International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

AB-SMOTE: An Affinitive Borderline SMOTE Approach
for Imbalanced Data Binary Classification

Hisham Al Majzoub and Islam Elgedawy

Abstract—SMOTE is an oversampling approach previously
proposed to solve the imbalanced data binary classification
problem. SMOTE managed to improve the -classification
accuracy, however it needs to generate large number of
synthetic instances, which is not efficient in terms of memory
and time. To overcome such drawbacks, the
Borderline-SMOTE (BSMOTE) is previously proposed to
minimize the number of generated synthetic instances by
generating such instances based on the borderline between the
majority and minority classes. Unfortunately, BSMOTE could
not provide big savings regarding the number of generated
instances, trading to the classification accuracy. To improve
BSMOTE accuracy, this paper proposes an Affinitive
Borderline SMOTE (AB-SMOTE) that leverages the BSMOTE,
and improves the quality of the generated synthetic data by
taking into consideration the affinity of the borderline instances.
Experiments’ results show the AB-SOMTE, when compared
with BSMOTE, managed to produce the most accurate results
in the majority of the test cases adopted in our study.

Index Terms—Affinitive B-SMOTE, borderline-SOMTE,
imbalanced data oversampling, SMOTE.

1. INTRODUCTION

Imbalanced data binary classification is a very well-known
problem, in which the datasets have two classes, one of them
is called majority or negative class that has much more
instances than the other class, which is called minority or
positive class. Having imbalanced data leads to a bias
towards the majority class during the classification process,
which in turns leads to inaccurate classification results. This
is a common problem that we can find in many different
fields such as categorization [1], medicine [2], customer
churn prediction [3], wine quality [4] and others, which have
high imbalanced distribution of instances within the classes.
In most cases, the minority class is often the intended class to
be predicted, meaning that we need the classifier to generate a
model that can correctly classify new data that belongs to the
minority class.

Different approaches have been proposed to solve this
problem, trying to minimize the imbalanced ratio such as
works in [5]-[10]. Such approaches could be classified as
under-sampling and oversampling approaches. In the
under-sampling approaches such as works in [1], and [10]
some of the majority class instances are randomly deleted to

Manuscript received May 15, 2019; revised December 11, 2019.

Hisham Al Majzoub is with the Management Information Systems
Department, School of Applied Sciences, Cyprus International University
Nicosia, via Mersin 10 — Turkey (e-mail: hisham.m@hotmail.it).

Islam Elgedawy is with Computer Engineering Department, Middle East
Technical University, Northern Cyprus Campus, 99738, Kalkanli, Guzelyurt,
Mersin 10, Turkey (e-mail: elgedawy@metu.edu.tr).

doi: 10.18178/ijmlc.2020.10.1.894 31

balance the numbers in the minority class. However, such
approaches may lead to inaccurate results as they may delete
important information needed to generate the classification
model. In the other hand, the oversampling approaches such
as the works in [6]-[9], they generate new instances into the
minority class to balance the data. Such oversampling
approach may improve accuracy, however they also have
some drawbacks, such as overfitting or duplicating the data,
where they won’t give crucial new information for model
building [5]. Hence, ensuring generating high quality
non-duplicate synthetic data is crucial for the success of the
oversampling approach. This is done via many heuristic
strategies for data generation.

Synthetic Minority Over-sampling Technique (SMOTE)
[6] is one of the popular oversampling techniques where it
randomly generates new synthetic instances between the
minority instances without replicating them, thus eliminating
data overfitting side effect. SMOTE managed to improve the
classification accuracy, however it needs to generate large
number of synthetic instances (e.g. up to 500% of the
minority class) [10], which is not efficient in terms of
memory and time. To overcome such drawbacks, the
BSMOTE [9] is previously proposed to minimize the number
of generated synthetic instances by generating such instances
based on the borderline between the majority and minority
classes. It generates synthetic instances using borderline
instances and minority class instances, as shown in Section II.
Unfortunately, the BSMOTE could not provide huge savings
regarding the number of generated instances, trading to the
classification accuracy as shown in Section IV.

The reason for such loss in accuracy is that BSMOTE
generate instances around the nearest neighbors of the
borderline, and not focused inside it. This might confuse the
classifier by increasing the vagueness of the borderline by
increasing its boundaries, as shown in Section IV. Hence, we
argue in this paper that we could have better results if we
focused the oversampling inside the boundaries of the
borderline and increasing its density. This motivates us to
further investigate the oversampling process.

To improve BSMOTE accuracy, this paper proposes an
Affinitive Borderline SMOTE (AB-SMOTE) that takes into
consideration the affinity of the borderline instances to help
the classifier to be more accurate in differentiating between
the classes.

Experiments’ results show that the AB-SOMTE, when
compared with BSMOTE, managed to produce the most
accurate results in the majority of the test cases adopted in the
study. However, the savings in the number of generated
instances were still small. Hence, we will focus on reducing
the number of generated instances in future work.

This paper structure is organized as follows. Section II will

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

contain a brief introduction about SMOTE and Borderline
SMOTE. Section III will discuss the proposed AB-SMOTE.
Section IV presents the datasets used and the raw results from
our experiments. In Section V, we will analyze the results of
our new method against BSMOTE. Finally, in section VI, we
discuss the conclusion and future work of this research.

II. BACKGROUND

A. SMOTE: Synthetic Minority Over-Sampling Technique

o (=)
o 8 500 o _
a O Majority Instance
o u OMinorityInstan:e

© Noise Instance
4= New Generated Inst.

Fig. 1. SMOTE diagram.

The most known oversampling technique used in machine
learning is SMOTE [6]. It checks the nearest neighbors
between the instances within the minority class. The
algorithm gets the percentage of new instances to be created
and the number of the K nearest neighbors (Knn) to base its
calculation on, as input from the user. The number of nearest
neighbors is 5 by default. SMOTE chooses one minority
instance, then calculates its Knn. After that it randomly
chooses one of Knn to calculate a distance vector that is also
considered as difference between the initial minority instance
and the other selected instance from the same class. After the
distance is calculated it will be multiplied with a random
number called gap, which has a value between 0 and 1 to
generate new instances falling in the line space between the
selected instances. Then SMOTE continues to do the same
process with other minority instances so that it will double
the minority class instance number according to the
percentage given by the user (e.g. 100% is the default value).
Fig. 1 demonstrates the first 5 loops of the algorithm, where 5
new instances belonging to the positive minority class are
generated. This is done using the following function to
calculate the new values for the newly generated instances.

New instance = P; + gap * (distance (P;, P)))

While Fig. 2 shows the steps that SMOTE algorithm
follows to generate new instances, below are some
definitions that are used in Fig. 2.

Definitions:

- Minority instance= P; (P1, P2,...Ppum)
Majority instance= N; (N1, Na,...Noum)
K nearest neighbors = Knn
- Difference between two instances = Dif

LOAD

Training
Dataset

/\

Define Define

Minority class
instance
Pi (P1,P2..Pn)

Majority class
instance
Ni (N1,N2...Nn)

Check Knn

Minority class
instance
Pj

™

Generate new instance

-Choose a rand inst. within the Knn
-Calculate Difference between Pi &Pj
-Multiply by Gap : (0-1)

-New instance = (P Inst. + gap * Dif)

Fig. 2. SMOTE system.

SMOTE in this way will increase the number of minority
instances randomly, without focusing on specific instances of
the minority class. This lead to overfitting the minority class.
For this reason there were other variations of the algorithm
such as Safe-level-SMOTE [7], SMOTEBOOST [8],

Borderline SMOTE [9] and others, to overcome this problem.
B. BSMOTE: Borderline-SMOTE

o
g O
o
pop O
nn
o
|:||:|I:I
O
[[| o
| m |

n Majority Instance
o Minority Instance
o Noise Instance

© Borderline Instance
)= New Generated Inst.

Fig. 3. Borderline SMOTE.

BSMOTE proposed in [9] eliminates some instances from
the computation function considering them as noise, or safe
instances. It focuses its computation on the borderline
instances that fall between the two classes, shown in blue
color in Fig. 3 to generate new instances.

The borderline instances are chosen by calculating the
number of majority instances () that are found within the
M nearest neighbors (Mnn) between each instance belonging
to the minority class and all other instances within the dataset.
Such that, if (M) value is between M/2 and M, the minority
instance (Pi) is considered to be as a borderline instance (P).
After creating the new subset that have all the minority
borderline instances, BSMOTE measures Knn between
borderline instances and other minority instances, then
generates the new instance using the following function:

New instance = P’; + gap * (distance (P';, P)))

where P’; is the borderline minority instance, P; is the random

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

chosen Knn minority instance, and gap is a random number
having value between 0 and 1. Fig. 4 demonstrates how
BSMOTE works.

Definitions:
- M nearest neighbors= Mnn
- Borderline Instance= P’; (P’1, P’2...P’ wum)

LOAD

Training
Dataset

/\

Define Define

Minority class
instance
Pi (P1,P2...Pn)

-

Check Mnn

Majority class
instance
Ni (N1,N2...Nn)

Create Borderline Subset

-~ -M’= number of N instance within Mnn
-If M/2<M <M
Add instance P’ to borderline subset
P'I(P'1,P2..P'n)

/

Check Knn

Training
Dataset

Minority class
instance
Fj

l

Generate new instance

-Choose a rand inst. within the Knn
-Calculate Difference between P'i &Pj
-Multiply by Gap : (0-1)

-New instance = (P’ Inst. + gap * Dif)

Fig. 4. BSMOTE approach.

There is also another version of BSMOTE that is called
BSMOTE2 where the algorithm can take points from the
majority class. But using an instance from the majority
instance, the gap values used will be between 0 and 0.5 so

that the new created instance can be adjacent to the borderline.

We can see that in BSMOTE creation of new instances is
somehow focused around the nearest neighbors of the
borderline, but not the borderline itself. We would have better
results if we focused on the existing boundaries of the
borderline to increase its density. We denote such
oversampling strategy as “borderline affinity”. Hence, we
propose the AB-SMOTE to adopt the borderline affinity
oversampling strategy.

1. AB-SMOTE: AFFINITIVE BORDERLINE SMOTE

After researching SMOTE and BSMOTE, we noticed that
we could develop BSMOTE in a way that we can make the
generation of new instances computed only between
borderline instances, thus increasing the minority instances
within that area. We named our approach Affinitive
Borderline SMOTE (AB-SMOTE) that works very similar to
the BSMOTE but instead of checking Knn between the
borderline instances and all minority instances, it only checks
Knn within the borderline instances. Thus excluding the
noise and/or safe instances that were used before to generate
new instances. Fig. 5 shows AB-SMOTE diagram uses only

instances within the borderline area to generate new instances.

Whereas Fig. 6 describes how AB-SMOTE works.
AB-SMOTE defines the minority and majority class
instances, then computes for every minority instance it’s M
nearest neighbors within the whole training data. At each
iteration, it counts the number of majority instances M’ found
within the M nearest neighbors, and if this M’ number falls
between M/2 and M, the intended minority instance is
considered as a borderline instance and copied to a new
subset having a name borderline (danger). In case M’ was
less than M/2 the minority instance is treated as a safe one,
where most of its surroundings are from the minority class,
and if it was equal to M, it is considered as a noise because all
of the M nearest neighbors are from the majority class. Later
the algorithm checks Knn within the borderline instances,
randomly chooses one of the Knn, calculate the distance
between the two instances and apply the following function
to compute the value of the new instance. Which makes the
creation of new instances focused on the borderline.

On
o O o
oo ©
o
oo 9
nn
o
I:Inun
Opn
oo (u]
g 0o

| [Majority Instance
o O Minerity Instance
© Noise Instance
(O Borderline Instance
o= New Generated Inst.

Fig. 5. Affinitive borderline SMOTE.

New instance = P’; + gap * (distance (P’;, P’)))

LOAD

Training
Dataset

/\.

Define Define

Majority class
instance
Ni (N1,N2...Nn}

Minority class
instance
Pi (P1,P2...Pn)

—

Check Mnn

Create Borderline Subset

-M’= number of N instance within Mnn
Af Mf2<M <M
Addinstance P’ to borderline subset
PI{P'L,P2..P"n)

/

Check Knn

Training |
Dataset

Borderline
class instance
Pj

I

Generate new instance

-Choose a rand inst. within the Knn
-Calculate Difference between P’i &Pj
-Multiply by Gap : (0-1)

-New instance =(P’ Inst. + gap * Dif)

Fig. 6. Affinitive borderline SMOTE approach.

1V. EVALUATION

In order to do the evaluation for our new approach, we

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

used WEKA [11] software for machine learning, which is an
open source java script program. That allowed us to modify
its codes. We also used different supervised datasets shown
in Table I obtained from different online repositories. These
real life datasets are widely used in machine learning
scientific research. These datasets were downloaded from
Crowd analytics, UC Irvine Machine Learning Repository,
Keel, and IBM. We adopted the imbalanced threshold
considered in [12] in choosing the datasets. That if minority
number of instances are less than 40% of the number of
instances of the majority class, the dataset is considered
unbalanced and chosen for our evaluation.

TABLE I. DATASETS USED IN OUR RESEARCH

Datasets Total | Minority | Majority | IR Ratio | Source
Abalone9-18 731 42 689 6% [13]
Customer Churn
Wireless Telecom 5000 707 4293 17% [14]
Teleo Customer | 7513 | 1969 5174 36% [15]
Churn
Haberman 306 81 225 36% [16]
Employe Attrition | 1470 237 1233 19% [17]
Flare 1109 43 1066 4% [18]
Wine Quality 1493 53 1546 3.4% [4]
Sales: Win Loss 78025 | 17627 60398 | 29.18% [19]

We classified our datasets using decision tree classification
algorithm, which is called J48 in WEKA. The classification
stage was conducting using 5-folds cross-validation to have
enough positive minority class instances in every fold to
minimize the data distribution problems [20], [21]. As we are
dealing with unbalanced data set, evaluating the classifier
with classification accuracy alone do not give a good
overview about the classifier accuracy in predicting the
minority class, instead a confusion matrix such as Table II is
used for checking different metrics to get a good overview
about the classifier prediction power [22]. The majority class

is considered as Negative, while the minority class is Positive.

Using the confusion matrix, true positive (TP) number should
be as high as it might get within the limit of total number of
the real positive value. Which implies that the model is
correctly predicting the instances that have an actual positive
class to be in a positive class.

F-measure= 2*(Precision*Recall)/(Precision+ Recall)

The best values for recall and f-measure is when they tend
to reach the value of one. Because we are working with
supervised datasets, the instances have a known class value,
and when applying 5- fold cross-validation means, that we
split the data into 5 folds, 4 for training and one for testing,
and it is done 5 times, and each time the testing portion is
different than the other. WEKA gets the results from each
fold, compute and output its average inside WEKA window.
When a model is created using a training subset, it is applied
on a test subset and compared the class value between the
actual instances and predicted one to create the results. The
results of the original data sets are obtained and recorded,
then we applied different oversampling techniques such as
SMOTE, BSMOTE, and AB-SMOTE using different tuning
options that are shown in Table III. Where Mnn stands for the
M number of the nearest neighbors between minority and
whole dataset to create the borderline subset, Knn stands for
the number for K nearest neighbors, G stands for Gap, the
number which is multiplied by the distance to create the new
instance, percentage is the value that calculate the number of
new generated instances, P’ is the borderline instances, and P
is the minority instances.

TABLE III: DIFFERENT METHODS USED IN OUR EXPERIMENT

Algorithm Mnn | Knn GAP Percentage

1.0: Original - - - -

2.0: SMOTE - 5 0-1 100
3.0: BSMOTE P' & P 5 5 0-1 100
3.1: BSMOTE P' & P 5 8 0-1 100
3.2: BSMOTE P' & P 8 5 0-1 100
3.3: BSMOTE P' & P 8 8 0-1 100
3.4:BSMOTE P' & N 5 5 0-0.5 100
4.0: AB-SMOTE P' & P' 5 5 0-1 100
4.1: AB-SMOTE P' & P' 5 8 0-1 100
4.2: AB-SMOTE P' & P' 8 5 0-1 100
4.3: AB-SMOTE P' & P' 8 8 0-1 100

Table IV to Table XI show the obtained recall and
f-measure values. Gen resembles the number of generated
new instances. We bolded the best obtained values.

TABLE IV: RESULTS FROM ABALONE DATASET

TABLE [I: CONFUSION MATRIX Majority= 689; Minority = 42 LR.=6.1%
Actual Values - -
Positive Negative Oversampling Technique Gen | Recall | F-measure
. TF 1.0: Original 0 0.167 0.241
B g Positive TP FP PPV eirm 2.0: SMOTE k=5 42 | 0381 0.474
g =2 e 3.0: BSMOTE P' & P: M=5 k=5 40 | 0415 0.507
E > | Negative FN N N.P.V TFNETN| 3.1: BSMOTE P' & P: M=5 k=8 40 0.415 0.511
bl 3.2: BSMOTE P' & P: M=8, k=5 39 | 0.469 0.524
Recall Specificity Accuracy 3.3: BSMOTE P' & P: M=8, k=8 39 | 0395 0.496
TP ™ _ (reiTH) 3.4: BSMOTE P' & N: M=5 k=5 G[0-0.5] | 40 | 0.378 0.434
(TP+FN] (TN+TF] (TR+FP+TN+FN) 4.0: AB-SMOTE P' & P': M=5 =5 40 | 0.427 0.493
4.1: AB-SMOTE P' & P": M=5 k=8 40 | 0.439 0.529
We evaluated the classifiers with recall and f-measures 4.2: AB-SMOTE P' & P": M=8 k=5 39 | 0432 0.519
values that show up as an output in WEKA after applying the 4.3: AB-SMOTE P' & P': M=8 K=8 39 | 0.494 0.559

decision tree classifier with 5-folds cross-validation.

1. Recall: which is the true positive rate where the classifier

had correctly classified an actual minority instance to be

in the minority class

2. F-measure: which is the harmonic mean of recall and
precision [22], that can be measured with these functions

34

As per Table IV, the best algorithm was 4.3 AB-SMOTE
with Mnn=8 and Knn=8 where we got the highest Recall and
F-measure, even outperforming the regular SMOTE.

As per Table V, the 4.1 AB-SMOTE with Mnn=5 and
Knn= 8 outperformed the other approaches with better Recall
and F-measure. But with this particular dataset the original
dataset without any oversampling got the highest

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

classification accuracy for the minority class.

TABLE V: RESULTS FROM CUSTOMER CHURN DATASET

Majority= 4293; Minority = 707 LR.=16.47%
Oversampling Technique Gen | Recall | F-measure

1.0: Original 0 0.636 0.748
2.0: SMOTE /=5 707 | 0.631 0.749
3.0: BSMOTE P' & P: M=5 k=5 534 | 0.573 0.708
3.1: BSMOTE P' & P: M=5 k=8 534 | 0.597 0.718
3.2: BSMOTE P' & P: M=8, k=5 517 | 0.592 0.719
3.3: BSMOTE P' & P: M=8, k=8 517 | 0.576 0.709
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 534 | 0.502 0.647
4.0: AB-SMOTE P' & P': M=5 k=5 | 534 | 0.578 0.704
4.1: AB-SMOTE P' & P: M=5 k=8 | 534 | 0.602 0.72
4.2: AB-SMOTE P' & P: M=8 k=5 | 517 | 0.565 0.698
4.3: AB-SMOTEP' & P: M=8 K=8 | 517 | 0.565 0.698

TABLE VI: RESULTS FROM HARBERMAN DATASET

Majority = 225 ; Minority = 81 L.R.=36.00%
Oversampling Technique Gen | Recall | F-measure
1.0: Original 0 0.272 0.331
2.0: SMOTE =5 81 0.617 0.643
3.0: BSMOTE P' & P: M=5 k=5 65 0.534 0.576
3.1: BSMOTE P' & P: M=5 k=8 65 0.627 0.635
3.2: BSMOTE P' & P: M=8, k=5 61 0.676 0.613
3.3: BSMOTE P' & P: M=8, k=8 61 0.57 0.572
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 65 0.5 0.559
4.0: AB-SMOTE P' & P': M=5 k=5 65 0.527 0.575
4.1: AB-SMOTE P' & P": M=5 k=8 65 0.671 0.643
4.2: AB-SMOTE P' & P': M=8 k=5 61 0.697 0.639
4.3: AB-SMOTE P' & P": M=8 K=8 61 0.57 0.581

As per Table VI, the 4.2 AB-SMOTE having Mnn=8 and
Knn=5 got the best Recall value, whereas 4.1 AB-SMOTE

with Mnn=5 and Knn=8 got the best F-measure.

TABLE VII: RESULTS FROM EMPLOYEE ATTRITION DATASET

Majority =1233 ; Minority = 237 LR.=19.22%
Oversampling Technique Gen | Recall | F-measure
1.0: Original 0 0.181 0.265
2.0: SMOTE k=5 237 | 0.519 0.58
3.0: BSMOTE P' & P: M=5 k=5 236 | 0.526 0.588
3.1: BSMOTE P' & P: M=5 k=8 236 | 0.513 0.871
3.2: BSMOTE P' & P: M=8, k=5 232 | 0.542 0.598
3.3: BSMOTE P' & P: M=8, k=8 232 | 0.516 0.587
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 236 | 0.463 0.544
4.0: AB-SMOTE P' & P": M=5 k=5 236 | 0.533 0.603
4.1: AB-SMOTE P' & P": M=5 k=8 236 0.51 0.603
4.2: AB-SMOTE P' & P": M=8 k=5 232 | 0.529 0.595
4.3: AB-SMOTE P' & P: M=8 K= 232 | 0.529 0.593

As per Table VII, the approach 3.2 BSMOTE with Mnn=8
and Knn=5 got the best Recall, while the approach 3.1

BSMOTE with Mnn=5 and Knn=8 got the best F-measure.

TABLE VIII: RESULTS FROM TELCO CUSTOMER CHURN DATASET

Majority= 5174 ; Minority=1869 LR.=36.12%
Oversampling Technique Gen Recall | F-measure
1.0: Original 0 0.489 0.543
2.0: SMOTE /=5 1869 0917 0.731
3.0: BSMOTE P' & P: M=5 k=5 1101 0.895 0.677
3.1: BSMOTE P' & P: M=5 k=8 1101 0.894 0.677
3.2: BSMOTE P' & P: M=8, k=5 949 0.889 0.664
3.3: BSMOTE P' & P: M=8, /=8 949 0.888 0.663
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 1101 0.854 0.657
4.0: AB-SMOTE P' & P': M=5 k=5 1101 0.897 0.678
4.1: AB-SMOTE P' & P": M=5 k=8 1101 0.898 0.679
4.2: AB-SMOTE P' & P": M=8 k=5 949 0.891 0.665
4.3: AB-SMOTE P' & P': M=8 K=8 1101 0.89 0.665

35

As per Table VIII, AB-SMOTE outperformed in Recall
and F-measure while using Mnn=5 and Knn=8.

TABLE IX: RESULTS FROM FLARE DATASET

Majority = 1066; Minority = 43 LR.=4.03%
Oversampling Technique Gen | Recall | F-measure
1.0: Original 0 0 0
2.0: SMOTE =5 43 0.36 0.47
3.0: BSMOTE P' & P: M=5 k=5 39 0.268 0.389
3.1: BSMOTE P' & P: M=5 k=8 39 0.268 0.37
3.2: BSMOTE P' & P: M=8, k=5 41 0.25 0.347
3.3: BSMOTE P' & P: M=8, k=8 41 0.369 0.434
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 39 0.171 0.262
4.0: AB-SMOTE P' & P": M=5 k=5 39 0.293 0.421
4.1: AB-SMOTE P' & P": M=5 k=8 39 0.341 0.463
4.2: AB-SMOTE P' & P": M=8 k=5 41 0.286 0.397
4.3: AB-SMOTE P' & P": M=8 K=8 41 0.25 0.359

In Table IX BSMOTE with Mnn and Knn = 8 got best
recall, while AB-SMOTE with Mnn=5 and Knn=8 get the
best F-measure.

TABLE X: RESULTS FROM WINE QUALITY DATASET

Majority= 1546 ; Minority= 53 LR.=3.43%
Oversampling Technique Gen | Recall | F-measure
1.0: Original 0 0 0
2.0: SMOTE k=5 53 0.151 0.215
3.0: BSMOTE P' & P: M=5 k=5 53 0.151 0.215
3.1: BSMOTE P' & P: M=5 k=8 53 0.16 0.205
3.2: BSMOTE P' & P: M=8, k=5 53 0.151 0.215
3.3: BSMOTE P' & P: M=8, k=8 53 0.16 0.205
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 53 0.132 0.193
4.0: AB-SMOTE P' & P": M=5 k=5 53 0.151 0.215
4.1: AB-SMOTE P' & P": M=5 k=8 53 0.16 0.205
4.2: AB-SMOTE P' & P": M=8 k=5 53 0.151 0.215
4.3: AB-SMOTEP' & P: M=8 K=8 | 53 0.16 0.205

As per Table X, we got a tie between Recall and
F-measures results when oversampling with BSMOTE and
AB-SMOTE

TABLE XI: RESULTS FROM TELCO SALES WIN LOSS DATASET

Majority= 60398; Minority= 17627 L.R.=29.18%
Oversampling Technique Gen | Recall | F-measure
1.0: Original 0 0.644 0.695
2.0: SMOTE /=5 17627 | 0.816 0.838
3.0: BSMOTE P' & P: M=5 k=5 15176 | 0.799 0.817
3.1: BSMOTE P' & P: M=5 k=8 15176 | 0.803 0.823
3.2: BSMOTE P' & P: M=8, k=5 14320 | 0.787 0.81
3.3: BSMOTE P' & P: M=8, k=8 14320 | 0.793 0.816
3.4: BSMOTE P' & N: M=5 k=5

G[0-0.5] 15176 | 0.78 0.81
4.0: AB-SMOTE P' & P': M=5 k=5 15176 | 0.804 0.826
4.1: AB-SMOTE P' & P": M=5 k=8 15176 | 0.803 0.826
4.2: AB-SMOTE P' & P': M=8 k=5 14320 | 0.798 0.822
4.3: AB-SMOTE P' & P': M=8 K=8 | 14320 | 0.797 0.82

Finally, in Table XI the approach 4.0 AB-SMOTE with
Mnn and Knn equal 5 got the best Recall and F-measure.

V. RESULTS ANALYSIS

As we can see from previous results, BSMOTE and
AB-SMOTE managed to provide better results than the
original SMOTE approach except in one case in Table V.
This means focusing on the boundary to generate the
synthetic data is a very promising strategy. Hence, we can
deduce that the borderline affinity strategy is better than

randomly generating new instances from safe and/or noise
instances.

For every borderline-oriented approach, every dataset will
require its proper parameters tuning to get the best fitting
approach for this dataset. However, to see overall
performance of the borderline-oriented approaches
regardless of their parameters tuning, we marked the
approach with the best value of recall and F-measure from the
previous results’ tables and constructed Table XII.

TABLE XII: BEST RESULTS OF THE OVERSAMPLING

Recall F-Measure
DATASET BSMOTE AB-SMOTE BSMOTE AB-SMOTE

Abalone X X
Churn X X
Harberman X X
Employee
Attrition X X
Telco Customer
churn X X
Flare X X
Wine Quality X X X X
Sales, win loss X X

TOTAL 3 6 2 7

From Table XII we can notice that AB-SMOTE
outperformed BSMOTE by getting the most number of best
values in terms of Recall and F-measure. This means
focusing on increasing the density of the borderline area is a
more effective oversampling strategy rather than increasing
the boundaries of the borderline as in BSMOTE. Hence, we
can say that the borderline affinity oversampling strategy
worked very well with the decision tree classifier. In Future
work, we will study to see if borderline affinity strategy holds
for other classifiers or not.

Table IV to Table XI also show that both BSMOTE, and
AB-SMOTE could not significantly reduce the number of
generated instances. Hence, we will investigate this issue in
more depth in future work. This will be done by adopting a
selective strategy that chooses certain instances in the
borderline to be used in new instances generation rather than
randomly choosing the instances. This will require
examining the density distribution of the borderline instances,
then carefully generates the new instances in a way that does
not disrupt the calculated borderline density distribution.

VI. CONCLUSION

In this paper, we proposed the AB-SOMTE to improve the
accuracy of the existing SMOTE and BSMOTE. This is done
by taking the affinity of borderline instances into
consideration when generating the synthetic data. We
compared the accuracy of the three approaches against
different data sets. Experiments’ results show the
AB-SOMTE managed to produce the most accurate results in
the majority of the cases. This means the proposed borderline
affinity oversampling strategy is very promising, and could
be leveraged more to select fewer instances from the
borderline to reduce the number of generated data.

We believe this a very important direction for future work,
as both BSMOTE, and AB-SMOTE could not provide big
savings in the number of generated data. By selecting fewer
key borderline instances to generate new instances, we could
heavily minimize the number of generated synthetic data.

However, this should be carefully done without disrupting
the borderline density distribution.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Al Majzoub and Elgedawy created the theory, Al Majzoub
done the coding and evaluated the algorithm; Al Majzoub and
Elgedawy analyzed the results; Al Majzoub wrote the paper
and Elgedawy reviewed and edited it. All authors had
approved the final version.

REFERENCES

[11 A. Sun, E. P. Lim, and Y. Liu, “On strategies for imbalanced text
classification using SVM: A comparative study,” Decis. Support Syst.,
vol. 48, no. 1, pp. 191-201, 2009.

[2] F. B. Tek, A. G. Dempster, and 1. Kale, “Parasite detection and
identification for automated thin blood film malaria diagnosis,”
Comput. Vis. Image Underst., vol. 114, no. 1, pp. 21-32, 2010.

[3] S.A.Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman,
“Telecommunication subscribers’ churn prediction model using
machine learning,” in Proc. Eighth Int. Conf. Digit. Inf- Manag., 2013,
no. September, pp. 131-136.

[4] Keel Datasets, Wine Quality.
https:/sci2s.ugr.es/keel/dataset.php?cod=1322

[5] M. Bekkar, D. Alitouche, T. Akrouf, and T. A. Alitouche, “Imbalanced
data learning approaches review,” Data Min. Knowl., vol. 3, no. 4, pp.
15-33,2013.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,

“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.

Res., vol. 16, pp. 321-357, 2002.

C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap,

“Safe-level-SMOTE: Safe-level-synthetic minority over-sampling

technique for handling the class imbalanced problem,” Lect. Notes

Comput. Sci., vol. 5476, pp. 475-482, 2009.

[8] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer,
“SMOTEBoost: Improving prediction of the minority class in
boosting,” in Proc. the 7th European Conference on Principles and
Practice of Knowledge Discovery in Databases, 2003, pp. 107-119.

[97 H. Han, W. Wang, and B. Mao, “Borderline-SMOTE: A new

over-sampling method in imbalanced data sets learning,” in Proc. the

International Conference on Intelligent Computing, 2005, pp. 878-887.

M. Bach, A. Werner, J. Zywiec, and W. Pluskiewicz, “The study of

under- and over-sampling methods’ utility in analysis of highly

imbalanced data on osteoporosis,” Inf. Sci. (Ny)., vol. 384, pp. 174-190,

2017.

[11] WEKA. [Online].
https://www.cs.waikato.ac.nz/ml/weka/index.html

[12] A. Fernandez, V. Lopez, M. Galar, M. J. Del Jesus, and F. Herrera,
“Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches,”
Knowledge-Based Syst., vol. 42, pp. 97-110, 2013.

[Online]. Available:

—_
~
—

[10]

Available:

[13] Keel Datasets, Abalone9-18. [Online]. Available:
http://sci2s.ugr.es/keel/dataset.php?cod=116
[14] Crowd Analytix. [Online]. Available:

http://www.crowdanalytix.com/contests/why-customer-churn/

IBM Analytics Customer Churn Dataset. [Online]. Available:
https://www.ibm.com/communities/analytics/watson-analytics-blog/p
redictive-insights-in-the-telco-customer-churn-data-set/

UC Irvine Machine Learning Repository. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets.html.

IBM Analytics. [Online]. Available:
http://www.ibm.com/communities/analytics/watson-analytics-blog/gu
ide-to-sample-datasets/

[18] Keel Datasets, Solar Flare. [Online]. Available:
https://sci2s.ugr.es/keel/dataset.php?cod=1331#subl
[19] IBM Analytic, Win Loss. [Online]. Available:

https://www.ibm.com/communities/analytics/watson-analytics-blog/g
uide-to-sample-datasets/

J. Cervantes, F. Garcia-Lamont, L. Rodriguez, A. Lopez, J. R. Castilla,
and A. Trueba, “PSO-based method for SVM classification on skewed
data sets,” Neurocomputing, vol. 228, pp. 187-197, 2017.

V. Lopez, A. Fernandez, and F. Herrera, “On the importance of the
validation technique for classification with imbalanced datasets:

Addressing covariate shift when data is skewed,” Inf. Sci. (Ny)., vol.
257, pp. 1-13, 2014.

[22] T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the ROC plot when evaluating binary classifiers on
imbalanced datasets,” PLoS One, vol. 10, no. 3, pp. 1-21, 2015.

Copyright © 2020 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Hisham Al Majzoub received the masters of science
in business administration degree from Arts, Sciences
and Technology University in Lebanon in September
2011. He was working as an IT branch manager in
American University of Science and Technology in
Saida — Lebanon from 2001 to 2014. He is pursuing the
Ph.D. degree in management information systems at

Cyprus International University. His researches focus on imbalanced class
problem found in datasets that are used in machine learning.

Islam Elgedawy is an associate professor at the
Computer Engineering Department, Middle East
Technical University-Northern Cyprus Campus. He
received his B.Sc. and M.Sc. degrees in computer
science from Alexandria University, Egypt in 1996,
and 2000, respectively, and his Ph.D. degree in
computer science from RMIT University, Australia
in 2007. His work focuses on the areas of
service-oriented computing, organic computing,

software engineering, and big data analytics. He is an author and
co-author of many publications in international journals and conferences,
also he has a growing record of consultancy and professional services.

https://creativecommons.org/licenses/by/4.0/

