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Abstract—Due to the emerging of Long Short-Term Memory 

neuron network (LSTM) which is a variation of deep neuron 

network, it is proven to be essential to the improvement of 

Natural Language Processing, especially Language Modelling. 

Many researches applied LSTM to model many well-defined 

languages and gain performance in term of accuracy. However, 

this new approach is rarely applied to Thai language. 

Unfortunately, the characteristic of Thai language is 

significantly different than other well-defined languages, 

particularly English or Latin-based languages. In this work, we 

applied LSTM in Language Modelling to predict the next word 

in the sequence. We designed seven variation of LSTM models 

and compared the result with word-level LSTM model. The 

experiment showed that character-word LSTM can improve the 

performance of Natural Language Modelling (NLM) on Thai 

dataset. Especially when using character-word LSTM with 

dropout value of 0.75 and batch normalization, the perplexity is 

lower than baseline word-level LSTM up to 21.10%. 

 
Index Terms—Deep learning, language modelling, long short-

term memory network, Thai language, word prediction. 

 

I. INTRODUCTION 

A Language Modelling (LM) system plays an important 

role in communicating using texts. Good language models 

can increase typing speed, save keystrokes, and reduce errors 

[1], [2]. Undoubtedly, deep learning provided state-of-the-art 

approaches in machine learning [3]. However, the majority of 

the developments in Natural Language Modelling (NLM) 

systems have been developed for English and other well 

studied languages [4], [5], mainly due to the availability of 

large and standardized corpora. Thai language, on the other 

hand, is rarely seen in this field, especially with deep learning. 

There are many differences between Thai and English 

language [6], [7] that may cause different results [4]. 

There are many researches on Thai morphological analysis 

[8] which show the differences of Thai language from others 

in terms of phonology, morphology, and syntax levels. 

Furthermore, Thai language has a rich morphology which 

allows for a very detailed elaboration of events. Therefore, 

this linguistic factor may affect the choice of methods used in 

model development and experiment. 

There are several methods of NLMs, e.g., word-level Long 

Short-Term Memory Network (LSTM) which has been the 

most popular method. However, in recent years, people have 

begun to use the combination of word-level and character-

level LSTM networks in the experiments [4], [5], [9]. Some 

studies showed that this method could play an important role 

in improving the search of infrequent words and even Out-
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Of-Vocabulary (OOV) words [10]. In addition, it helped 

dealing with morphemes such as prefixes, roots, and suffixes. 

The combination of word-level and character-level LSTMs 

outperformed word-level LSTM with fewer parameters on 

languages with rich morphology. 

However, training deep neural network with number of 

parameters on a small dataset can overfit the neuron network 

model. To regularize the model, dropout and batch 

normalization are also considered. Dropout is a regularization 

technique that deactivates few random neurons in the neural 

network in order to solve the problem of overfitting in neural 

networks [11]. Batch normalization, on the other hand, 

regularizes the model by reducing internal covariate shift and 

improving an accuracy of the model [12]. Dropout and batch 

normalization LSTMs have never been implemented together 

in NLM, especially in Thai. Therefore, this research focuses 

on designing and implementing Thai LM using the 

combination of character-level and word-level LSTMs with 

dropout and batch normalization. 

 

II.

 

RELATED WORK

 

Deep learning is a normal neural network with a long line 

of hidden layers [3]. With multiple hidden layers, deep 

learning attempts to learn multiple levels of representation 

and produces an output from raw inputs like words. In the last 

few years, deep learning-based methods have been producing 

superior performances on diverse Natural Language 

Processing (NLP) tasks [13]. Since then, these methods have 

been proposed to solve more challenging NLP tasks [14].

 

Initially, feed-forward neural networks (FNNs) were 

introduced as a part of NLM approach. Later, Sundermeyer 

et al. [15] began using a Recurrent Neural Network (RNN) to 

predict a word on the list of words ahead, which in turn were 

superseded by LSTMs, a special kind of RNN, which was 

capable of learning long-term dependencies. LSTMs were 

first introduced by Hochreiter and Schmidhuber [16] and 

were popularized and experimented by many researchers in 

the following works. LSTMs work enormously well on a 

wide variety of problems and are now used extensively [17]. 

More importantly, they can also automatically identify 

features of words. Like RNN, LSTM originally works with 

word-level models. Nevertheless, typos and rare words are 

ignored in word-level LSTM, as these words do not appear in 

the predefined vocabulary. Although LSTM approach brings 

a high degree of freedom in learning expressions of words, 

information about morphemes such as prefixes, roots, and 

suffixes are lost when the word is converted into an index. 
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These are the major limitations of word-level LSTM models. 

Word-level LSTM models potentially capture semantic 

meaning while character-level models are capable of 

containing the information about morphemes. This is the 

reason why sub-word level NLMs and character-level NLMs 

were proposed [4], [5], [10]. 

Verwimp et al. [10] presented a character-word LSTM LM 

which reduced both the perplexity and the number of 

parameters of the model compared with baseline word-level 

LM. Hence, sub-word information was able to deal with rare 

and OOV words. With almost the same number of parameters 

and hidden units, this model outperformed baseline word-

level LMs on both English and Dutch. Kim et al. [4] 

employed a simple neural network model that depended 

merely on character-level inputs. Nevertheless, predictions 

were made at the word-level. This experiment outplayed 

word-level and sub-word level LSTM baselines with less 

parameters on languages with rich morphology such as 

Arabic, Czech, French, German, Spanish, and Russian. At the 

same time, a gated word-character recurrent LM was 

presented by Miyamoto and Cho [5]. They pointed out the 

same issue of losing information about morphemes including 

OOV word problem when using word-level LM. The major 

contribution of this model was that it successfully and 

effectively applied the character-level information for 

infrequent and OOV words as well as outplayed word-level 

language models on some English corpora. 

However, large neural networks that trained on relatively 

small datasets can overfit the training data, which results in 

poor performance. Dropout and batch normalization are the 

regularization methods that can fix this overfitting problem. 

Dropout is a successful regularization method when working 

with FNNs [11]. However, Bayer et al. [18] addressed that 

conventional dropout did not perform well with RNN due to 

the increasing level of noises from the recurrence. Zaremba 

et al. [19] proposed a solution by applying dropout to the 

subset of RNN connections. Then, they used batch 

normalization to regularize the model and reduce the need for 

dropout. Ioffe et al. developed a method to address various 

issues related to the training of deep neural networks, which 

batch normalization was able to produce significant 

improvements in terms of the number of iterations required 

to train the network. It initially came to fix the problem of 

internal covariate shift, which was the change in the 

distributions of a learning system of a deep neuron network 

(DNN) [12]. Meanwhile, the input of each layer of DNNs was 

affected by parameters in every input layer. Batch 

normalization was able to reduce internal covariate shift by 

fixing the means and variances of each input layer. Bjorck et 

al. [20] stated that batch normalization helped during 

optimization and improved the final test accuracy. It was able 

to generalize well because the usage of large learning rates. 

Later, Chen et al. [21] finally combined batch normalization 

with dropout to construct independent activations for neurons 

in each intermediate weight layer in order to overcome the 

high computational complexity to perform independent 

components analysis. 

 

III. THAI CHARACTER-WORD LSTM LANGUAGE MODEL 

The framework of the proposed method is divided in four 

parts; dataset and data preprocessing, long short-term 

memory network (LSTM), our character-word LSTM 

architecture, batch normalization, and evaluation method. 

 Dataset and Preprocessing 

This work used BEST2010, the Thai corpus of about 1 

million words, from National Electronics and Computer 

Technology Center (NECTEC) [22]. NECTEC is a dynamic 

organization responsible for the development of information 

technology in Thailand. The corpus was compiled from 

articles, news, encyclopedias, and novels. BEST2010 corpus 

also covered word segmentation, entity recognition (NER), 

and abbreviations which were required before implementing 

LM. 

The corpus was divided into 3 parts: (1) Approximately 

80% was chosen as training set, (2) 10% as validation set, and 

(3) 10% as test set. This corpus had already segmented words 

and NER process, so we did not need to process them in the 

data preprocessing, but there were unnecessary symbols and 

characters to be eliminated. Almost all symbols were 

discarded except “.” which was required for various 

abbreviations. Fig. 1 shows the example of the training corpus 

after cleaning. 

 

 
Fig. 1. Example of the training corpus. 

 

There was also a character data needed for the experiment 

of character-word LSTM model. The character data was 

created by separating the character for every word in Thai 

corpus. 

 

 
Fig. 2. Example of the character file. 

 

This character data was only used in character-word LSTM 

models. the character of word was separated into a file of each 

character’s position. For example, characters at position 0 of 

all words in the training corpus were collected together in a 
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file call “char_train_0” as in Fig. 2, which was processed 

from the beginning of each word. 

Nevertheless, the number of character files that we had to 

prepare depends on our setup. In this experiment, the default 

number of characters was 10 (character’s position of 0 to 9). 

We limited to only 10 characters because there were few 

words that had more than 10 characters, which made the data 

after the 10th position of character unnecessary. 

 Long Short-Term Memory Network (LSTM) 

LSTMs are outstandingly performed to avoid the problem 

of long-term dependency. LSTMs automatically recognize 

information for long periods of time. They work extremely 

well on a wide variety of challenging problems. More 

important, they can also seize features of words. LSTMs have 

the form of chain of repeating modules. Instead of having a 

single neural network layer in the repeating module like 

RNNs, LSTMs have four layers collaborating in a very 

exclusive way. Two horizontal lines running through the top 

and bottom of the diagram in Fig. 3 show that LSTMs allow 

both changed input that goes in their special four layer and 

unchanged information that go through the top diagram 

collecting the information in long term memory. 
 

 
Fig. 3 The diagram of LSTM. 

 

LSTMs also consist of three gates to control the cell state. 

Using these gates, the LSTM capable of eliminating or adding 

information to the cell state. Firstly, LSTM takes input 𝑋𝑡, 

𝐻𝑡−1, 𝐶𝑡−1 for producing 𝐶𝑡 and 𝐻𝑡 using (5) and (6). 
 

𝑓𝑡 =  𝜎(𝑋𝑡 × 𝑈𝑓 + 𝐻𝑡−1 × 𝑊𝑓)                      (1) 
 

𝑐𝑡̅ =  𝑡𝑎𝑛ℎ(𝑋𝑡 × 𝑈𝑐 + 𝐻𝑡−1 × 𝑊𝑐)                   (2) 
 

𝑖𝑡 =  𝜎(𝑋𝑡 × 𝑈𝑖 + 𝐻𝑡−1 × 𝑊𝑖)                       (3) 
 

𝑜𝑡 =  𝜎(𝑋𝑡 × 𝑈𝑜 + 𝐻𝑡−1 × 𝑊𝑜)                      (4) 
 

𝐶𝑡 =  𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝑐𝑡̅                            (5) 
 

𝐻𝑡 =  𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)                              (6) 
 

Here * is the element-wise multiplication, + is the element-

wise addition, σ is the element-wise sigmoid, and tanh are 

hyperbolic tangent functions. W and U is weight vectors for 

forget gate (f), candidate (c), input gate (i), and output gate (o) 

which are calculated from (1)-(4). 

 Character-Word LSTM Architecture 

Before putting the information through LSTM layer, we 

have to produce the output vector of word embedding first. 

Word embedding is usually produced from word input alone. 

However, in this character-word LSTM model, word 

embedding is a concatenation of character and word input. As 

in Fig. 4, the output vector comes from concatenating the 

word embedding with embeddings of the characters occurring 

in that word. 
 

 
Fig. 4. Our Character-word LSTM architecture. 

 

After getting the output vector of word embedding, the 

output vector is used as an input to LSTM LM (t) and process 

together with the output of LSTM LM from the previous 

process (t-1). Finally, in the output layer, probabilities for the 

next word are calculated using a softmax function. 

 Batch Normalization 

Batch normalization not only reduces overfilling by adding 

some noise to the layer’s activation, but it also normalizes the 

input of each layer to cover the internal covariate shift 

problem due to the change in network parameters during 

training. batch normalization works by fixing the means and 

variances of each layer's inputs. 

When 𝑥 is the value in mini-batch 𝐵 =  {𝑥1,…,𝑚} and we 

want to learn the parameter 𝛾 and 𝛽 , we can calculate the 

mean and variance of mini-batch using (7) and (8). Then, we 

can normalize using (9) and calculate the output of batch 

normalization using (10). 
 

𝜇𝐵 =  
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1                                    (7) 

 

𝜎𝐵
2 =  

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1                            (8) 
 

𝑥𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

                                        (9) 

𝐵𝑁𝛾,𝛽(𝑥𝑖) = 𝛾𝑥𝑖 + 𝛽                            (10) 

In order to use batch normalization with LSTM layers, we 

used (11) to update forget gate, candidate, input gate, and 

output gate. Then, we produced 𝐶𝑡 and 𝐻𝑡 using (12) and (13). 
 

(
𝑓𝑡
𝑐⃛𝑡
𝑖𝑡
𝑜𝑡

) = 𝐵𝑁(𝑈𝑥𝑋𝑡; 𝛾𝑥𝛽𝑥) + 𝐵𝑁(𝑊ℎ𝐻𝑡−1; 𝛾ℎ𝛽ℎ)        (11) 

 

𝐶𝑡 = 𝜎(𝑓𝑡 ) × 𝐶𝑡−1 + 𝜎(𝑖𝑡) × 𝑡𝑎𝑛ℎ(𝑐𝑡)             (12) 
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𝐻𝑡 = 𝜎(𝑜𝑡) × 𝑡𝑎𝑛ℎ(𝐵𝑛(𝐶𝑡; 𝛾𝑐𝛽𝑐))      (13) 
 

 Evaluation Method 

Language models are usually evaluated using perplexity 

[4], [5]. The perplexity of a language model on a test set is 

the inverse probability which is normalized by the number of 

words. Because of the inverse, the higher conditional 

probability of the word sequence decreases the value of the 

perplexity. When evaluating a language model, a good 

language model is the one that produce higher probabilities 

to the test data. This means the lower value of the perplexity 

coherently raises the quality of the language model as it fits 

to our test data example. Perplexity over the test set was 

computed as in (14). 
 

𝑃𝑃(𝑊) =  exp [
1

𝑁
(− ∑ 𝑙𝑜𝑔(𝑃(𝑤𝑖|𝑤𝑖−1 , 𝑤𝑖−2 , …))𝑁

𝑖−1 )]      (14) 

 

For the test data, since the performance is based on the 

probability of the test set, it was important that the test data 

had to be new and unseen example sentences or contexts. Test 

set had to be as large as possible, because a small test set may 

be accidentally unrepresentative. 

 

IV. EXPERIMENTAL RESULTS 

This thesis corresponds baseline character-word LSTM 

with the dropout value (the percentage of neurons to be 

dropped) and batch normalization method. And because the 

evaluation of traditional models is also needed to compare 

with the proposed model, therefore, eight LSTM models were 

tested in this experiment using Thai dataset in the conclusion 

of this section, which were: 

1) Word level LSTM - This model is used as a baseline 

model for comparing with the proposed model. 

2) Word level LSTM with 0.25/0.50/0.75 of dropout values 

(25%/50%/75% of neurons are dropped). 

3) Word level LSTM with batch normalization. 

4) Word level LSTM with both 0.25/0.50/0.75 of dropout 

values and batch normalization 

5) Character-word LSTM 

6) Character-word LSTM with 0.25/0.50/0.75 of dropout 

values 

7) Character-word level LSTM with batch normalization 

8) Character-word level LSTM with both 0.25/0.50/0.75 of 

dropout values and batch normalization 

All LSTM models in this section shared the same LSTM 

LM architecture of 3 layers and 200 hidden units in which the 

total size of the embedding layer was equal to the size of the 

hidden layer. All models were run with 15 epochs. In the first 

6 epochs, the learning rate was set to 1. After that, they were 

applied an exponential decay. The weights were randomly 

initialized with uniform random variables between -0.1 and 

0.1. All models were trained using stochastic gradient decent 

(SGD) with 20 mini-batch size, where the number of steps 

used for enrolling for training with backpropagation through 

time was 20. Bias was set to zero in all models. The number 

of characters added to a word for character-word LSTM 

model is fixed which is 10 in this proposed work, choosing 

from the experiments conducting from n=1 up to n=10. If a 

word is longer than n characters, only the first n characters 

are added. If the word is shorter than n, it is padded with a 

special symbol. 

In this section, a performance analysis using perplexity was 

proceeded to compare results from all models which was 

separated into 4 sub-sections as follow. 

 Comparing Baseline Word-Level LSTM with 

Character-Word LSTM 

 

 
Fig. 5. Perplexity of word-level LSTM and character-word LSTM. 

 

Here BW is baseline word-level LSTM, CW is character-

word LSTM, and CE is character embedding used in these 

models. 

According to the graph in Fig. 5, almost all perplexity 

values of character-word LSTMs are better than baseline 

word-level LSTM. The best value is when the number of 

characters added is 8 and has character embedding size of 15 

(232.836), which better than the baseline 9.03%. The worst 

perplexity value is when the number of characters added is 15 

and has character embedding size of 1 (258.229). 

 Comparing Models When Adding Dropouts 

 
TABLE I: PERPLEXITIES OF MODELS WHEN ADDING DROPOUT VALUES 

Models Perplexity 

BW 255.958 

W+DO25 262.945 

W+DO50 215.151 

W+DO75 214.096 

CW 232.836 

CW+DO25 260.695 

CW+DO50 206.562 

CW+DO75 201.940 

 

 
Fig. 6. Perplexity of models when adding dropout values. 

 

In Table I, W+DO25, W+DO50, and W+DO75 are word-

level when adding 25%, 50%, and 75% dropout, respectively. 

The perplexity of character-word LSTM model with 75% 

dropout is better than every value produced from baseline as 

in Fig. 6. The best value is when number of characters added 

is 7 with character embedding size of 20 (201.940), which 
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better than baseline up to 21.10%. By comparison, the 

perplexity of character-word LSTMs with 0.25 dropout value 

are greater than the baseline but they were improved when the 

dropouts are 0.50 and 0.75, respectively. 

 Comparing Models When Adding Batch 

Normalization 

 
TABLE II: PERPLEXITIES OF MODELS WHEN ADDING BATCH 

NORMALIZATION 

Models Perplexity 

BW 255.958 

W+BN 238.018 

CW 232.836 

CW+BN 222.491 

 

BN in Table II is batch normalization adding to the model. 

The result shows that every perplexity value of character-

word LSTMs with batch normalization better than baseline 

word-level LSTM as in Fig. 7. The best value is when the 

number of characters added is 9 and has character embedding 

size of 20 (222.491), which better than baseline 13.08%. 

However, comparing with the results of models adding 50% 

and 75% dropout in Table I, adding dropout provides better 

performance than adding batch normalization. 

 
Fig. 7. Perplexity of models when adding batch normalization. 

 

 Comparing Models When Adding Dropout and Batch 

Normalization 

 
TABLE III: PERPLEXITIES OF MODELS WHEN ADDING DROPOUT VALUES 

AND BATCH NORMALIZATION 

Models Perplexity 

BW 255.958 

W+DO25+BN 275.641 

W+DO50+BN 218.782 

W+DO75+BN 208.078 

CW 201.940 

CW+DO25+BN 273.817 

CW+DO50+BN 213.970 

CW+DO75+BN 199.909 

 

From the result in Table III, the perplexity of character-

word LSTM with 75% dropout and batch normalization is 

better than ever values produced from baseline. The best 

value is when number of characters added is 8 with character 

embedding size of 5 (199.909), which better than baseline up 

to 21.90%. By comparison, the perplexity of character-word 

LSTMs with 0.25 dropout value and batch normalization are 

greater than the baseline but they were improved when the 

dropouts are 0.50 and 0.75, respectively. 

From Fig. 8, it can be seen that the best result was achieved 

by character-word LSTM model with 75% of neuron dropout 

and batch normalization. 

 

 
Fig. 8. Perplexity of models when adding both dropout and batch 

normalization. 

 

V. CONCLUSION 

This paper design and develop LSTM LM for Thai 

language. Eight LSTM models had been tested on Thai 

dataset of 1 million words and compared based on the 

perplexity value. Word-level LSTM model was used as a 

baseline method. Character-word LSTM model, our main 

model to experiment, was created by concatenating word and 

character embedding before putting them through LSTM 

layers. Various numbers of characters concatenating together 

with the word had been tested. And the perplexity of 

character-word LSTM model was less than baseline word-

level at every proportion of character embedding. 

Moreover, dropout and batch normalization were applied 

to the models to mitigate the problem of overfitting. By 

adding dropout, the models performed better compare with 

baseline. This is because increasing dropout makes the model 

more robust as each layer does not have to depend on other 

layers, causing each layer to develop itself to work better on 

its own. Adding batch normalization to the model, even 

though it improves the performance of baseline, the results 

are worse than adding dropout. Finally, both dropout and 

batch normalization were added to models and the result 

shows that they gave the best performance on this dataset. 

For further studies, there are two main points to be 

considered. First, there might be better procedures to 

incorporate words with characters that are not the direct 

concatenation. For example, the study may implement a 

character-level LSTM and a word-level LSTM separately and 

combine them later in the process or the study may have two 

vectors of character information and word information 

instead of one-hot vector from the word embedding. Second, 

this paper used batch normalization in order to raise the 

performance of the model, which layer normalization can be 

instead considered to investigate its effect over this character-

word LSTM model. 
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