
  

 

Abstract—Thailand and many countries in the Southeast 

Asia have long been suffered from the regional smoke-haze 

incidences. Smoke-haze is a kind of air pollution event 

frequently occurred from forest fires that had been 

intentionally set for vegetation purpose. The smoke-haze can 

cause serious health problem from high concentrations of small 

particulate matters that can retain in the lung or even spread 

through the whole body to cause obstruction in major organs.  

In the northern part of Thailand, smoke-haze normally occurs 

during the dry season from late January to early April with the 

peak polluted air around March. Controlling burning activity 

is an obvious solution but impractical when burning areas are 

in remotely high mountains that are hard to reach by ground 

officers. Monitoring incidences as well as estimating pollution 

level are more or less efficient and practical ways to handle the 

smoke-haze situation. We thus propose the application of 

machine learning technology to learn smoke-haze patterns 

from historical events. The specific approach used in our work 

is the cluster analysis with the k-means and Kohonen 

self-organizing map algorithms. The cluster with serious 

pollution effect is then further analysed to induce the 

predictive regression model using the meteorological factors. 

The built model can serve as a predictive pattern useful for 

invoking an early warning sign for air pollution awareness.   

 

Index Terms—Air pollution predictor, cluster analysis, 

multivariate regression, smoke-haze incidence modeling.  

 

I. INTRODUCTION 

Important air pollution incidences in Asia relates to haze. 

The natural haze phenomenon has been defined by the World 

Meteorological Organization as extremely small and dry 

particles suspending in the atmosphere with tremendous 

amount to cause dusky sky [1]. Winter haze events in many 

areas of China cause health problems from the toxic air 

pollutants [2]-[5]. Many forecasting models and simulation 

methods have been applied to study the transport 

characteristics of haze events [6]-[11].  

Unlike haze that can occur naturally, smoke-haze is 

caused by humans to set large area of fires mainly for 
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agricultural purpose. Countries in the Southeast Asia, 

including Thailand, have long been suffered from the 

smoke-haze incidences [12]-[16]. Smoke-haze has also 

recently been a problem in Russia [17]. High concentrations 

of hazardous heavy metals and small particulate matters (PM) 

are dangerous constituents of haze and smoke-haze. PM10 

and PM2.5 are particulate matters with the aerodynamic 

diameters less than or equal to 10 and 2.5 micrometers, 

respectively. The smaller PM, the more harmful because 

these extremely tiny particles can retain in the human lung 

and spread through the whole body. PM also causes airway 

damages, cardiovascular impairments, and adverse effects in 

infants [18].  

In the Southeast Asian countries, smoke-haze is a periodic 

and transboundary incidence occurred during the dry season 

[19]-[22]. The man-made forest fire season in Thailand can 

start from the late January and extend possibly to the last 

week of April or even early May, depending on the coming of 

rain. In northern Thailand, the extent and intensity of 

fire-related air pollution have been increasing recently. 

Controlling burning is obviously an effective solution, but it 

is quite impractical because there are so many large areas in 

valleys and high mountains almost unreachable by officers. 

Monitoring burning incidences as a warning sign is more or 

less a feasible way for handling in advance the smoke-haze 

situation [23]. 

We thus propose in this paper a data-driven modeling, also 

known as data mining, as an alternative approach to 

traditional simulation method. The advantage of data mining 

method is its automatic approach on deriving, or learning, 

discriminative patterns form the provided historical events as 

training data. The derived model of our approach is a pattern 

of smoke-haze occurrence that can transport among 

mountain regions. Our study area and details of data records 

are presented in Section II. Our model building strategy is 

explained in Section III. Model evaluation results are 

presented in Section IV. We finally conclude the paper in 

Section V. 

 

II. STUDY AREA AND DATA CHARACTERISTICS 

A. Study Area 

Northern Thailand is the focus area of our study because of 

its intensity in smoke-haze from the burning of land. The 

terrain in the north is forested and mountainous, as shown in 

Fig. 1. The smoke-haze problem normally starts from the 

border provinces such as Chiang Rai in the up north and Mae 

Hong Son on the west side. These two provinces have many 
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high mountains along their borders to neighbor countries: 

Lao on the north and Myanmar on the west. Therefore, they 

are vulnerable to smoke-haze transport from the 

neighborhoods. Forest fires in Chiang Rai and Mae Hong 

Son also affect other valley provinces such as Lamphun and 

Lampang. The main areas of our study are thus mountainous 

regions along the Lao and Myanmar borders and provinces in 

lower river valleys. 

 

  
Fig. 1. The study area comprising of nine northern provinces (left) and terrain 

characteristics (right, source: https://maps-for-free.com). 

 
TABLE I: DATA ATTRIBUTES AND THEIR EXPLANATION 

Att. # Meaning 

1 Day 1 to 121 (1 January - 30 April 2016) 

2 Average PM10 (ug/m3) of Chiang Mai province on each day 

3 Average PM10 (ug/m3) of Lampang province on each day 

4 Average PM10 (ug/m3) of Lamphun province on each day 

5 Average PM10 (ug/m3) of Chiang Rai province on each day 

6 Average PM10 (ug/m3) of Mae Hong Son province on each day 

7 Average PM10 (ug/m3) of Nan province on each day 

8 Average PM10 (ug/m3) of Phrae province on each day 

9 Average PM10 (ug/m3) of Phayao province on each day 

10 Average PM10 (ug/m3) of Tak province on each day 

11-13 Temperature (°C) in high, low, and average categories each day  

14-16 Dew point (°C) in high, low, and average categories each day  

17-19 Humidity (%) in high, low, and average categories each day  

20-22 
Sea level pressure (hPa) in high, low, and average scales each 

day  

23-25 Visibility (km) in high, low, and average categories each day  

26-27 Wind speed (km/h) in high and average categories each day  

 

B. Data Attributes 

The start of the dry season around mid to late February is 

the onset of slash and burn farming. The lingering smoke 

from the fires causes serious pollution problem to people 

living along the valley and lowland areas during March to 

April every year. We thus collect air pollution data, with a 

specific attention to PM10, of nine provinces in the 

mountainous and valley areas.  

The five mountainous provinces (Fig. 1) are: 

(1) Mae Hong Son on the west,  

(2) Chiang Mai on the central north,  

(3) Chiang Rai on the up north,  

(4) Tak on the west of lower northern area, and  

(5) Nan on the farthest to the east.  

The river valley provinces (Fig. 1) are:  

(6) Lamphun,  

(7) Lampang,  

(8) Phayao, and  

(9) Phrae. 

Pollution data are collected from the Air Quality and Noise 

Management Bureau of Thailand [24]. The PM10 data from 

these nine provinces are collected in 2016 from January to 

April, totaling of 121 days. Each data record contains 

24-hour average PM10 values from ground stations in each 

province. For some missing PM10 records, we impute with 

the nearest neighbor technique.  

We also include data collected from the local airport 

stations [25] as meteorological factors. The data attributes 

used in our modeling process are summarized and shown in 

Table I. 

 

III. MODELING METHODOLOGY 

The steps in our method for geographical polluted area 

clustering and pollution predictive modeling are illustrated 

in Fig. 2. The first step is data collection. The PM10 data [24] 

from the ground stations in nine provinces are collected from 

the first of January to the last day of April 2016. We average 

PM10 values from all stations in each province and use this 

mean as the pollution value for that province. To gain better 

understanding regarding the PM10 episodes of the nine 

provinces, we have to explore the characteristics of PM10 

occurrences and levels using a graph plot. 

 

 
Fig. 2. Major steps in clustering and modeling haze occurrences. 

 

The next step is checking for data completeness. There 

exist some missing values in the PM10 records from some 

stations. We therefore impute the missing values with the 

nearest neighbor method that estimates potential PM10 value 

from the closest station. 

After completing the missing PM10 values, all the 121 

data records are clustered to form groups of provinces 

experiencing the same level of air pollution due to 

smoke-haze. We apply two automatic data clustering 

algorithms for this step including the k-means clustering [26] 

and the Kohonen self-organizing map [27]. The main reason 

for applying two clustering methods is to select the best 

approach that yields reasonable result suitable for the 
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subsequent step of predictive model building.  

Our criteria for selecting clustering results are number of 

groups that should much less than nine, which is the number 

of provinces to be clustered, and the silhouette coefficient 

that should higher than 0.5 to reflect a good formation of 

clusters. 

We then consider from the clustering results to extract 

group of provinces that experience the strongest impact from 

air pollution due to smoke-haze. The meteorological data 

(attributes 11-27 in Table I) for that specific group are then 

used to build a predictive model for estimation PM10 level 

from the meteorological proxy. 

 

IV. EXPERIMENTATION AND RESULTS 

Based on the design of our analysis methodology, there are 

three main phases of our work: preliminary data exploration, 

automatic data clustering based on the PM10 concentrations 

in each province, and the creation of predictive model to 

estimate amount of PM10 using the meteorological factors 

such as humidity, wind speed, and so on as pollution 

predictors. The results from each phase are demonstrated and 

explained in the following subsections. 

A. Data Exploration 

To correctly planning the analysis experimentation, we 

have to firstly explore the pollution situation based on the 

observed PM10 concentrations from the first day of January 

extending to the last day of May in year 2016. The levels of 

average PM10 from the ground stations in each province are 

displayed in Fig. 3.  

We can observe from the pollution level distribution that 

the peak period of air pollution mainly caused by smoke-haze 

is between days 61 to 121, which are March to April. During 

the peak period the average level of PM10 concentration 

among the nine provinces is around 105, whereas before this 

peak period the pollution level is at 57. 

The PM10 concentration level higher than 101 is 

considered harmful due to the UK standard [28] (as shown in 

Table II). We therefore partition dataset into two subsets: 

data during days 1-60 and those during days 61-121. 

Pollution data in May are excluded from further 

experimentation because our focus is on the peak period of 

smoke-haze events. The prepared two data subsets of average 

PM10 for each of the nine province are used in the next step 

of automatic clustering.  

 

 
Fig. 3. PM10 concentrations (ug/m3) in the nine northern provinces during Jan-May (or day 1-152) of the year 2016 

 
TABLE II: AIR POLLUTION INDEX FROM THE CONCENTRATION OF PM10 

POLLUTANT 

Category 
Index 

Level 

PM10 

Particles 
Health Impact 

 1 0-16 Minimal 

Low 2 17-33  

 3 34-50  

 4 51-58 Minor breathing discomfort to 

Moderate 5 59-66 sensitive people 

 6 67-75  

 7 76-83 Breathing discomfort to asthma 

High 8 84-91 patients, elderly, and children 

 9 92-100  

Very high 10 
101 or 

more 

Breathing discomfort to all and 

serious impact on people with 

heart or lung disease 

 

B. Cluster Analysis Results 

We perform cluster analysis twice with two different data 

subsets: PM10 concentrations from nine provinces during 

days 1-60 and PM10 during days 61-121. The two clustering 

algorithms adopted in our experimentation is k-means and 

Kohonen self-organizing map (SOM). The result (shown in 

Fig. 4) turns out that the k-means clustering yields a smaller 

number of clusters than the Kohonen SOM. Even though the 

silhouette coefficient value of k-means is lower than the 

value obtained from the Kohonen SOM, we choose the 

k-means method from its reasonable grouping results.  

 

 
Fig. 4. Comparative performance of k-means and Kohonen SOM. 

 

From both experiments performed on the two data subsets, 

we obtain the same number of clusters, that is, five. But 

provinces in each group are different. Details of clustering 

results are summarized in Table III and geographically 

shown in Fig. 5. 

From the clustering results of provincial locations based 
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on the PM10 concentrations, we can notice (in Table III) that 

at the non-peak period during January-February the air 

quality of the four provinces (Chiang Rai, Mae Hong Son, 

Phayao, Nan) in cluster 5 is good with the low level of PM10 

pollutant. The air quality in these areas drastically changes in 

an unsatisfactory way during the peak period of burning 

(March-April). The pollution level in the four provinces is 

worsen rapidly from the low level (index = 3) to the harmful 

level (index = 10) in less than a month. 
 

TABLE III: GEOGRAPHICAL-BASED CLUSTERING RESULTS FROM THE PM10 

CONCENTRATIONS DURING PEAK AND NON-PEAK PERIODS 

Period 
Cluster 

no. 

Provinces in 

a cluster 

Average PM10 

of a cluster 

Pollution 

level 

Non-peak 1 Lamphun 77.33 7 

(1 January - 2 Tak 72.05 6 

 29 February) 3 Phrae, Lampang 64.98 5 

 4 Chiang Mai 56.29 4 

 

5 Chiang Rai,  

Mae Hong Son, 

Phayao, Nan 

46.11 3 

Peak 1 Chiang Rai 143.68 10 

(1 March - 2 Mae Hong Son 119.06 10 

 30 April) 3 Phayao, Nan 108.68 10 

 4 Tak, Phrae, Lampang 97.39 9 

 5 Chiang Mai, Lamphun 88.24 8 

 

 

 

  
(a)  Clusters of provinces  

prior to the peak 

smoke-haze period 

 (b)  Clusters of provinces  

during the peak pollution 

period 

Fig. 5. Clustering results of the nine provinces based on the PM10 

concentrations during (a) Jan-February, 2016 and (b) March-April, 2016. 

 

Among the most affected four provinces, Chiang Rai is the 

worst one with the highest PM10 concentration at 309 g/m3 

in late March. We are therefore interested in deriving a 

predictive model to estimate the pollution level of Chiang Rai 

province using meteorological factors. 

C. Multivariate Linear Regression Model to Predict 

PM10 

There are six meteorological indexes used in the predictive 

model creation including the temperature (°C), dew point 

(°C), humidity (%), sea level pressure (hPa), visibility (km), 

and wind speed (km/h). These parameters, except wind speed, 

are further categorized into three groups: low, high, and 

average. The wind speed are categorized as high and average. 

Therefore, there are 17 factors used in the model building 

process.  

We apply the multivariate linear regression technique to 

derive a predictive model to estimate the level of PM10 to 

occur in Chiang Rai province. The obtained model is shown 

in Fig. 6. Among the 17 predictors, low humidity and 

average visibility distance are two most important factors to 

estimate pollution level. Importance of the best ten predictors 

are graphically shown in Fig. 7. 

 
PM10 Concentration in Chiang Rai 

           =    0.7151 * Low Temperature 

              + 7.641 * Low Humidity 

              + 4.069 * Low Sea Level Pressure 

              + 4.237 * High Temperature 

              + (-7.658) * Average Temperature 

              + 5.303 * High Dew point  

              + (-4.993) * Average Dew point 

              + (-7.063) * Low Dew point 

              + 2.269 * High Humidity 

              + (-7.974) * Average Humidity 

              + 5.552 * High Sea Level Pressure 

              + (-12.39) * Average Sea Level Pressure 

              + (-0.055) * High Wind speed 

              + (-0.081) * Average Wind speed 

              + 0.513 * High Visibility 

              + (-17.28) * Average Visibility 

              + (-15.08) * Low Visibility 

              + 3239.8 

Fig. 6. A predictive model to estimate amount of PM10 in Chiang Rai. 

 

 
Fig. 7. Importance of predictors to estimate pollution level in Chiang Rai. 

 

From the multivariate linear regression relationship and 

the importance of predictors, we can estimate the high 

pollution level when the humidity is low, the average 

visibility distance is short, and the sea level pressure is low. 

Wind speed has negative correlation to the PM10 

concentration; that means wind can reduce level of air 

pollution. 

 

V. CONCLUSION 

Smoke-haze is a post-harvesting event constantly occurred 

in almost every region of Thailand during late January to 

early April. In some specific areas in the north that are 

surrounded by high mountains, the small particulate matters 

from farm burning are extremely severe air pollution 

incidence. This pollution event is preventive because it is 

man-made.  
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We thus try to study the occurrence patterns of smoke-haze 

with cluster analysis and to induce predictive model from the 

historical data. Our intention is to gain some insight 

regarding smoke-haze occurrence patterns and to apply the 

predictive model as a warning tool for officers and local 

people.  

From our experimentation, we found that the technique of 

k-means clustering yielded a reasonable grouping result. The 

k-means clustering results are then analyzed to select group 

showing highest level of pollution for further analysis with 

predictive modeling.  

The best modeling technique for this specific data is 

multivariate linear regression. The correlation coefficient of 

the linear model is as high as 0.837. The mean absolute error 

of model prediction is 30.513. We thus can conclude from 

this evaluation result that the predictive model is accurate 

enough to apply for the future situation. 
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