

Abstract—A sorting algorithm is a step by step procedure in

arranging items on the list in particular order (ascending or
descending). Sorting is one of the important data structure
concepts that play a vital role in computer systems, file
management, memory management, and many real-life
applications. Among the sort algorithm, selection sort is the
simplest and very straightforward. However, selection sort is
considered the second worst algorithm concerning time
complexity for large data. Due to the lousy performance of
selection sort on large data, several enhancements were
developed to improve runtime complexity. These enhancements
have a significant improvement on the runtime complexity of
the classical selection sort. However, the procedures presented
in all these enhancements can still lead to some unnecessary
comparisons, swapping and iterations that cause poor sorting
performance. This study focuses on finding a remedy on the
identified problems of the selection sort such as runtime
complexity and unstable sorting by modifying the selection sort
algorithm. The modified algorithm was tested using various
data to validate the performance. The result was compared with
the other available sorting algorithms to validate running time
complexity. The results show that the Modified Selection Sort
Algorithm Employing Boolean and Distinct Function in a
Bidirectional Enhanced Selection Technique has a significant
runtime complexity improvement compared with the other
sorting algorithms. This study has a significant contribution to
the field of data structures in computer science.

Index Terms—Algorithm, bidirectional sorting, flag,
selection sort, sorting.

I. INTRODUCTION

A. Background of the Study
A sorting algorithm is a step by step procedure in arranging

items on the list in particular order (ascending or descending).
Sorting is one of the important data structure concepts that
play a significant role in computer systems, file management,
memory management and many real-life applications [1].
Some sorting algorithm is simple and spontaneous while
others are complex but perform faster. Some work better on a
smaller number of data, and some are good for specific range,
some are suitable for floating point numbers, some

Manuscript received December 19, 2018; revised July 5, 2019.
Ramcis N. Vilchez is with the Technological Institute of the Philippines

(TIP), 938 Aurora Blvd, Cubao, Quezon City, Metro Manila, Philippines
(e-mail: ramcis_vilchez@umindanao.edu.ph).

algorithms are used for a large list of data, while some are
used if the list has recurring values [2]. Sorting algorithms are
problem specific, meaning they perform well on some
specific problem and do not work well for all problems [3].
Selection sort, Bubble sort, and Insertion
sort are very simple algorithms having the runtime
complexity of O(n2) making them impractical to use for large
data. Other complex algorithms like quicksort and merge sort
are using the divide and conquer technique. These algorithms
perform faster, having the runtime complexity of O(n log n)
[3].
Among the sort algorithm, selection sort is the simplest

and very straightforward. It resembles human instinct in
arranging items in particular order. However, selection sort is
considered the second worst algorithm in terms of time
complexity [3].
The selection sort works by searching for the maximum

value in the list and interchanging it with the last element.
Then it finds for the second maximum value excluding the
last element which was already found during the first pass
and interchanging it with the second to the last element. In
every procedure, the list is shrunk by one element at the end
of the list. This processing is continued until the list becomes
of size one when the list becomes trivially sorted [2].
In each procedure, to look for the maximum value, the

selection sort starts from the beginning of the list. It starts by
considering the first element to be the maximum and checks
every element in the list whether the current maximum is the
maximum. If it finds a greater value, then it considers that
value to be the new maximum [2].

B. Problem Statement
The selection sort can be the most popular sort algorithm

because of its simple and straightforward steps that resemble
human instinct in arranging items. However, the procedure
involved in the selection sort algorithm causes the following
identified problems:
1) Unnecessary comparisons and swapping that leads to

huge running time.
2) Inability to detect already sorted list during the early

iterations that cause unnecessary iterations.
3) Inability to detect duplication of items that causes

unstable sorting and unnecessary comparisons,
swapping and iterations.

C. Objectives of the Study
This study aims to modify the selection sort algorithm to

improve the time complexity. Specifically, it seeks to do the
following:
1) Eliminate the unnecessary comparisons and swapping

Modified Selection Sort Algorithm Employing Boolean
and Distinct Function in a Bidirectional Enhanced

Selection Technique

Ramcis N. Vilchez

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

93doi: 10.18178/ijmlc.2020.10.1.904



using bidirectional Enhanced Selection Sort Algorithm.
2) Detect already sorted list during the early iterations to

terminate the unnecessary iterations using a Flag or
Boolean.

3) Identify distinct items and grouping them adjacently to
have a stable sorting using a distinct function.

4) Compare the results of the modified selection sort with
other existing sorting algorithms using various data to
determine the best algorithm in terms of execution time.

D. Significance of the Study
The result of this study if proven to be the best algorithm

will be used in all sorting applications. Further, the concept
presented in this study will be a very significant contribution
in the field of data structures in computer science.

E. Scope and Delimitations
This study focuses on finding a remedy on the identified

problems of the selection sort such as runtime complexity and
unstable sorting by modifying the selection sort algorithm.
The modified algorithm will then be tested using various data
to validate the performance. The result will also be compared
with the other available classical and modified sorting
algorithms to validate running time complexity and ranking
of the proposed modified selection sort.

II. THEORETICAL FRAMEWORK

A. Review of Related Literature
Due to the lousy performance of selection sort on large

data, several enhancements were developed to improve
runtime complexity. These enhancements have a significant
improvement on the runtime complexity of the classical
selection sort. However, the procedures presented in all these
enhancements can still lead to some unnecessary
comparisons, swapping and iterations that cause poor sorting
performance.

B. Bidirectional Selection Sort
In the study of [4], the concept of bidirectional selection

sort was introduced. The main idea is that successive
elements are selected on both sides of the array and placed in
their proper position. In this technique, the sorting will be
done in a single pass by two ways. That is to find the
minimum element from the list and interchanged with the
first element. At the same time, it will look for the maximum
element and interchanged with the last element. Bidirectional
Selection sort algorithm performs better than the classical
since it reduces the number of swaps. However, there are still
grey areas in this algorithm, since it cannot detect an already
sorted list. It will continue to execute and finish the iterations
even with the already sorted list. Unnecessary comparisons,
swaps, and iterations are still possible in this improved
algorithm.

C. Enhanced Selection Sort Algorithm (ESSA)
The concept introduced by [3] called Enhanced Selection

Sort Algorithm (ESSA) eliminates some unnecessary
comparisons by memorizing the location of the previous
maximum when the new maximum is found. A stack is
utilized to store the positions of the past or local maximums,

which can be utilized in later iterations. It is assured that no
value in the list is larger than the previous maximum value
before the location of the previous maximum. However, this
approach can be further improved. My proposed
enhancement of the selection sort is based on this idea.
However, I will be using bidirectional to look for the
maximum and minimum in both sides of the array to
eliminate unnecessary comparisons, swaps, and iterations. It
is guaranteed that in the range between the former maximum
and the just found current maximum there is no value greater
than the former maximum. Therefore, there is no need to go
through this range. In the next iteration, it is now safe to start
looking for the next maximum from the location of the
current maximum. This concept saves searching time, and it
works better than the other enhancements in the selection sort
algorithm. However, unnecessary comparisons, swaps, and
iterations are still possible. Further, this algorithm cannot
detect already sorted list.

D. Bi-directional Mid Selection Sort
The study of [5] called Bi-directional mid selection sort

algorithm is based on bidirectional. However, in this
enhancement of selection sort algorithm, it will sort the data
by selecting (maximum and minimum) elements by starting
to look from middle to both sides in the selected list by
reducing the size of the list from n to 2 with the decrement of
two in the size. It has the two loops outer and inner loop.
Outer loop manages the size of the list to be processed for
searching the maximum, and minimum number and the inner
loop is for finding the smallest and various number from the
list selected by the outer loop.

E. Optimized Selection Sort Algorithm (OSSA)
Another Selection sort enhancement from the study of [6]

called Optimized Selection Sort Algorithm (OSSA) is also
based on the bidirectional selection sort. However, instead of
finishing the iterations from the beginning to the last element,
the iteration will end if it reaches the middle of the array. This
concept saves some iteration time as compared with the
classical selection sort and bidirectional selection sort.

F. Both Ended Sorting Algorithm
Another enhancement is both ended sorting algorithm by

[7], which claimed to be faster than the bubble and other
algorithms. This algorithm will compare from both ends
(from right end as well as from left end). This enhancement is
based on the bubble sort algorithm that will compare one
element from the front end with one element of the rear end.
If the front element is greater than the rear end, then it will
swap the front element with the rear element. In the second
iteration, two consecutive elements from the front end and
rear end of the array are compared. Replacing of elements is
done if required according to the order. Here four variables
are taken which stores the position of two rights elements and
two left elements which are to be sorted. This process will
continue until the list is sorted.

G. Enhanced Bidirectional Selection Algorithm
An enhancement of Selection sort algorithm by [1] is

called Enhanced Bidirectional Selection Sort. This algorithm
will select two values, smallest from the front and largest
from the rear and placing them in their respective locations.

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

94



The smallest will be placed in the first location while the
largest in the last location of another array thus, reducing the
number of passes by half the total number of elements as
compared with classical selection sort. The said maximum
and minimum will then be deleted from the original list thus
reducing the comparison by the factor of two.

H. Double Ended Selection Sort Algorithm (DESSA)
Another modified Selection sort algorithm introduced by

[2] is called Double Ended Selection Sort Algorithm. This
enhancement works by sorting elements in the same array
and finding the maximum element and minimum element,
exchanging the largest element with the last element and
minimum element with the first element and then decreases
the size of the array by two for the next iteration.

I. Improving the Performance of Selection Sort Using a
Modified Double-Ended Selection Sorting
The idea of [8] is also promising since it uses two elements

for both smallest and largest elements in the list and compare
each other and placing them in their respective places in the
front and rear locations. The researcher claimed that about
25% to 35% improvement in terms of time complexity was
noted.

J. Upgraded Selection Sort
The study of [9] upgraded the selection sort by searching

the smallest and largest items simultaneously and placing
them on their right locations. This study was able to improve
the number of iterations of the classical selection from n-1 to
n/2. However, the time complexity remains the same.

K. Improved Selection Sort Algorithm
The concept presented in a study of [10] utilizes a queue to

store the locations of all values that are the same as the
maximum value. This idea is only useful if the given
unsorted list is with duplications. However, if the list is
already distinct, then the modified selection sort presented in
this study is as bad as the classical selection sort for large
data.

L. Minimizing the Execution Time of Selection Sort
Algorithm
The study of [11] on selection sort enhancement presented

the concept of dividing the array into two by getting the mean
after finding the smallest and largest elements. The elements
that are smaller or equal to the mean are placed at the front.
While all the elements larger than the mean are placed at the
rear portion. This concept has a significant improvement in
the time complexity. The author claimed that for an average
case scenario, the time complexity of the modified selection
sort is now O(n) from O(n2) of that of the classical selection
sort algorithm.

M. New Approach for Dynamic Bubble Sort Improvement
The approach presented in the study of [12] utilizes a stack

to store the previous largest element to eliminate the
unnecessary comparisons in the classical bubble sort
algorithm. The succeeding iterations begin the search of the
largest from the location of the previous largest element and
not from the beginning of the array. With this approach,
significant improvement in terms of time complexity was

noted. For an average case scenario, the time complexity is
O(n2/4) compared to the classical bubble sort algorithm that
has an O(n2).

N. Insertion Sort with its Enhancement
An insertion sort enhancement approach presented in the

study of [13] uses a bidirectional technique. For the first
iteration, the first and the last element of the array is
compared. If the first element is bigger than the last element,
then the two elements are swapped. The location of the
element from the left end and the element from the right end
of the array are stored in the variables which are increased
(left end) and decreased (right end) as the algorithm
progresses. In the second iteration, two adjacent elements
from the left of the array are taken and are compared.
Insertion of elements is done if required according to the
order. Then the similar process is carried as in Insertion sort.
This approach is more efficient than the classical insertion
sort algorithm.

O. Enhanced Insertion Sort Algorithm
Another insertion sort technique presented in the study

conducted by [14] uses a bidirectional approach in sorting the
list. Both sides of the array will be sorted accordingly
depending on the sort order. If the algorithm sorts
ascendingly, the small elements are inserted into the front
portion. While the large elements are inserted in the rear
portion. This approach has improved the time complexity of
the insertion sort from O(n2) to O(n1.5) for an average case
scenario.

P. Concept of the Study
The proposed modified selection sort algorithm as shown

in Fig. 1, will be utilizing a stack to store the previous
maximums or minimums. The positions of the values are
stored in the list instead of storing the actual values. A
distinct function is used to sort distinct elements only. A flag
will also be utilized to determine a swap. If no swap detected
during a pass, then the iteration will stop, and the list is
already sorted.

Fig. 1. Modified selection sort algorithm.



III. OPERATIONAL FRAMEWORK

A. Methods
This study aims to identify limitations or problems of

selection sort algorithm and to find a remedy to these
problems to improve the performance of selection sort. Let us
first examine how selection sort works and determine its
limitations or issues.

B. Classical Selection Sort Algorithm
The classical selection sort algorithm below works by

searching for the maximum value in the list and
interchanging it with the last element. Then it finds for the
second maximum value excluding the last element which was
already found during the first pass and interchanging it with
the second to the last element. In every step, the list is
reduced by one element at the end of the list. This procedure
is continued until the list becomes of size one when the list
becomes trivially sorted [2].
In each step, to find for the maximum value, the selection

sort starts from the beginning of the list. It starts considering
the first element to be the maximum and checks every
element in the list to check if the current maximum is really
the maximum. If it finds a greater value, it takes that value to
be the new maximum [2].
This procedure is straightforward and easy to comprehend

but has a lot of flaws that make it the second worst sorting
algorithm for large items.
Algorithm: Selection Sort (array[], length)   Here L is

the unsorted input list and length is the length of an array.
After the final execution of the algorithm array will become
sorted. Variable max keeps the positions of the maximum
value.

Step 1. Repeat steps 2 to 5 until length=1 
Step 2. Set max=0  
Step 3. Repeat for count=1 to length
If (L[count]>L[max])
Set max=count End if
Step 4. Interchange data at location length-1 and max
Step 5. Set length=length-1

With the above algorithm, even with an already sorted list
of items, the selection sort algorithm will still execute the nth
iterations before arriving with a sorted list. The number of
passes needed is still n-1 regardless of the list to be sorted.
The procedure involved in the selection sort algorithm as
illustrated above causes the following identified problems:
1) Unnecessary comparisons and swapping that leads to

huge running time.
2) Inability to detect already sorted list during the early

iterations that cause unnecessary iterations.
3) Inability to detect duplication of items that causes

unstable sorting and unnecessary comparisons,
swapping and iterations.

C. Proposed Enhancement of Selection Sort
To eliminate unnecessary comparisons, swaps, and

iterations, a bidirectional Enhanced Selection Sort Algorithm
will be used to memorize the location of the previous
maximum (from left to right) and previous minimum (from

right to left) when the new maximum and minimum are found.
A stack is utilized to store the locations of the past or local
maximums and minimums, which can be used in later
iterations. It is assured that no value in the list is larger or
smaller than the previous maximum and minimum value
before the location of the previous maximum and previous
minimum. Therefore, there is no need to go through this
range. In the next iteration, it is now safe to start looking for
the following maximum and minimum from the location of
the current maximum and minimum. This concept saves
searching time, and it works better than the other
enhancements in the selection sort algorithm. This
enhancement will solve problem number 1 in the enumerated
identified problems above but cannot solve number 2 and 3.
To illustrate the proposed enhancement, for example, the

list 7, 15, 5, 11, 50, 10, 98, 67, 80, 19, 30 is to be sorted. In
this list, the maximum is 98, and it will be interchanged with
the last value of the list, which is 30. On the other side,
starting from the location of the second to the last item of the
list, the minimum is 5, and it will be interchanged with the
first value of the list which is 7. If the classical selection sort
technique is followed, the list will be like 7, 15, 5, 11, 50, 10,
30, 67, 80, 19, 98 after the first pass. But the fact that before
finding 98, the maximum value was 50 should be noticed,
and likewise, before finding 5, the minimum was 10. So, it is
assured that there is no value greater than 50 before the
position of 50 and likewise, no value lesser than 10 before the
position of 10 in the list. Therefore, we can start the next pass
from the location of 50 for the maximum and 10 for the
minimum, skipping other numbers in the list and removing
some unnecessary searches. It is also observed that before
finding 98 the maximum value was 50 and before finding 5
the minimum was 10. So, there is no value greater than 50 in
the location range between 50 and the immediate past of the
location of 98. Likewise, on finding the minimum, there is no
value lesser than 10 in the location range between 10 and the
immediate past of the location of 5. Subsequently, it is
apparent that in the next iteration it is wastage of time to find
for values greater than 50 and lesser than 10 before the
current location of 98 and 5 respectively. Thus, the next
iteration can start from the current position of the value 98 for
the maximum and 5 for the minimum, reducing unnecessary
comparisons. And 50, the former maximum, can be safely
placed at the immediate past location of 98 by interchanging
with the current value 10. Same with 10 the previous
minimum can be safely placed at the immediate past location
of 5. This approach leads to the list having the content 5, 11, 7,
10, 15, 19, 30, 67, 80, 50, 98 after the first iteration and now it
possesses more degree of sorting, compared to the generated
list using classical selection sort technique.
The second iteration looks for the second largest item and

finds for a larger value than 50, starting from 30. It finds 67 to
be the maximum and consider 50 to be the former maximum.
Then 80 is found to be the new maximum and 67 to be the
new former maximum. On the other side in finding for the
minimum, the second iteration finds the second smallest item
and looks for lesser value than 10, starting from the location
of 7. It finds 7 to be the minimum and consider 10 to be the
previous maximum. By following the same approach, after
this iteration, the updated list is 5, 7, 11, 10, 15, 19, 30, 67, 50,
80, 98. In the third iteration, a larger value than 67 is looked

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

96



for starting from the location of 50, which was the old
location of the maximum 80 in the first iteration. Likewise, a
smaller value than 10 is looked for starting at the position
number 11. After the third iteration, the list will be 5, 7, 10,
11, 15, 19, 30, 50, 67, 80, 98. After the 3rd iteration, the list is
already on its sorted order and after the 4th iteration, there is
no swap detected. Thus, the iteration will stop. The proposed
enhanced algorithm will be utilizing a flag to detect the
occurrence of a swap. If there was no swap detected during
each pass the iteration will stop with the assumption that the
list is already sorted. To further elaborate on how the
proposed enhancement work, consider the illustration in Fig.
2 below.

Fig. 2. Bidirectional enhanced selection sort algorithm.

A Flag or Boolean will be utilized to determine a swap
during an iteration. If no swap detected during an early pass,
then the list is already sorted. This idea will solve problem
number 2, that is the inability to detect already sorted list
during the early iterations.
Finally, to solve the last problem number 3, that is

detecting duplication, the researcher will be utilizing distinct
function to make a stable sorting and to eliminate
unnecessary comparisons, swaps, and iterations.

D. Modified Selection Sort Algorithm(MOSSA)
Here L is the unsorted input list, and length/n is the length

of an array. After completion of the algorithm, the array will
become sorted. Variable max keeps the position of the
current maximum, while variable min keeps the location of
the current minimum.

1. Get the distinct elements in the list.
2. Set Min=n-2
3. Repeat steps 4 to 25 while swap=true
4. Repeat steps 5 to 14 until length=1  
5. if stack is empty push 0 in the stack  
6. Pop stack and put in max  
7. Set count=max+1
8. Set swap=false  
9. Repeat steps 10 and 11 while count<length  
10.if(L[count]>L[max])  

a. Push count-1 on stack  
b. Interchange data at location count-1

and max
c. Swap=true  
d. Set max=count  

11. Set count=count+1  
12. Interchange data at location length-1 and max
13. swap=true  
14. Set length=length-1
15. Set i= 0 to n
16. Repeat steps 17 to 25 while i<n  
17. if stack is empty push 0 in the stack  
18. Pop stack and put in Min
19. Set countmin=Min-1
20. Repeat steps 21 and 22 until countmin< i  
21. if(L[countmin]<L[Min])  

a. Push countmin+1 on stack  
b. Interchange data at location countmin+1 and
Min
c. swap=true  
d. Set min=countmin  

22. Set countmin= countmin - 1  
23. Interchange data at location i and min
24. swap=true  
25. Set i=i+1  

IV. CONCLUSION AND RECOMMENDATIONS

Significant improvement with regards to the time
complexity was noted based on the test results. The
improvement can be attributed to the elimination of the
identified problems from the procedure of classical selection
sort and other sorting algorithms. The use of a flag to
determine the already sorted list in early iteration and the
utilization of distinct function play a vital role in the
significant improvement of the modified algorithm.
Further improvement of this technique is recommended for

future integration and application in the field of data
warehousing and data mining.

CONFLICT OF INTEREST
The author declares no conflict of interest.

AUTHOR CONTRIBUTIONS
This research is solely conducted by the author below,

including all analysis and other related task.

REFERENCES
[1] J. Dua, “Enhanced bidirectional selection sort,” International Journal

of Computer, Electrical, Automation, Control and Information
Engineering, World Academy of Science, Engineering and
Technology, vo. 8, no. 7, 2014.

[2] M. Khairullah, “An enhanced selection sort algorithm,” SUST Journal
of Science and Technology, vol. 21, no. 1, pp. 9-15, 2014

[3] M. Khairullah, “Enhancing worst sorting algorithms,” International
Journal of Advanced Science and Technology, vol. 56, July, 2014.

[4] R. M. Patelia, S. D. Vyas, P. S. Vyas, and N. S. Patel, “An enhanced
selection sort algorithm,” International Journal of Advanced
Technology in Engineering and Science, vol. 3, no. 1, March 2015.



[5] M. F. Umar, E. U. Munir, S. A. Shad, and M. W. Nisar, “Enhancement
of selection, bubble and insertion sorting algorithm,” Research Journal
of Applied Sciences, Engineering and Technology, vol. 8, no. 2, pp.
263-271, 2014.

[6] S. Jadoon, S. F. Solehria, S. Rehman, and H. Jan, “Design and analysis
of optimized selection sort   algorithm,” International Journal of
Electric & Computer Sciences (IJECS-IJENS), vol. 11, no. 1, pp. 16-22,
February 2011.

[7] A. Brijwal, A. Goel, A. Papola, and J. K. Gupta, “Both ended sorting
algorithm & performance comparison with existing algorithm,”
International Journal of IT, Engineering and Applied Sciences
Research (IJIEASR), vol. 3, no. 6, June 2014.

[8] S. Lakra and Divya, “Improving the performance of selection sort
using a modified double-ended selection sorting,” International
Journal of Application or Innovation in Engineering & Management
(IJAIEM), 2013.

[9] S. Chand, T. Chaudhary, and R. Parveen, “Upgraded selection sort,”
International Journal on Computer Science and Engineering, vol. 3,
no. 4, 2011.

[10] J. B. Hayfron-Acquah, O. Appiah, and K. Riverson, “Improved
selection sort algorithm,” International Journal of Computer
Applications, 2015.

[11] M. Kumar, M. Malhotra, and D. Ahuja, “Minimizing the execution
time of selection sort algorithm,” International Journal of Engineering
and Computer Science, 2015.

[12] K. Thabit, E. Alsaggaf, and F. Bahareth, “New approach for dynamic
bubble sort improvement,” Research Notes in Information Science,
2013.

[13] P. K. Chhatwani “Insertion Sort with its Enhancement,” International
Journal of Computer Science and Mobile Computing, vol. 3, issue 3,
March 2014.

[14] A. S. Mohammed, S. E. Amrahov, and F. V. Celebi, “Bidirectional
Conditional Insertion Sort Algorithm; An efficient progress on the
classical insertion sort,” Future Generation Computer Systems, 2016.

Copyright © 2020 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Ramcis Vilchez got a bachelor of science in
computer science from Mindanao State University,
Marawi City. He finished his master’s degree in
information technology at Ateneo de Davao
University, Davao City, Philippines. Currently, he is
a graduation candidate for a degree in doctor of
information technology in Technological Institute of
Philippines-Quezon City, Philippines.
He is the current the dean of the College of

Computing Education of the University of
Mindanao, Davao City. He was a former president of the Council of Deans
for Information Technology in Region XI from 2015 to 2017 and was
reelected as a vice president for SY from 2017 to present. Further, he is an
accreditor for Regional Quality Assurance of the Commission on Higher
Education to evaluate Information Technology Education programs in
Region 11.

He has several research presentations and publications in local and
international research conferences.

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

98

https://creativecommons.org/licenses/by/4.0/

