.
Finally, experts from the Sports Science Research Institute of
the State Sports General Administration played an important
role in this process. They gave many scientific advice and
made it easier for us to understand the data.

Limitations. Although the improved visualization method
can take into account both time information and spatial
information, other dimensions are not fully demonstrated,
and the interaction between the system and the user is less.

VI. CONCLUSION AND FUTURE WORK

The spatial temporal data visualization method described
in this paper mainly uses sub-trajectory clustering algorithm
and space time cube to realize the visualization of spatial
temporal data according to time division, so as to preserve the
multi-dimensional attribute visualization without causing
line intensive.

Future work focuses on the following two aspects:

(1) Strengthen the correlation analysis of spatial temporal
data, and try to analyze the potential law between data

(2) Combining machine learning with Bayesian networks
to predict the evolution of spatial temporal data.
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