

Abstract—For machine learning (ML) to work well, there is a

need for large amounts of good quality training data. Obtaining
such data is often the key bottleneck for the entire ML
development process. Using humans to do explicit collection has
been the main approach, but this tends to be expensive and
time-consuming. Therefore, there is significant interest in
creating alternative data collection techniques.
We explore these alternative data collection techniques in the

context of speech data in this paper. We were initially motivated
by the problem of wake word engine training, where we need a
large number of utterances for specific wake words. Given that
there are already large public repositories of media data (e.g.,
YouTube, DailyMotion), we were curious as to how feasible it is
to find the utterances that we need. Our results are encouraging
as we found many different types of words can readily be found
and downloaded in the quantity and quality needed to create
training corpora for DL training. Usually > 30% of the found
words are suitable for corpus creation. Greater than 80% of the
top 10,000 ranks words and > 50% of the top 20,000 words we
selected easily produced > 5000 found words, which is sufficient
to train a high quality Wake Word Engine. Besides general
words, we specifically looked for words used in wake word
engine construction such as Name/Place/Product Name. Here,
again, we find most common names/places/products return
more than a sufficient number of words for corpus creation.
Only uncommon names and places (like Atticus or Maximus)
are difficult to find in sufficient quantities for corpus creation.
We demonstrate a wake word engine trained from words we

found in YouTube has the equivalent performance to one
trained with traditional human collected words. Even though
we were focused on wake words, our approach is general. It can
be applied to create speech corpus for various purposes.

Index Terms—Corpus, found data, training data, wake word
engine, machine learning, deep learning.

I. INTRODUCTION
Data is the key to modern machine learning, and in

particular the rapidly emerging subfield of Deep Learning
(DL). In DL, a key step is training where a large amount of
training data is fed into a neural network for continuous
updates to parameter weights. The final setting of these
weights essentially determines the overall accuracy of the
model. Thus having a large amount of high quality data is
extremely critical to achieve good performance.
Creating a large high quality data set has traditionally been

a human task. For example, for image classification, human

Manuscript received July 20, 2019; revised January 3, 2020.
L. Drabeck and T. Cauble are with Nokia Bell Laboratories, Holmdel, NJ

07733, USA (e-mail: lawrence.drabeck@nokia-bell-labs.com,
troy.cauble@nokia-bell-labs.com).

B. Ramanan and T. Woo are with Nokia Bell Laboratories, Murray Hill,
NJ 07974 (e-mail: buvana.ramanan@nokia-bell-labs.com,
thomas.woo@nokia-bell-labs.com).

will be asked to label the images; for speech recognition task,
human will be asked to utter specific sentences. Systems have
been created to make these easier. As an example, the
Amazon Mechanical Turk (MTurk) system can be used to
automatically dispatch tasks to interested individuals.
Despite that, explicit human data collection is still expensive
and time-consuming. To quote our actual experience, we
used MTurk to collect utterance of specific wake words, we
listed a price of $0.20 for 3 utterance of a wake word. Our
whole campaign cost $140 in fees and took 3-4 weeks of time
in total. As we need to evaluate multiple wake words, the cost
and more importantly the time added up quickly and became
non-trivial.
Outside of human collection, there are generally 2 ways to

obtain data: (1) Using Found data - Trying to locate the
needed data in pre-existing data; and (2) Synthesizing data -
Trying to artificially "create" the needed data. In this paper,
we explore the feasibility of using Found data for speech data
collection.
Our work was initially motivated by our research on DL

models for wake word engines (WWEs). A wake word is a
word that is uttered to activate a voice assistant before a
request is made. For example, the wake word "Alexa" is used
for most Amazon voice assistants such as Echo. And the
phrase "OK Google" is used for most Google voice assistant
products. A WWE is a software component that listens
continuously to incoming voice samples and determines if
the specific wake word has been uttered. Modern DL-based
solutions to WWE have outperformed traditional ones based
on Hidden Markov Models. We started with MTurk initially,
but found it too costly and time-consuming when significant
iterations are needed.
Speech data for wake word training requires voice samples

uttering the specific wake words. In most cases, the wake
words tend to be actual words in the vocabulary, rather than
"made up" words created specifically as wake words. For the
latter case, even human collection would be difficult when
people do not know how to pronounce the "made up" word.
For the former, our work is to explore the use of public media
data sources such as YouTube, and study how to effectively
"locate" the needed utterances and how available the needed
utterances are.
More specifically, our high level problem is: Given

specific words,
1. Develop techniques and tools to locate the utterances

of these words in public data sources such as YouTube
2. Understand the availability of the needed utterances

for a stated purpose; and
3. Determine the quality of the available utterances for

the stated purpose.
Our work is mostly couched in terms of WWE training.

But our tools, techniques, and general methodology can be

Automated Techniques for Creating Speech Corpora from
Public Data Sources for ML Training

Lawrence Drabeck, Buvana Ramanan, Thomas Woo, and Troy Cauble

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

1doi: 10.18178/ijmlc.2020.10.1.890

mailto:lawrence.drabeck@nokia-bell-labs.com
mailto:buvana.ramanan@nokia-bell-labs.com
Administrator
文本框
摯椺‱〮ㄸㄷ㠯楪浬挮㈰ㄹ⸹⸶⸸㠹

easily applied to other purposes.
Indeed, there are other reasons for collecting specific

utterances from public data. We mentioned two other
unrelated applications here:
1. Language learning - To effectively learn the

pronunciation of words, it is useful to hear it spoken in
many real-life contexts by different people.

2. Editing - A media editing process typically require a
large amount of raw clips, both video and audio. The
ability to locate specific speech clips with specific
utterances is critical.

The main contributions of this paper are as follows.
1. It studies the feasibility of locating specific utterances

in public data sources, for the purpose of creating a
speech corpus. Our study provides a picture of the
overall feasibility, availability and quality.

2. We propose and study specific techniques and tools
that allow us to effectively locate the needed
utterances. The ability to locate the candidates is a key
limiting factor for the overall data collection process.

The rest of the paper is organized as follows. Section II
gives a brief overview of related work while Section III details
our proposed methods, and their implementation
considerations. Section IV presents the experiment results and
analysis. Section V discusses other issues and future word and
we conclude with Section VI.

II. RELATED WORK

One key to Deep Learning (DL) success is to train using a
carefully prepared dataset that (1) accurately represents the
intended operating environment, and (2) is plentiful in
capturing the diversity for generalization. For example, the
Amazon Alexa team [1] utilizes 1 million positive examples
and the XiaoMi team [2] utilizes 188k positive and 1 million
negative examples, all specifically collected from humans.
This data collection step is typically the Achilles' heel of DL
as collecting and curating data at such massive scale involves
time, money and other logistic challenges that is often a
bottleneck. For a DL wake word application where there is a
fixed set of pre-defined wake words, this is tedious but may
still be workable. However, if a custom Wake Word Engine
(WWE) is desired where the wake word can be chosen on
demand by a user, such on demand targeted collection from
human at a large scale is impractical.
A staggering 300 hours of video is uploaded to YouTube

every minute [3], much of which has either uploaded or
automatically generated subtitles. YouTube is used as a data
source for many different applications. For video analytics,
[4] used ~2000 videos obtained from YouTube of people
doing "The Mannequin Challenge" [5], to train a model to
predicting dense depth in scenarios where both a monocular
camera and people in the scene are freely moving. Reference
[6] uses video clips collected from YouTube depicting
human actors performing various acrobatic stunts (e.g. flips
and cartwheels) and locomotion skills (walking and running)
to train DL models for character motion animation instead of
using motion capture systems. Reference [7] uses the video
comments as a basis to create a sentiment analysis corpus for
autonomous vehicles, [8] creates a video/audio corpus for lip
reading training and [9] creates a corpus of 1.8 million 10sec

audio clips for 632 audio event categories.
For audio training, it has already been demonstrated that

YouTube captions can be successfully used as a ground truth
spoken transcription to train large scale ASR systems [10]. In
Deep Learning speech and video applications, found-data
from YouTube (YT) has successfully been applied for
Automatic Speech Recognition (ASR), Speaker Recognition
and Text-to-Speech (TTS) applications. Reference [11]
created a YouTube dataset (AVSpeech), from roughly
290,000 YouTube videos of lectures (e.g. TED talks) and
how-to videos to train neural nets to pick out a single speaker
from a noisy environment (cocktail party effect). Reference
[12] introduces a crawler for YouTube to curate training
dataset for ASR and demonstrates a 40% improvement in
Word Error Rate (WER) on the Wall Street Journal test
dataset. In [13], the authors address the problem of operating
ASRs in a wide range of developing languages, such as
Swahili, by proposing to automatically scrape audio from
YouTube and Voice of America and use ASR system
confidence scores as the primary metric for the model
components. The creators of the VoxCeleb1 and VoxCeleb2
datasets [14], [15], crawled YouTube to construct the
datasets, which are now widely used in the field of Speaker
Recognition [16]. Reference [17] discusses the effectiveness
of YouTube based dataset for TTS, cloning former US
president Barrack Obama's voice.
To the best of our knowledge, no literature exists that

describes the feasibility of locating specific utterances in
public data sources, for the purpose of creating a speech
corpus. Our study provides a picture of the overall feasibility,
availability and quality.

III. DATA CURATION PIPELINE
We developed a data curation pipeline using YouTube

videos with subtitles as the data source for creating different
types of speech corpora. The first step is to obtain suitable
video URLs, which we discuss in detail below. Then the
audio and subtitles for these videos are downloaded. The
subtitles are processed to remove non-ascii text, sound and
speaker designations, and to convert numbers to words. Word
timing alignment is performed on the cleaned subtitle text
using a forced aligner [18] since subtitle timing is not
accurate enough for our purposes. The word timing is used to
slice individual words for Wake Word Engine training and
used to slice utterances (typically 5-15 sec in length) for
Automatic Speech Recognition (ASR) or Text-to-Speech
(TTS) training. As a test of our data curation method, we
recreated the TED-LIUM speech Corpus [19], [20] via
downloading from YouTube. Using a small Spark computing
cluster we were able to create this corpus in ~2 hours (326
hours of audio). We tested our curated speech corpus against
the TED-LIUM corpus by training Baidu's Deep Speech ASR
[21] and measuring WER on these trained Models. The
model trained with our curated data had a WER within 1-2%
the WER of the official TED-LIUM corpus trained model. As
a further test, we trained an ASR on ~7000 hours of curated
YouTube utterances and saw better WER performance than
Google's default ASR model. We have found similar
approaches in utilizing data from YouTube [12]. Our
approach is more general in that it can search for and extract

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

2

individual words for wake word corpus creation, in addition
to gathering arbitrary voice/transcript pairs.
For training Wake Word Engines (WWE), individual

words are needed. Navigating the billions of videos on
YouTube to find the ones containing the wanted word is the
challenge. Presently there is no method to search the subtitles
of YouTube videos via their API, so we are limited to

searching the titles and descriptions for the desired word or
phrase. We have broken the search for the wanted word into 3
phases 1) search in already indexed YouTube subtitle
material, 2) use YouTube search, which is limited to titles
and descriptions, or other search engines to get relevant
search terms, and 3) collected related videos from videos
found in step2.

Fig. 1. Curation pipeline for words.

We first search for the wanted word in our existing indexed
>10,000 hour corpus. To find additional words, we can use
YouGlish [22], which is a web site to help users improve
English pronunciation by hearing words in the context of
English sentences. This site has indexed > 30M subtitled
YouTube videos and is searchable for words and phrases.
The returned YouTube URLs from this site are collected
using their widget. Scraping URLs from the widget is slow
and YouGlish is usually used as a backup method if the
methods discussed below are not successful.
To find the wanted words in YouTube's vast library we

need search terms. To start, one could use YT's API and
search for the wanted word. YT's API returns a maximum of
~ 600 videos URLs for each search term. This is usually not a
sufficient number of videos to collect the ~1600 quality wake
words we would need to train a Wake Word Engine. One
could manually expand the search terms, for example,
looking for the word 'Toyota', one might try search terms like
'Toyota Prius' or 'Toyota Highlander' or 'Toyota vs Honda'.
For a small number of additional search terms we can use
YT's API. However, to expand our search terms and also find
the most relevant ones, we utilize the autocomplete feature of
different search engines instead of using manual searches.
Also, to expand our search over a wider variety of search
terms and avoid exhausting the limited number of searches
per day allowed by YT's API, we use Selenium (a suite of
tools to automate web browsers), which is slower, to scrape
the video URLs for different YT searches.
Fig. 1 shows our overall methodology to generate the

needed search terms, curated the video URLs and then
download, clean and index our resulting data. In the first
stage we need to generate search terms to lookup videos. We
use either the autocomplete feature of different search
engines or use a related term generator [23]-[25] to generate
these search terms. The wanted word is usually the starting

word for both methods.
In the autocomplete methodology, we search for 37

different autocompletes comprising the initial search string,
which is usually the wanted word, followed by either a space,
or by the letters from a to z or followed by the digits from 0 to
9. The reason for using a space after the search term is to
avoid auto-completion of unwanted search terms. For
example, YT autocompleting on 'nova' (without a trailing
space) will return terms like Novak Djokovic or novacane,
but what we really want is just "nova".
The four different searches engines we use are YouTube,

Google, Bing and Yahoo. Other search autocomplete engines
such as Wikipedia, Amazon, Ebay and many others could
also be used. The YouTube and Google autocomplete
engines return a maximum of twenty search terms so we can
get a maximum 740 search terms for our 37 different searches.
Bing returns a maximum of 25. YT and Google also return a
ranking for the search terms so we can sort by ranking. For
the Bing and Yahoo searches, no ranking is returned so in
order to rank the returned search terms we could use an
n-gram approach to look for the most relevant search terms.
For many of the results below, we use the top 50 search terms
from the YouTube autocomplete as they are usually the most
relevant. We resort to the other search engines and related
term generation when an insufficient numbers search terms
or an insufficient number of wanted words are found in the
videos.
In the second stage, we use the generated search terms to

find videos with subtitles in YouTube. For a given search
term, the most relevant ~20 videos are returned and displayed
on the YT website. Scrolling down on the website will
dynamically load more videos, depicted in Fig. 1 as different
page brackets. Each subsequent scroll down loads ~ 20 more
videos. After X scroll downs, you will eventually reach the
limit of available videos for that search term. Each search

term will have different number of maximum videos and thus
number of scroll downs. We are using Selenium to scrape the
URLs, so we need to scroll down to load more content. In the
experimental section we explore the number of wanted words
found versus the number of scroll downs.
If additional videos are required after exhausting the

search terms and scroll downs then we can gather the related
videos. Each video in YouTube has a list of multiple related
videos suggested by YouTube (see Fig. 1Fig.). Each video
found using the search terms is loaded and the related videos,
suggested by YT, are scraped. Again, only the first ~20
related videos are initially loaded but subsequent scroll
downs will load even more related videos. The related videos
tend to be less relevant for the wanted wake word and we find
the ratio of videos with wake words to total videos drop by a
factor of 10x-20x. Even without using any scroll downs,
scraping the related videos still increase the number of
overall videos collected by 10x-20x, so we rarely use scroll
downs in this stage.
It is also possible to find related videos for the related

videos found above (Related-Related videos in Fig. 1). The
relevance starts to really drop off for these cases and we
rarely, if ever, go to this level.
The gathered video URLs from all the search terms and

related scrapings are filtered for duplicates and checked for
subtitles. The subtitles are downloaded and checked for the
wanted word. This finally gives an indication of the number
of wanted words found and indicates if further scrolling,
searching or related videos need to be employed. The audio
for any video with a wanted word in the subtitles is
downloaded and the audio is aligned to the text using a forced
aligner. For longer audio, the forced aligner becomes a bottle
neck and can sometimes fail for long (>1.5 hour) audio.
Therefore, for audio > X minutes in duration, we slice the
audio into 2 minute clips around each wanted word using the
course subtitle timing and align these 2 minute clips with the
forced aligner.
Using the forced aligner timing, the wanted words are

sliced out and padded (if necessary) to form 1 second audio
files. We also slice out words other than the wanted word
spoken by the same speaker for training data. By slicing these
other non-wanted words from 15 seconds of audio on either
side of a wanted word, there is a high probability of obtaining
these non-wanted words spoken by the same speaker.
We verify the sliced wanted words by running them

through several different Automatic Speech Recognition
(ASR) systems. We use a DeepSpeech 2 model [21] we
trained on ~ 7000 hrs of YouTube Audio (discussed above)
as well as 3 commercial ASR systems; Google Standard,
IBM and Houndify. Depending on the total number of sliced
wanted words, we usually consider a good quality word to be
recognized by at least 2 ASR engines. When too few sliced
wanted words are found, we relax the 2 ASR matching to 1
ASR match. We have trained several wake word engines, that
had a limited number of sliced wanted words, with only 1
ASR recognition and have obtained good results.
The final step is to clean up the background noise in the

sliced wanted word audio. We have found that training a
wake word engine with YouTube data showed reduced
performance in a clean (non-noisy) test environments
compared to the noisy test environment. This indicates a lack

of non-noisy wake words. We use pyroomacoustics [26]
python library to do the audio cleaning of the wake words to
remove background noise. This leads to better overall WWE
performance in both the clean and noisy environment. These
steps lead to a well-constructed corpus for training DL
models.

IV. EXPERIMENTAL RESULTS
To study the effectiveness of our methodology, we look at

a large group of general words, words that are Names, Places
or Products, as well as diving deeper into just a few words.
We also show that training a WWE with the collected words
leads to a high quality WWE.

A. General Words
We randomly choose a set of 150 words, mostly nouns,

from the Corpus of Contemporary American English (COCA)
[27] which is a large, genre-balanced corpus of American
English containing > 0.5 billion words equally divided
among spoken, fiction, popular magazines, newspapers and
academic texts. Fig. 2 shows the number of words found in
the subtitles for each wanted word when searching the videos
of YouTube. Here we used the top 50 YT autocomplete
search terms and scrolling down on each YT page 11 times.
As the word becomes less popular (the word ranking
increases), the ability to find these words in YouTube
decreases. There are a few exceptions that popup above this
trend such as 'griddle' (rank 43398) with > 12k words found
in the subtitles. This is not a term that is popular in everyday
speech but there are many cooking/recipe videos on
YouTube where a griddle is used to prepare some dishes.
Another example is 'Pacific'(rank 29109) with > 11K words
found in the subtitles. Although not high on the word ranking,
there are many travel related videos in YouTube that may
refer to the Pacific and hence the large number of found
words.

Fig. 3. Ratio of number of Videos with the wanted word to total Videos
found for 150 word of different ranking. Top 50 search terms with 11 scroll

downs.

Fig. 3 shows the ratio of the number of videos with the
wanted word found vs total number of videos returned from
the search terms. Again we see the same trend that less
popular words are harder to find. For more popular words
(rank<10k), we find that ~30%-50% of the videos found have
at least one wanted word in them.
Even though we clean the subtitle text when downloading,

when searching for words in the subtitles there are certain

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

4

things to watch out for. A few issues we found were:
1. Compound words – not sure how these may be

represented in the text so search not only the
compound word, but a hyphenated version of the
compound word and the compound word as two
separate words (e.g. rockslide, rock-slide, rock slide)
Table I gives a comparison of the number of wanted
words found in the subtitles when searching only the
compound word versus searching for the 3 version of
the word. In some cases there is a large difference
producing >2x as many words.

2. Words with apostrophes such as Kellogg's. In the
subtitles this may be Kellogs or Kellogg's or
Kelloggs'.

3. Numbers – we convert digits to numbers but numbers
can be said in many different ways. For example, 100
can be pronounced one hundred or a hundred.

4. Money - $1 can be pronounced one dollar, a dollar,
one buck, or a buck

5. Year Dates like 1970 – This can be said Nineteen
Seventy, Nineteen hundred and seventy, one thousand
nine hundred and seventy or if referring to a flight for
an airline could even be said as one nine seven zero.

Fig. 2. Number of words found in the subtitles of YT videos for words of
different ranking. We used the Top 50 search terms for each word and 11

scroll downs.

The numbers, dates and money issues are more related to
creating corpora for ASR training where WER between
spoken audio and the subtitles is an issue. For wake words,
numbers, dates and money are not as big and issue as we
check each word with an ASR so mislabeled words will be
excluded. However, compound words and apostrophe words
could be an issue if we don't identify them in the text.
Once we have identified the videos with the wanted words,

the audio is downloaded and the subtitle text is aligned. The
wanted words are sliced out of the audio and check by 3
different ASR engines. Usually we are able to download >
90% of the videos found. Those not downloaded are usually
too long (>1.5 hours) or have other issues. Fig. 4 shows the
percentage of words we are able to slice out of the
downloaded videos and the percentage that match at least one
ASR engine. The non-shaded section of the plot is for a
previous study where the search terms were hand generated.
For this study, 60-80% of the downloaded words were sliced
from the audio and 40-60% were sliced and matched at least 1
ASR. There is quite a bit or variability here even for the same
word. We did three different runs with different search terms
for Toyota and the words with 1 ASR match vary from

30-50%
Other words show very poor ASR matching, most notably

'nova'. For 'nova', a large majority of the found words were
words like Nova Scotia, Super Nova or Bossa Nova which all
have very little gap in time between the two words. The
forced aligner had difficulty separating the words without
either chopping part of nova off or including a piece of the
adjoining word. We had a similar problem when slicing out
the word 'happy' since it is very common to find 'happy
birthday'. Here usually the 'y' was chopped from the word and
we ended up with 'happ'.

Fig. 4. Percentage of words that are sliced and also match at least one ASR
from downloaded YT audio files.

The shaded section of Fig. 4 is for search terms generated
with the YT autocomplete method in this paper. Notice that
the amount of words sliced and matching 1 ASR is lower,
~50% and ~30% respectively, compared to the non-shaded
region. These auto-generated search terms returned many
more videos with English subtitles but non-English audio and
the forced aligner cannot align the audio. A few other reasons
for non-alignment are excessive background noise, quickly
spoken words and singing of words. Filtering the videos for
spoken English should bring these results to similar levels as
the non-shaded region.

B. Names/Places/Products
With an eye toward building a Wake Word Engine (WWE),

we look at wanted words that are names, places, product
names or corporations. From our previous work on wake
word engines construction [26], we need ~1600 high quality
words, 1200 for training and 400 for testing. From the shaded
section of Fig. 4, we see we that ~ 30% of the words match at
least on ASR so in order to get ~1600 good wake words we
need to find ~5000 words in the subtitles.
Fig. 5 shows the number of wanted words (WW) found in

the subtitles, the number of videos and the number of videos
with wanted words for the three different categories. Here
again, we use the autocompleted Top50 YouTube search
results and 11 scroll downs. The common names easily have
> 5k words found in the subtitles. We purposely chose many
names on this list to be uncommon first names or last names
to assess the difficulty in finding them. For these less
common first names like Atticus, Morpheus and Katniss and
last names like Drabeck and Gunderson, we don't quite find
the needed 5k words and should try some of the other search
techniques discussed above (i.e. >50 search terms, more
scroll downs, different search engines or scrape related
videos).

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

5

Fig. 5. Names, places, or products. The number of words, videos and videos
with words in them for the top 50 YT search terms and 11 Scroll downs.

For the place words, the only ones that seem to come in
under the 5K word limit are the exotic places, like Zambezi,
or the local New Jersey towns of Freehold, Oceanport,
Keyport, and Morganville. With lots of different travel blogs,
places tend to be easy to find in YouTube videos.
For product names, the big tech companies and car

companies are easy to find. It was surprising that certain food
companies, like Entenmann's, Fritos, and Nabisco, were
difficult to find. Also, 'Avis' seems difficult to find although
many videos were found but few contained the word 'Avis' in
the subtitles.

TABLE I: COMPOUND WORD SEARCHING
Compound
Word

Num Found
Search for
Compound
Word Only

Num Found
Search for
Compound,

Hyphenated, 2
Words

%
Increase
in Found
Words

rockslide 518 1047 102%

semifinal 757 2717 259%

coatrack 27 513 1800%

crawdad 68 425 525%

milkmaid 492 598 22%

breadbox 288 456 58%

blowpipe 128 139 9%

outrider 290 310 7%

C. Detailed Look at Several Words
We chose 'Shannon', 'Dracula', and 'Mercedes', two names

and a brand name, to explore more deeply. We first explore
the relationship of the number of scroll downs to the number
of wanted words found in the subtitles and the number of
videos with a least one wanted word in them. For each search
term, there is a finite limit to how many videos are relevant to
the search term. Each scroll down loads ~20 more videos
onto the page. Fig. 6 shows, for 'Mercedes', 'Dracula' and
'Shannon', the number of words found in the subtitles and the
number of videos containing these words for different levels
of scrolling down. There is a large increase in the number of
words found when going from 0 to 1 scroll downs followed
by a linear rise until about 15-20 scroll downs. 'Dracula'
seems to hit its asymptotic limit at 15, whereas for 'Mercedes',
after 15 scroll downs, the number of words is still rising,
albeit at a slower pace. 'Shannon' shows a linear rise until 20
scroll downs and then a decrease in the number of words
found. We will discuss this decrease below.

Fig. 6. Number of Found words and number of Videos with these words for
different page scrolling for Mercedes, Dracula and Shannon.

Fig. 7. Maximum Scroll Downs for the 50 Search terms for Dracula,
Mercedes and Shannon.

By examining the maximum number of scroll downs per
search term (see Fig. 7), we see that many search terms
cannot reach the 30 scroll downs limit we set. Dracula and
Shannon, for example, have >1/3 of the search terms
returning less than 20 videos, thus having no scroll downs.
One half of the videos have less than 10 scroll downs and
none of the videos return enough videos to scroll down 25
times. Mercedes, which is more popular than Dracula or
Shannon, has only 1/10 of the search terms having less than

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

6

20 videos and no scroll down and ~1/2 of the search terms
returning enough videos for 25 or more scroll downs.

Fig. 8. Number of Words found in Subtitle, Sliced, and Matched to and ASR
engine for Dracula, Mercedes and Shannon.

It should be noted, that when you search YouTube and use
the autocomplete that the results are dynamic and change
over time. Not only do the search term rankings change but
also what videos are returned for a given search term change.
When we were collecting data for Fig. 6 some of the 25 or 30
scroll downs were run a week after the other scroll downs.
This sometimes lead to large differences in the scraped
number of words, returning fewer words than the previously
run 20 scroll downs. Also, many of the search terms return
with the same ranking and you need to choose which will be
in the top 50 (e.g. you have 30 terms with the same ranking
and you only need 12 to fill in the top 50). We also tried to fix
the search terms to the same terms from previous runs but this
also returned different videos when run weeks apart. This
variability lead to the decrease number of words found for
Shannon beyond 20 scroll downs seen in Fig. 6 and Fig. 8.
We download the videos, slice out the words and check

them against 3 different ASR engines. Fig. 8 shows the
number of words identified in the subtitles, the number of
words actually sliced out of the audio and the number of
sliced words matching at least 1 of the ASR engines for each

scroll down. Similar to the summary of this data shown in Fig.
4, Mercedes and Dracula show that ~50% of the words found
in the subtitles are aligned by the forced aligner and sliced out.
The other 50% that are not sliced are mostly due to the forced
aligner not finding the word in the audio (discussed in section
IV.A above). 33% of the words found in the subtitles are not
only sliced but match at least 1 ASR engine.
For Shannon, a large number of words are found in the

subtitles but only 20%-35% of the words are able to be sliced
out. This lead to ~15% of the subtitle found words having at
least one ASR match. The Shannon 15 to 30 scroll downs
were run several weeks after the 0 to 5 scroll downs and we
ended up with different search terms and not a lot of overlap
in the found videos. Looking at all the videos for the different
Shannon runs actually produces ~8500 sliced words with
~3800 passing the 1 ASR matching test. This is more than
adequate for training a WWE. This shows that expanding the
search terms beyond the top 50 for Shannon (this is what we
effectively did by running the search term on different days)
definitely helps find more words.

D. Alternate Search Methods
If an insufficient number of wanted words are found in the

subtitles via the YouTube search autocomplete method, we
try either expanding the number of search terms, using other
search engines, using related search terms, or scrape the
related videos found by the search terms. To explore these
different methods, we chose 'dejection' (word rank 35255), a
word from the 150 used in Section IV.A that had a low
number of found words. These various methods are
employed and the results are summarized in Table II. In all
cases we use the maximum number of scrolls downs for each
search term. For the top 50 YT search terms we only found
331 words in the subtitles. Expanding the number of YT
search term to the maximum only produced 66 total search
terms and 377 words found. Scraping the related videos from
the YT max 66 search terms lead to 7x more videos but only
increased the number of words found by 8. In this case
scraping related videos was not very successful but we have
found in other cases (such as for the word 'nova') more
success with this method. Also looking up dejection in
YouGlish only produced 17 instances of the word.

Fig. 9. ROC performance curve for a WWE with Shannon as the Wake
Word.

Using the 3 different search engines (Google, Yahoo and
Bing) has a large impact, almost doubling the amount of
words found to >600. For Google we not only used the
maximum number of search terms but also looked at the top
100 search terms. The top 100 Google terms were effective in
finding many of the wanted words. Also, note that Yahoo

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

7

only returned a maximum of 84 search terms, all containing
dejection, whereas Bing and Google returned > 400. The
search terms for Google and Bing returned non-related search
terms for words like deception, ejection, deflection, and
detection. These search terms were filtered out by removing
any search terms that didn't contain at least one words
containing the word fragment deject. The number of search
terms in Table II reflects this filtering.
Combining the different search methods leads to 683 total

wanted words found in the subtitles from 514 different videos.
A final column in the table compares the overlap in the videos
found between the different methods to the videos found in
Google Max. Bing found 17 different videos from Google
Max and Yahoo found 13 In this case the Bing or Google
search methods we the most effective in finding words.

E. Corpus Testing - Wake Word Engine Training
To verify that our YouTube scraped words lead to good

training corpora, we have used the 'Shannon' words found in
the subtitles to train and test a Wake Word Engine. As a base
line and for comparison we also train a WWE on 'Shannon'
utterances gathered via Amazon Mechanical Turks. The
corpora created for training are 1200 MTurk words, 1200
YouTube and 2400 YouTube scraped, tested and cleaned
words. Note that the MTurk data collection took 3-4 weeks
whereas the YouTube collection took several hours. For
training, we utilized the DSCNN deep learning models in
ARM's extended version [28] of TensorFlow keyword
spotting tutorial [29]. For testing we used ~ 400 wake words
collected from MTurk that are not used in the training corpus.
We intersperse the wake works in non-wake words to create a
testing set. For the non-wake words we use 500 episodes of
Larry King (LK) downloaded from YouTube with the audio
sliced into utterances ranging from 1 to 20 seconds in
duration. We created long running test audios (89 hours) by
mixing/overlaying the wake words with the non-wake words.
Testing was done across 4 different test environments of
clean, noisy, open air no reverberation and open air living
room. For the complete details of this study see [30].

TABLE II: NUMBER OF WORDS FOUND FOR 'DEJECTION' USING VARIOUS
SEARCHMETHODS

Search
Method

Num
Search
Terms

Num
of

Videos
Found

Num
Vid
with
Found
Words

Num
Words
Found

Num
Videos Not
Found in
Google
Max

YouTube 50 521 246 331 9
YouTube -
Max 66 848 284 377 3

Related
Videos 66 6070 291 385 3

Google 100 2137 453 606 6
Yahoo -
Max 84 1351 397 525 13

Bing – Max 168 3065 458 617 17
Google –
Max 337 2539 483 636 0

Combine
All
Methods

514 683

Fig. 9 shows the Receiver Operating Characteristics (ROC)
curve for the resultant 3 WWE models in the clean test
environment. The ROC curves display the False Reject Rate
(i.e. percentage of time the WWE didn't respond to a wake
word) versus the False Alarms per hours (i.e. how many time

per hour the WWE responded to a non-wake word). The YT
2400 trained model performs equivalently to the MTurk
model in this environment. Even though we needed twice as
many training samples from YT to get the performance
equivalence, the time to generate the test set went from weeks
to hours. This shows that YouTube scraped data is a valid and
viable alternative to corpus creation compared to the slow
and costly MTurk data collection method.

V. DISCUSSION AND FUTUREWORK

For multi-word wake word (e.g. 'ok google'), finding
enough of these exact phrases in YouTube may be
problematic. We are also exploring creating these compound
wake words by scraping each word individually from
YouTube and then combining them together. The similarity
of the speakers, background noise, gender, and other features
need to be explored when combining the words in this
manner to form a high-quality WWE.
One of the issues we discovered when training our wake

word engine was that YouTube data has many cases where
there is a substantial amount of background noise. Training a
WWE and testing in a clean environment with clean test data
didn't always perform as well as could be expected. We
filtered the found words using an ASR check but never check
for background noise level. We could further improve our
corpus creation use SNR estimates like in [31] to separate
noisy from clean data.

VI. CONCLUSION
We have explored alternative data collection techniques in

the context of speech data in this paper. We show how to
create data sets using found data and thus avoid the
bottleneck in DL of data set creation. Our approach in this
paper specifically looks at finding individual words for wake
word engine creation, however, these techniques can be
applied to create speech corpus for various purposes.
We show the feasibility of locating specific utterances in

public data sources by searching for many common words,
Name, Places and Product Names. These words can be found
in sufficient quantities to construct high quality training sets
for DL. We elaborate of different techniques to construct
search terms and methods to efficiently locate additional
utterances when faced with difficult words or phrases. We
demonstrate that 40-50% of the words found in the subtitles
can be extracted and sliced into individual words and > 30%
of these subtitle found words can be sliced and recognized by
at least 1 of the 3ASR engines we use for validation making it
suitable for corpus creation. We use 'Shannon' as a test case to
create a test corpus from found data and train a high quality
Wake Word Engine. We show equivalent performance of this
trained WWE to traditionally trained WWE.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Drabeck and Ramanan conducted the research and

analyzed the data. Drabeck and Woo wrote the paper and all
authors approved the final version.

International Journal of Machine Learning and Computing, Vol. 10, No. 1, January 2020

8

REFERENCES
[1] M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal, S.

Matsoukas, N. Strom, and S. Vitaladevuni, "Max-pooling loss training
of long short-term memory networks for small-footprint keyword
spotting," in Proc. IEEE Spoken Language Technology Workshop,
2016, pp. 474–480.

[2] C. Shan, J. Zhang, Y. Wang, and L. Xie, "Attention-based end-to-end
models for small-footprint keyword spotting," INTERSPEECH, 2018.

[3] S. Aslam, "YouTube by the Numbers," OMNICORE, 2018.
[4] Z. Li, T. Dekel, F. Cole, R. Tucker, N. Snavely, C. Liu, and W.

Freeman, "Learning the depths of moving people by watching frozen
people," arXiv:1904.11111v1, Apr. 2019.

[5] Wikipedia. Mannequin Challenge. [Online]. Available:
https://en.wikipedia.org/wiki/Mannequin_Challenge

[6] X. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, "SFV:
Reinforcement learning of physical skills from videos," ACM Trans.
Graph., vol. 37, no. 6, Article 178, November 2018.

[7] T. Li, L. Lin, M. Choi, K. Fu, S. Gong, and J. Wang, "YouTube AV
50K: An annotated corpus for comments in autonomous vehicles," in
Proc. 2018 International Joint Symposium on Artificial Intelligence
and Natural Language Processing (iSAI-NLP), Pattaya, Thailand,
2018, pp. 1-5.

[8] B. Shillingford et al., "Large-Scale Visual Speech Recognition,"
arXiv:1807.05162v3, 2018.

[9] J. Gemmeke et al., "Audio Set: An ontology and human-labeled dataset
for audio events," in Proc. 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
2017, pp. 776-780.

[10] H. Liao et al., "Large scale deep neural network acoustic modeling
with semi-supervised training data for YouTube video transcription",
in Proc. IEEE Workshop on Automatic Speech Recognition and
Understanding, 2013, pp. 368-373.

[11] A. Ephrat, I. Mosseri, O. Lang et al., "Looking to listen at the cocktail
party: A speaker-independent audio-visual model for speech
separation," ACM Trans. Graph., vol. 37, no. 4, August 2018.

[12] E. Lakomkin, S. Magg, C. Weber, and S. Wermter,
"KT-Speech-Crawler: Automatic dataset construction for speech
recognition for YouTube videos,” in Proc. 2018 Conf. on Empirical
Methods in Natural Language Processing, Belgium, Oct. 2018, pp.
90-95.

[13] A. Ragni and M. Gales, "Automatic Speech recognition system
development in the ‘wild’,” in Proc. Interspeech, 2018, pp. 2217-2221.

[14] A. Nagrani, J. S. Chung, and A. Zisserman, "VoxCeleb: A large-scale
speaker identification dataset,” in Proc. Interspeech, 2017, pp.
2616-2620.

[15] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb2: Deep speaker
recognition,” arXiv preprint arXiv:1806.05622.

[16] W. Xie, A. Nagrani, J.-S. Chung, and A. Zisserman, "Utterance-level
aggregation for speaker recognition in the wild," in Proc. International
Conference on Acoustics, Speech, and Signal Processing, 2019

[17] J. Lorenzo-Trueba, F. Fang, X. Wang, I. Echizen, J. Yamagishi, and T.
Kinnunen, "Can we steal your vocal identity from the Internet?: Initial
investigation of cloning Obama's voice using GAN, WaveNet and
low-quality found data," in Proc. Odyssey 2018 the Speaker and
Language Recognition Workshop, 2018, pp. 240-247.

[18] R. Ochshorn and M. Hawkins. Gentle. [Online]. Available:
https://lowerquality.com/gentle

[19] A. Rousseau, P. Deléglise, and Y. Estève, "TED-LIUM: an automatic
speech recognition dedicated corpus,” in Proc. the Eighth
International Conference on Language Resources and Evaluation
(LREC), 2012, pp. 125–129.

[20] A. Rousseau, P. Deléglise, and Y. Estève, "Enhancing the TED-LIUM
corpus with selected data for language modeling and more TED talks,"
in Proc. the Ninth International Conference on Language Resources
and Evaluation (LREC), 2014, pp. 3935–3939.

[21] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R.
Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Ng, Deep Speech:
Scaling up End-to-End Speech Recognition, Jun. 6, 2019.

[22] Youglish.com. Youglish. [Online]. Available: https://youglish.com/

[23] Related Words. [Online]. Available: https://relatedwords.org/
[24] Reverse Dictionary. [Online]. Available: https://reversedictionary.org/
[25] Describing Words. [Online]. Available: https://describingwords.io/
[26] PyRoomAcustics. [Online]. Available:

https://readthedocs.org/projects/pyroomacoustics/
[27] Corpus of Contemporary English. [Online]. Available:

https://www.english-corpora.org/coca/
[28] Keyword spotting for Microcontroller. [Online]. Available:

https://github.com/ARM-software/ML-KWS-for-MCU
[29] Tensorflow Speech Commands Example. [Online].

Available:https://github.com/tensorflow/tensorflow/tree/master/tensor
flow/examples/speech_commands

[30] B. Ramanan, L. Drabeck, T. Woo, T. Cauble, and A. Rana,
"Eliminating Data Collection Bottleneck for Wake Word Engine
Training Using Found and Synthetic Data," in Proc. the 10th
Conference on Speech Technology and Human-Computer Dialogue.

[31] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W.
Freeman, and M. Rubinstein, "Looking to listen at the cocktail party: A
Speaker-independent audio-visual model for speech separation," ACM
Trans. Graph., vol. 37, no. 4, pp. 112:1-112:11, 2018.

Copyright © 2020 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

Lawrence Drabeck got a B.S in 1986, M.S. in 1987
and Ph.D. in 1991 degrees in experimental condensed
matter physics from the University of California at Los
Angeles.
He is a member of the technical staff in the

Applications Platforms and Software Systems of
Nokia Bell Labs, Holmdel, NJ since 2014. Previously
he was a member of the technical staff in the Wireless
Research Department of Bell Labs since 1993. He was

a postdoctoral fellow at MIT/Bell Labs working on high temperature
superconducting filter technologies. In the past he has worked on wireless
filters and front ends as well as wireless network optimization and big data
network analysis. His present research interests are AI system development.

Buvana Ramanan holds a master of science degree from the Indian Institute
of Science, Bangalore, India.
She is a research engineer at the Applications, Platforms, Software and

Systems lab in Nokia Bell Labs, Murray Hill, NJ. Her research interests
include deep learning, artificial intelligence, speech recognition and
synthesis, data engineering for AI applications and big data systems. She has
numerous referred publications in the fields of image processing, wireless
network optimization and subscriber data analysis.

ThomasWoo holds a PhD in computer science from the University of Texas
at Austin.
He is a group research leader in the Software and Systems Lab of Nokia

Bell Labs. He has led research in areas such as AI systems, large scale
distributed systems, networking and security. He has also done ventures and
startups.

Troy Cauble got B.S. in 1985 and M.S. in 1986 degrees in electrical
engineering from Purdue University, West Lafayette, IN, USA.

He is a member of the technical staff in the Applications, Platforms and
Software Systems of Nokia Bell Labs, Holmdel, NJ since 2015. He has been
a member of the technical staff in various organizations within Bell Labs for
a very long time. His current research interests include distributed systems.

https://en.wikipedia.org/wiki/Mannequin_Challenge
https://lowerquality.com/gentle
https://youglish.com/
https://relatedwords.org/
https://reversedictionary.org/
https://describingwords.io/
https://readthedocs.org/projects/pyroomacoustics/
https://www.english-corpora.org/coca/
https://github.com/ARM-software/ML-KWS-for-MCU
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands
https://creativecommons.org/licenses/by/4.0/

