

Abstract—Due to the emerging of Long Short-Term Memory

neuron network (LSTM) which is a variation of deep neuron

network, it is proven to be essential to the improvement of

Natural Language Processing, especially Language Modelling.

Many researches applied LSTM to model many well-defined

languages and gain performance in term of accuracy. However,

this new approach is rarely applied to Thai language.

Unfortunately, the characteristic of Thai language is

significantly different than other well-defined languages,

particularly English or Latin-based languages. In this work, we

applied LSTM in Language Modelling to predict the next word

in the sequence. We designed seven variation of LSTM models

and compared the result with word-level LSTM model. The

experiment showed that character-word LSTM can improve the

performance of Natural Language Modelling (NLM) on Thai

dataset. Especially when using character-word LSTM with

dropout value of 0.75 and batch normalization, the perplexity is

lower than baseline word-level LSTM up to 21.10%.

Index Terms—Deep learning, language modelling, long short-

term memory network, Thai language, word prediction.

I. INTRODUCTION

A Language Modelling (LM) system plays an important

role in communicating using texts. Good language models

can increase typing speed, save keystrokes, and reduce errors

[1], [2]. Undoubtedly, deep learning provided state-of-the-art

approaches in machine learning [3]. However, the majority of

the developments in Natural Language Modelling (NLM)

systems have been developed for English and other well

studied languages [4], [5], mainly due to the availability of

large and standardized corpora. Thai language, on the other

hand, is rarely seen in this field, especially with deep learning.

There are many differences between Thai and English

language [6], [7] that may cause different results [4].

There are many researches on Thai morphological analysis

[8] which show the differences of Thai language from others

in terms of phonology, morphology, and syntax levels.

Furthermore, Thai language has a rich morphology which

allows for a very detailed elaboration of events. Therefore,

this linguistic factor may affect the choice of methods used in

model development and experiment.

There are several methods of NLMs, e.g., word-level Long

Short-Term Memory Network (LSTM) which has been the

most popular method. However, in recent years, people have

begun to use the combination of word-level and character-

level LSTM networks in the experiments [4], [5], [9]. Some

studies showed that this method could play an important role

in improving the search of infrequent words and even Out-

Manuscript received January 15, 2020; revised February 27, 2020.

The authors are with the Computer Engineering Department, King

Mongkut’s University of Technology Thonburi, Thung Khru, Bangkok,

Of-Vocabulary (OOV) words [10]. In addition, it helped

dealing with morphemes such as prefixes, roots, and suffixes.

The combination of word-level and character-level LSTMs

outperformed word-level LSTM with fewer parameters on

languages with rich morphology.

However, training deep neural network with number of

parameters on a small dataset can overfit the neuron network

model. To regularize the model, dropout and batch

normalization are also considered. Dropout is a regularization

technique that deactivates few random neurons in the neural

network in order to solve the problem of overfitting in neural

networks [11]. Batch normalization, on the other hand,

regularizes the model by reducing internal covariate shift and

improving an accuracy of the model [12]. Dropout and batch

normalization LSTMs have never been implemented together

in NLM, especially in Thai. Therefore, this research focuses

on designing and implementing Thai LM using the

combination of character-level and word-level LSTMs with

dropout and batch normalization.

II.

RELATED WORK

Deep learning is a normal neural network with a long line

of hidden layers [3]. With multiple hidden layers, deep

learning attempts to learn multiple levels of representation

and produces an output from raw inputs like words. In the last

few years, deep learning-based methods have been producing

superior performances on diverse Natural Language

Processing (NLP) tasks [13]. Since then, these methods have

been proposed to solve more challenging NLP tasks [14].

Initially, feed-forward neural networks (FNNs) were

introduced as a part of NLM approach. Later, Sundermeyer

et al. [15] began using a Recurrent Neural Network (RNN) to

predict a word on the list of words ahead, which in turn were

superseded by LSTMs, a special kind of RNN, which was

capable of learning long-term dependencies. LSTMs were

first introduced by Hochreiter and Schmidhuber [16] and

were popularized and experimented by many researchers in

the following works. LSTMs work enormously well on a

wide variety of problems and are now used extensively [17].

More importantly, they can also automatically identify

features of words. Like RNN, LSTM originally works with

word-level models. Nevertheless, typos and rare words are

ignored in word-level LSTM, as these words do not appear in

the predefined vocabulary. Although LSTM approach brings

a high degree of freedom in learning expressions of words,

information about morphemes such as prefixes, roots, and

suffixes are lost when the word is converted into an index.
10140 Thailand (e-mail: nuttanit.k@mail.kmutt.ac.th,

jaturon.harnsomburana@mail.kmutt.ac.th).

Thai Character-Word Long Short-Term Memory Network

Language Models with Dropout and Batch Normalization

Nuttanit Keskomon and Jaturon Harnsomburana

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

783doi: 10.18178/ijmlc.2020.10.6.1006

mailto:nuttanit.k@mail.kmutt.ac.th

These are the major limitations of word-level LSTM models.

Word-level LSTM models potentially capture semantic

meaning while character-level models are capable of

containing the information about morphemes. This is the

reason why sub-word level NLMs and character-level NLMs

were proposed [4], [5], [10].

Verwimp et al. [10] presented a character-word LSTM LM

which reduced both the perplexity and the number of

parameters of the model compared with baseline word-level

LM. Hence, sub-word information was able to deal with rare

and OOV words. With almost the same number of parameters

and hidden units, this model outperformed baseline word-

level LMs on both English and Dutch. Kim et al. [4]

employed a simple neural network model that depended

merely on character-level inputs. Nevertheless, predictions

were made at the word-level. This experiment outplayed

word-level and sub-word level LSTM baselines with less

parameters on languages with rich morphology such as

Arabic, Czech, French, German, Spanish, and Russian. At the

same time, a gated word-character recurrent LM was

presented by Miyamoto and Cho [5]. They pointed out the

same issue of losing information about morphemes including

OOV word problem when using word-level LM. The major

contribution of this model was that it successfully and

effectively applied the character-level information for

infrequent and OOV words as well as outplayed word-level

language models on some English corpora.

However, large neural networks that trained on relatively

small datasets can overfit the training data, which results in

poor performance. Dropout and batch normalization are the

regularization methods that can fix this overfitting problem.

Dropout is a successful regularization method when working

with FNNs [11]. However, Bayer et al. [18] addressed that

conventional dropout did not perform well with RNN due to

the increasing level of noises from the recurrence. Zaremba

et al. [19] proposed a solution by applying dropout to the

subset of RNN connections. Then, they used batch

normalization to regularize the model and reduce the need for

dropout. Ioffe et al. developed a method to address various

issues related to the training of deep neural networks, which

batch normalization was able to produce significant

improvements in terms of the number of iterations required

to train the network. It initially came to fix the problem of

internal covariate shift, which was the change in the

distributions of a learning system of a deep neuron network

(DNN) [12]. Meanwhile, the input of each layer of DNNs was

affected by parameters in every input layer. Batch

normalization was able to reduce internal covariate shift by

fixing the means and variances of each input layer. Bjorck et

al. [20] stated that batch normalization helped during

optimization and improved the final test accuracy. It was able

to generalize well because the usage of large learning rates.

Later, Chen et al. [21] finally combined batch normalization

with dropout to construct independent activations for neurons

in each intermediate weight layer in order to overcome the

high computational complexity to perform independent

components analysis.

III. THAI CHARACTER-WORD LSTM LANGUAGE MODEL

The framework of the proposed method is divided in four

parts; dataset and data preprocessing, long short-term

memory network (LSTM), our character-word LSTM

architecture, batch normalization, and evaluation method.

 Dataset and Preprocessing

This work used BEST2010, the Thai corpus of about 1

million words, from National Electronics and Computer

Technology Center (NECTEC) [22]. NECTEC is a dynamic

organization responsible for the development of information

technology in Thailand. The corpus was compiled from

articles, news, encyclopedias, and novels. BEST2010 corpus

also covered word segmentation, entity recognition (NER),

and abbreviations which were required before implementing

LM.

The corpus was divided into 3 parts: (1) Approximately

80% was chosen as training set, (2) 10% as validation set, and

(3) 10% as test set. This corpus had already segmented words

and NER process, so we did not need to process them in the

data preprocessing, but there were unnecessary symbols and

characters to be eliminated. Almost all symbols were

discarded except “.” which was required for various

abbreviations. Fig. 1 shows the example of the training corpus

after cleaning.

Fig. 1. Example of the training corpus.

There was also a character data needed for the experiment

of character-word LSTM model. The character data was

created by separating the character for every word in Thai

corpus.

Fig. 2. Example of the character file.

This character data was only used in character-word LSTM

models. the character of word was separated into a file of each

character’s position. For example, characters at position 0 of

all words in the training corpus were collected together in a

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

784

file call “char_train_0” as in Fig. 2, which was processed

from the beginning of each word.

Nevertheless, the number of character files that we had to

prepare depends on our setup. In this experiment, the default

number of characters was 10 (character’s position of 0 to 9).

We limited to only 10 characters because there were few

words that had more than 10 characters, which made the data

after the 10th position of character unnecessary.

 Long Short-Term Memory Network (LSTM)

LSTMs are outstandingly performed to avoid the problem

of long-term dependency. LSTMs automatically recognize

information for long periods of time. They work extremely

well on a wide variety of challenging problems. More

important, they can also seize features of words. LSTMs have

the form of chain of repeating modules. Instead of having a

single neural network layer in the repeating module like

RNNs, LSTMs have four layers collaborating in a very

exclusive way. Two horizontal lines running through the top

and bottom of the diagram in Fig. 3 show that LSTMs allow

both changed input that goes in their special four layer and

unchanged information that go through the top diagram

collecting the information in long term memory.

Fig. 3 The diagram of LSTM.

LSTMs also consist of three gates to control the cell state.

Using these gates, the LSTM capable of eliminating or adding

information to the cell state. Firstly, LSTM takes input 𝑋𝑡,

𝐻𝑡−1, 𝐶𝑡−1 for producing 𝐶𝑡 and 𝐻𝑡 using (5) and (6).

𝑓𝑡 = 𝜎(𝑋𝑡 × 𝑈𝑓 + 𝐻𝑡−1 × 𝑊𝑓) (1)

𝑐�̅� = 𝑡𝑎𝑛ℎ(𝑋𝑡 × 𝑈𝑐 + 𝐻𝑡−1 × 𝑊𝑐) (2)

𝑖𝑡 = 𝜎(𝑋𝑡 × 𝑈𝑖 + 𝐻𝑡−1 × 𝑊𝑖) (3)

𝑜𝑡 = 𝜎(𝑋𝑡 × 𝑈𝑜 + 𝐻𝑡−1 × 𝑊𝑜) (4)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝑐�̅� (5)

𝐻𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (6)

Here * is the element-wise multiplication, + is the element-

wise addition, σ is the element-wise sigmoid, and tanh are

hyperbolic tangent functions. W and U is weight vectors for

forget gate (f), candidate (c), input gate (i), and output gate (o)

which are calculated from (1)-(4).

 Character-Word LSTM Architecture

Before putting the information through LSTM layer, we

have to produce the output vector of word embedding first.

Word embedding is usually produced from word input alone.

However, in this character-word LSTM model, word

embedding is a concatenation of character and word input. As

in Fig. 4, the output vector comes from concatenating the

word embedding with embeddings of the characters occurring

in that word.

Fig. 4. Our Character-word LSTM architecture.

After getting the output vector of word embedding, the

output vector is used as an input to LSTM LM (t) and process

together with the output of LSTM LM from the previous

process (t-1). Finally, in the output layer, probabilities for the

next word are calculated using a softmax function.

 Batch Normalization

Batch normalization not only reduces overfilling by adding

some noise to the layer’s activation, but it also normalizes the

input of each layer to cover the internal covariate shift

problem due to the change in network parameters during

training. batch normalization works by fixing the means and

variances of each layer's inputs.

When 𝑥 is the value in mini-batch 𝐵 = {𝑥1,…,𝑚} and we

want to learn the parameter 𝛾 and 𝛽 , we can calculate the

mean and variance of mini-batch using (7) and (8). Then, we

can normalize using (9) and calculate the output of batch

normalization using (10).

𝜇𝐵 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 (7)

𝜎𝐵
2 =

1

𝑚
∑ (𝑥𝑖 − 𝜇𝐵)2𝑚

𝑖=1 (8)

𝑥𝑖 =
𝑥𝑖−𝜇𝐵

√𝜎𝐵
2+𝜖

 (9)

𝐵𝑁𝛾,𝛽(𝑥𝑖) = 𝛾𝑥𝑖 + 𝛽 (10)

In order to use batch normalization with LSTM layers, we

used (11) to update forget gate, candidate, input gate, and

output gate. Then, we produced 𝐶𝑡 and 𝐻𝑡 using (12) and (13).

(
𝑓𝑡
�⃛�𝑡
𝑖𝑡
𝑜𝑡

) = 𝐵𝑁(𝑈𝑥𝑋𝑡; 𝛾𝑥𝛽𝑥) + 𝐵𝑁(𝑊ℎ𝐻𝑡−1; 𝛾ℎ𝛽ℎ) (11)

𝐶𝑡 = 𝜎(𝑓𝑡) × 𝐶𝑡−1 + 𝜎(𝑖𝑡) × 𝑡𝑎𝑛ℎ(𝑐𝑡) (12)

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

785

𝐻𝑡 = 𝜎(𝑜𝑡) × 𝑡𝑎𝑛ℎ(𝐵𝑛(𝐶𝑡; 𝛾𝑐𝛽𝑐)) (13)

 Evaluation Method

Language models are usually evaluated using perplexity

[4], [5]. The perplexity of a language model on a test set is

the inverse probability which is normalized by the number of

words. Because of the inverse, the higher conditional

probability of the word sequence decreases the value of the

perplexity. When evaluating a language model, a good

language model is the one that produce higher probabilities

to the test data. This means the lower value of the perplexity

coherently raises the quality of the language model as it fits

to our test data example. Perplexity over the test set was

computed as in (14).

𝑃𝑃(𝑊) = exp [
1

𝑁
(− ∑ 𝑙𝑜𝑔(𝑃(𝑤𝑖|𝑤𝑖−1 , 𝑤𝑖−2 , …))𝑁

𝑖−1)] (14)

For the test data, since the performance is based on the

probability of the test set, it was important that the test data

had to be new and unseen example sentences or contexts. Test

set had to be as large as possible, because a small test set may

be accidentally unrepresentative.

IV. EXPERIMENTAL RESULTS

This thesis corresponds baseline character-word LSTM

with the dropout value (the percentage of neurons to be

dropped) and batch normalization method. And because the

evaluation of traditional models is also needed to compare

with the proposed model, therefore, eight LSTM models were

tested in this experiment using Thai dataset in the conclusion

of this section, which were:

1) Word level LSTM - This model is used as a baseline

model for comparing with the proposed model.

2) Word level LSTM with 0.25/0.50/0.75 of dropout values

(25%/50%/75% of neurons are dropped).

3) Word level LSTM with batch normalization.

4) Word level LSTM with both 0.25/0.50/0.75 of dropout

values and batch normalization

5) Character-word LSTM

6) Character-word LSTM with 0.25/0.50/0.75 of dropout

values

7) Character-word level LSTM with batch normalization

8) Character-word level LSTM with both 0.25/0.50/0.75 of

dropout values and batch normalization

All LSTM models in this section shared the same LSTM

LM architecture of 3 layers and 200 hidden units in which the

total size of the embedding layer was equal to the size of the

hidden layer. All models were run with 15 epochs. In the first

6 epochs, the learning rate was set to 1. After that, they were

applied an exponential decay. The weights were randomly

initialized with uniform random variables between -0.1 and

0.1. All models were trained using stochastic gradient decent

(SGD) with 20 mini-batch size, where the number of steps

used for enrolling for training with backpropagation through

time was 20. Bias was set to zero in all models. The number

of characters added to a word for character-word LSTM

model is fixed which is 10 in this proposed work, choosing

from the experiments conducting from n=1 up to n=10. If a

word is longer than n characters, only the first n characters

are added. If the word is shorter than n, it is padded with a

special symbol.

In this section, a performance analysis using perplexity was

proceeded to compare results from all models which was

separated into 4 sub-sections as follow.

 Comparing Baseline Word-Level LSTM with

Character-Word LSTM

Fig. 5. Perplexity of word-level LSTM and character-word LSTM.

Here BW is baseline word-level LSTM, CW is character-

word LSTM, and CE is character embedding used in these

models.

According to the graph in Fig. 5, almost all perplexity

values of character-word LSTMs are better than baseline

word-level LSTM. The best value is when the number of

characters added is 8 and has character embedding size of 15

(232.836), which better than the baseline 9.03%. The worst

perplexity value is when the number of characters added is 15

and has character embedding size of 1 (258.229).

 Comparing Models When Adding Dropouts

TABLE I: PERPLEXITIES OF MODELS WHEN ADDING DROPOUT VALUES

Models Perplexity

BW 255.958

W+DO25 262.945

W+DO50 215.151

W+DO75 214.096

CW 232.836

CW+DO25 260.695

CW+DO50 206.562

CW+DO75 201.940

Fig. 6. Perplexity of models when adding dropout values.

In Table I, W+DO25, W+DO50, and W+DO75 are word-

level when adding 25%, 50%, and 75% dropout, respectively.

The perplexity of character-word LSTM model with 75%

dropout is better than every value produced from baseline as

in Fig. 6. The best value is when number of characters added

is 7 with character embedding size of 20 (201.940), which

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

786

better than baseline up to 21.10%. By comparison, the

perplexity of character-word LSTMs with 0.25 dropout value

are greater than the baseline but they were improved when the

dropouts are 0.50 and 0.75, respectively.

 Comparing Models When Adding Batch

Normalization

TABLE II: PERPLEXITIES OF MODELS WHEN ADDING BATCH

NORMALIZATION

Models Perplexity

BW 255.958

W+BN 238.018

CW 232.836

CW+BN 222.491

BN in Table II is batch normalization adding to the model.

The result shows that every perplexity value of character-

word LSTMs with batch normalization better than baseline

word-level LSTM as in Fig. 7. The best value is when the

number of characters added is 9 and has character embedding

size of 20 (222.491), which better than baseline 13.08%.

However, comparing with the results of models adding 50%

and 75% dropout in Table I, adding dropout provides better

performance than adding batch normalization.

Fig. 7. Perplexity of models when adding batch normalization.

 Comparing Models When Adding Dropout and Batch

Normalization

TABLE III: PERPLEXITIES OF MODELS WHEN ADDING DROPOUT VALUES

AND BATCH NORMALIZATION

Models Perplexity

BW 255.958

W+DO25+BN 275.641

W+DO50+BN 218.782

W+DO75+BN 208.078

CW 201.940

CW+DO25+BN 273.817

CW+DO50+BN 213.970

CW+DO75+BN 199.909

From the result in Table III, the perplexity of character-

word LSTM with 75% dropout and batch normalization is

better than ever values produced from baseline. The best

value is when number of characters added is 8 with character

embedding size of 5 (199.909), which better than baseline up

to 21.90%. By comparison, the perplexity of character-word

LSTMs with 0.25 dropout value and batch normalization are

greater than the baseline but they were improved when the

dropouts are 0.50 and 0.75, respectively.

From Fig. 8, it can be seen that the best result was achieved

by character-word LSTM model with 75% of neuron dropout

and batch normalization.

Fig. 8. Perplexity of models when adding both dropout and batch

normalization.

V. CONCLUSION

This paper design and develop LSTM LM for Thai

language. Eight LSTM models had been tested on Thai

dataset of 1 million words and compared based on the

perplexity value. Word-level LSTM model was used as a

baseline method. Character-word LSTM model, our main

model to experiment, was created by concatenating word and

character embedding before putting them through LSTM

layers. Various numbers of characters concatenating together

with the word had been tested. And the perplexity of

character-word LSTM model was less than baseline word-

level at every proportion of character embedding.

Moreover, dropout and batch normalization were applied

to the models to mitigate the problem of overfitting. By

adding dropout, the models performed better compare with

baseline. This is because increasing dropout makes the model

more robust as each layer does not have to depend on other

layers, causing each layer to develop itself to work better on

its own. Adding batch normalization to the model, even

though it improves the performance of baseline, the results

are worse than adding dropout. Finally, both dropout and

batch normalization were added to models and the result

shows that they gave the best performance on this dataset.

For further studies, there are two main points to be

considered. First, there might be better procedures to

incorporate words with characters that are not the direct

concatenation. For example, the study may implement a

character-level LSTM and a word-level LSTM separately and

combine them later in the process or the study may have two

vectors of character information and word information

instead of one-hot vector from the word embedding. Second,

this paper used batch normalization in order to raise the

performance of the model, which layer normalization can be

instead considered to investigate its effect over this character-

word LSTM model.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Nuttanit Keskomon had designed and experimented the

models including analyzed the results data and written the

report. Jaturon Harnsomburana had given suggestions for

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

787

conducting the experiment and adjusted the writing of the

report. All authors had approved the final version.

ACKNOWLEDGMENT

Nuttanit Keskomon would like to express my appreciation

to advisor, Dr. Jaturon Harnsomburana for his guidance and

kindness. And thank my family for every support that have

given.

REFERENCES

[1] D. Anson, P. Moist, M. Przywara, H. Wells, H. Saylor, and H. Maxime,

“The effects of word completion and word prediction on typing rates

using on- screen keyboards,” Assistive Technology, vol. 18, no. 2, pp.

146-154, 2006.

[2] M. Herold, E. Alant, and J. Bornman, “Typing speed, spelling accuracy,

and the use of word-prediction,” South African Journal of Education,

vol. 28, pp. 117-134, 2008.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT

Press, pp. 162-412, 2016.

[4] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware

neural language models,” in Proc. the Thirtieth AAAI Conference on

Artificial Intelligence, Phoenix, Arizona, pp. 2741-2749, February 12-

17, 2016.

[5] Y. Miyamoto and K. Cho, “Gated word-character recurrent language

model,” in Proc. the 2016 Conference on Empirical Methods in Natural

Language Processing, Austin, Texas, pp. 1992-1997, November 1-5,

2016.

[6] N. Wangkangwan, “Contrastive structures between English and Thai:

Their applications to translation,” Dept. Western Languages,

Srinakharinwirot Univ., Bangkok, Thailand, 2005.

[7] I. T. Endarto, “Comparison between English loanwords in Thai and

Indonesian: A comparative study in phonology and morphology,” in

Proc. 3rd Asian Academic Society International Conference:

Sustainable Development of ASEAN Community, Bangkok, Thailand,

May 13-14, 2015.

[8] A. Kawtrakul and C. Thumkanon, “A statistical approach to Thai

morphological analyzer,” in Proc. the 5th Workshop on Very Large

Corpora, M. Young, The Technical Writer's Handbook, Mill Valley,

CA: University Science, 1997.

[9] S. C. Xie, R. Rastogi, and M. Chang, “Deep poetry: Word-level and

character-level language models for shakespearean sonnet generation,”

Bachelor Thesis, Dept. Computer Science, Stanford Univ., Stanford,

USA, 2017.

[10] L. Verwimp, J. Pelemans, H. Van Hamme, and P. Wambacq,

“Character-word LSTM language models,” European Chapter of the

Association for Computational Linguistics (EACL) 2017, Valencia,

Spain, pp. 417-427, April 2017.

[11] N. Srivastava, “Improving neural networks with dropout,” Ph.D. thesis,

Toronto Univ., Ontario, Canada, 2013.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proc. the 32nd

International Conference on Machine Learning, JMLR: W&CP, vol.

372015 Lille, France, 2015.

[13] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P.

Kuksa, “Natural language processing (almost) from scratch,” Journal

of Machine Learning Research, vol. 12, pp. 2493-2537, March 2011.

[14] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in

deep learning based natural language processing,” IEEE

Computational Intelligence Magazine, vol. 13, pp. 55-75, November

2018.

[15] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to

recurrent LSTM neural networks for language modeling,” IEEE/ACM

Transactions on Audio, Speech and Language Processing (TASLP), vol.

23, no. 3, pp. 517-529, February 2015.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, pp. 1735-1780, December 1997.

[17] H. El-Amir and M. Hamdy, Deep Learning Pipeline: Building a Deep

Learning Model with TensorFlow, Apress; 1st ed., 2019, pp. 433-438.

[18] J. Bayer, C. Osendorfer, D. Korhammer, N. Chen, S. Urban, and P. van

der Smagt. (November 2013). On fast dropout and its applicability to

recurrent networks. [Online]. Available:

http://arxiv.org/abs/1311.0701

[19] W. Zaremba, “Recurrent neural network regularization,” in Proc.

International Conference on Learning Representations (ICLR 2015),

San Diego, CA, USA, 2014.

[20] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger,

“Understanding batch normalization,” in Proc. 32nd Conference on

Neural Information Processing Systems (NeurIPS 2018), Montréal,

Canada, 2018.

[21] G. Chen, P. Chen, Y. Shi, C. Hsieh, B. Liao, and S. Zhang. (May 2019).

Rethinking the usage of batch normalization and dropout in the training

of deep neural networks. [Online]. Available:

http://arxiv.org/abs/1905.05928

[22] NECTEC. (December 2009). BEST2010. NECTEC. [Online]

Available: http://thailang.nectec.or.th/downloadcenter/

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Nuttanit Keskomon is a master student in the

Department of Computer Engineering, King

Mongkut's University of Technology Thonburi,

Bangkok, Thailand. She received a bachelor’s degree

in computer engineering from King Mongkut's

University of Technology Thonburi in 2015. Her

research of interests are natural language processing,

machine learning, big data analysis, and high

performance computing.

Author’s formal

photo

International Journal of Machine Learning and Computing, Vol. 10, No. 6, November 2020

788

http://arxiv.org/abs/1905.05928
http://arxiv.org/abs/1905.05928
https://creativecommons.org/licenses/by/4.0/

