
 

 

  
Abstract— Today’s commercially available biometric 

systems show good reliability. However, they generally lack 
user acceptance. In general, people favour systems with the 
least amount of interaction. Using gait as a biometric feature 
would lessen such problems since it requires no subject 
interaction other than walking by. Consequently, this would 
increase user acceptance. And since highly motivated users 
achieve higher recognition scores, it increases the overall 
recognition rate as well. The latest research on gait-based 
identification—identification by observation of a person’s 
walking style provides evidence that such a system is realistic 
and is likely to be developed and used in the years to come. 
This article outlines the application of gait technologies for 
security and other purposes. Gait analysis and recognition can 
form the basis of unobtrusive technologies for the detection of 
individuals who represent a security threat or behave 
suspiciously. 
 

Index Terms— Gait Recognition System, Holistic Approach, 
Model Based Approaches, Pattern Recognition 
 

I. INTRODUCTION 
Gait is not a new topic in research and scientific literature. 

It has been investigated and examined in various aspects 
over the past decades. On the one hand, research was 
inspired by medical applications to track rehabilitation or as 
a diagnostic tool. On the other hand, research was also 
driven by the sport shoe industry. Murray conducted in 1967 
[37] a systematic study to fully characterize the coordinated 
movement patterns of the various parts of the body that 
constitute the walking act. His empirical investigation was 
based on a relatively large sample set of 60 normal men in 
wide ranges of age and height. He obtained the walking 
patterns with reflective targets attached to specific 
anatomical landmarks which he illuminated with a strobe-
light flashing 20 times per second. The study suggests that 
gait is a unique personal characteristic, if all gait movements 
are considered; this indicates that gait could be used as a 
promising feature for biometric authentication. 

Later, in 1977, Cutting and Kozlowski [38] empirically 
showed that recognizing friends by their gait is indeed a 
surprisingly simple task for humans; even when stripped 
from all familiarity cues such as clothing and hairstyle. 
Light sources mounted on joints that are prominent during 
the act of walking were sufficient for identification. It is 
noteworthy that people recognized others not by using static 
properties such as height but dynamic aspects such as 
amount of arm swing, rhythm of the walker, bounciness, or 
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the length of steps. But what seems to be an easy task for 
humans must not necessarily apply to computers. 
Although those early results were encouraging and 

promising, gait has not been proposed as a biometric feature 
until recently. Possible reasons might encompass the lack of 
reliable and inexpensive sensors as well as the lack of 
processing power to handle the huge amount of data.  
All of the aforementioned methods and approaches can be 

roughly divided into two groups. Namely, the model-free 
and the model-based approaches. Model-free approaches 
have no underlying three-dimensional representation of a 
walking person and mainly rely on statistical properties of 
the acquired gait data. Conversely, the model-based methods 
have a model of the human body, or at least part of it, that is 
fit to every frame of the walking sequence. In order to fit the 
model in the frame, static parameters such as the limb 
lengths, body height, body width as well as dynamic 
parameters such as the angular velocities and walking speed 
need to be estimated. Research conducted thus far in the 
area of gait recognition has shown that gait can be reliable in 
combination with other biometrics. If we assume that palm, 
fingerprint, and iris methods belong to a different (obtrusive) 
class of biometrics, additional biometrics that could be used 
in conjunction with gait in a multibiometric system would 
be face, ear and foot pressure [2]. In a multibiometric 
system, gait and foot pressure could be used to narrow down 
the database of subjects. Subsequently, face recognition 
could be used for identification of a test subject among the 
reduced set of candidate subjects. Otherwise, the three 
biometrics could be combined altogether, e.g., using the 
techniques described in [3]. The combination of gait with 
face recognition was examined in [4] and [5]. In [5], it was 
shown that gait is more efficiently utilized in a multimodal 
framework when it is combined directly with the facial 
features rather than preceding the face recognition module 
as a filter. 

II. TERMOLOGY 
Despite the differences among walking styles, the process 

of walking is similar for all humans. A typical sequence of 
stances in a gait cycle is shown in Figure 1. A detailed 
analysis of gait phases can be found in [6]. For simplicity, 
we consider the following four main walking stances [7]: 
right double support (both legs touch the ground, right leg in 
front), right midstance (legs are closest together, right leg 
touches the ground), left double support, and left midstance. 
Although some other definitions would also be appropriate, 
in this article we define a gait cycle as the interval between 
two consecutive left/right midstances. The interval between 
any two consecutive midstances is termed half cycle. The 
time interval in which a gait cycle is carried out is called the 
gait period, whereas the walking frequency is termed the 
fundamental gait frequency. 
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III. A GENERIC GAIT RECOGNITION SYSTEM 
Gait recognition is a multistage process (see Fig 2). It is 

important that gait capturing is performed in environments 
where the background is as uniform as possible. Moreover, 
since gait recognition algorithms are not, in general, 
invariant to the capturing viewpoint, care must be taken to 
conduct capturing from an appropriate viewpoint. Preferably, 
the walking subject should be walking in a direction 
perpendicular to the optical axis of the capturing device 
since the side view of walking individuals discloses the most 
information about their gait. Once a walking sequence is 
captured, the walking subject is separated from its 
background using a process called background subtraction. 
A critical step in gait recognition is feature extraction, i.e., 
the extraction, from video sequences depicting walking 
persons, of signals that can be used for recognition. This 
step is very important since there are numerous conceivable 
ways to extract signals from a gait video sequence, e.g., 
spatial, temporal, spatiotemporal, and frequency-domain 
feature extraction. Therefore, one must ensure that the 
feature extraction process compacts as much discriminatory 
information as possible. Finally, there is a recognition step, 
which aims to compare the extracted gait signals with gait 
signals that are stored in a database. Apart from the apparent 
usefulness of gait analysis in biometric applications, gait has 
several important nonbiometric applications. 

 
Fig. 1. Different silhouette stances during a gait cycle. 

 

IV. SUMMARY ON PREVIOUS WORK 
The study of gait as a discriminating trait was first 

attempted a few decades ago from a medical/behavioral 
viewpoint [8], [9]. Murase and Sakai developed [Murase96] 
a method to efficiently calculate the spatio-temporal 
correlation for model-free moving object recognition. To 
lower the computational cost of the spatio-temporal 
correlation they reduced the dimension of the input vectors 
with an orthogonal transformation and performed the 
correlation in the resulting low-dimensional parametric 
eigenspace representation. This general approach can be 
applied not only to gait but to other moving object 
recognition problems as well. 

In 1997 Addlesse et al. proposed in [39] an Active Floor 
system. They used an array of four by four load cells to 
measure the force, perpendicular to the floor, exerted by a 
walking person. To characterize the footsteps a Hidden 
Markov Model (HMM) was trained using data acquired 
from 15 different individuals. The best HMM-configuration 
achieved a recognition rate of 91 %. 

In [40], Little and Boyd theorized an alternate video 
based method. Their description of the spatial distribution of 
optical flow yields model-free frequency and phase features 
whose variation over time is periodic. The relative phase 
difference among these periodic signals is repeatable for 

particular subjects and varies between subjects and can thus 
be used as a biometric feature. 

Huang et al. suggested two different approaches in their 
publications using characteristics extracted from video 
sequences. The first approach is based on spatial templates 
[41] of the subject’s binarized silhouette, whereas the 
second uses temporal-templates [41-42, 44-45] of the 
silhouette. In both cases a combination of an Eigenspace 
Transformation (EST) and Canonical Space Transformation 
(CST) [43] are applied to reduce data dimensionality and to 
circumvent the singularity problem that occurs in the CST, 
when the number of elements in the feature vector is higher, 
than the number of feature vectors in the training set. 

In [46], Nash et al. proposed a new model-based 
technique to allow the automated determination of human 
gait characteristics. Their technique employs a parametric 
two-line model representing the lower limbs. To speed up 
the search of the parameter space, they used a genetic 
algorithm (GA) based implementation of the Velocity 
Hough Transform (VHT) rather than an exhaustive search. 
Although their approach is promising, the accuracy of the 
estimated hip rotation patterns is still insufficient for 
biometric purposes. 

Meyer et al. described in [47] a system based on statistical 
models that performs automatic classification of different 
gaits from grey-level image sequences. In particular, they 
can differentiate between walking, running, hopping, and 
limping. To extract the trajectories of the different body 
parts they used statistical models. The classification is 
performed with discrete Hidden Markov Models (HMM). 

A different approach was followed by Orr and Bawd [48] 
who proposed a method using simple parameters extracted 
from the ground reaction force profiles (GRF). To 
characterize each footstep profile, they propose ten features 
(mean value of the profile, its standard deviation, length of 
the profile, area under the profile, x-y-coordinates of the two 
maximum points and the minimum point). The poor 
recognition rate of this simple approach limits its 
applicability for low-security environments only. However, 
the method is perfectly suitable for its intended purpose in 
the Aware Home Research Initiative (AHRI). 

In September 2000, the DARPA launched the HumanID 
program with 26 individual projects and research groups 
involved from the USA, Germany, and England. The goals 
of the project are to develop non cooperative, multimodal 
surveillance technologies for identifying humans at a 
distance under day/night, and all-weather conditions. The 
HumanID program has two phases: The initial 2 years of 
Phase I will end in late 2002 with a major evaluation. Phase 
II lasts another 2 years and continues research with the most 
promising approaches identified in the technology 
assessment at the end of Phase I. 

Although most of the research projects are still in an early 
stage, some groups have already published preliminary 
results.  

Recently, Bobick and Johnson published two papers 
[49,50] where they proposed a multi-view method that 
recovers body and stride parameters of the subjects as they 
walk. In particular they estimate four static distances: the 
vertical distance between the head an the foot, the distance 
between the head and the pelvis, the maximum distance 
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between the foot and the pelvis, and finally the maximum 
distance between the left and right foot during the double 
support phase. Instead of reporting percent of correct 
matches from a limited database (20 subjects), they 
introduced a novel confusion metric that allowed them to 
predict how their static body parameters discriminate even 
in a large population. 

Gene Greneker’s group at the Georgia Tech Research 
Institute is working on a radar device that can be used to 
record the human gait signature over a distance of up to 120 
meters. 

J. Shi’s research group at the Carnegie Mellon University 
has already published a technical report [51] detailing the 
capturing of 25 individuals walking on a treadmill in the 
CMU 3D room. The subjects performed four different 
activities: slow walk, fast walk, inclined walking, and 
walking with a ball while being filmed using six color 
cameras with different viewing angels.  

J. Phillips et al. from the NIST14 will publish a proposal 
[52] of a reference implementation of a biometric system 
using gait analysis. This baseline algorithm will be used to 
characterize the conditions under which the problem of 
identifying/authenticating people using gait is solvable Later, 
several attempts were made to investigate the gait 
recognition problem from the perspective of capturing and 
analyzing gait signals [10]–[14]. The techniques used for 
gait recognition can be divided into two categories: holistic 
(feature/appearance based) and model based. Techniques 
that address the gait recognition problem using only 
sequences of binary maps of walking human silhouettes are 
of much interest since they do not presume the availability 
of any further information, such as color or grey-scale 
information, which may not be available or extractable in 
practical cases. The main focus of algorithms is the tracking 
of silhouettes, analysis of the tracked silhouettes for feature 
extraction purposes, and recognition using the extracted 
features. A baseline method was proposed by the University 
of South Florida [15]. It was tested on a gait database that is 
tailored to the study of the impact of several factors, such as 
viewpoint, footwear, and surface, on the performance of a 
gait recognition algorithm.  

The deployment of motion fields in gait recognition was 
investigated in [13] and [16]. Although both methods 
reported good results on their own databases, they presume 
the availability of texture information, which must be used 
for the accurate computation of the motion fields. In [17]–
[20], several feature extraction techniques were proposed 
based on the calculation of projections, contours, or other 
such features from gait silhouettes. A comparison among 
different features will be presented later in this article. In 
[21], a comparison is provided of several techniques for 
improving the quality of silhouettes extracted from video 
sequences depicting humans walking. The silhouettes were 
extracted using a model-based method that produces 
silhouettes that have fewer noise pixels and missing parts. 
The resulting sequences were tested with the model-based 
algorithm in [22], and the overall system was shown to 
improve on the baseline system in [15]. To the authors’ 
judgment, the most promising approach for gait recognition 
is based on the formation, by means of averaging similar 

frames, of a limited number of representative frames for 
each sequence. This process seems to capture all structural 
information in a gait sequence while implicitly yielding 
denoised frames that can be used directly for recognition. 
This approach is taken in [23] and [24]. In [23], the 
recognition is based on the comparison of such templates, 
whereas in [24], the templates are derived in the context of 
training an exemplar- based hidden Markov model (HMM) 
that additionally takes into account the gait dynamics. All 
methods in this class yield state-of-the-art performance. 

V. GAIT CYCLE DETECTION 
For the study of gait analysis, we assume that the walking 

subject has been extracted from a gait sequence using 
standard image processing techniques. An important part of 
the gait analysis process is gait cycle detection, i.e., the 
partitioning of a gait sequence into cycles that depict a 
complete walking period. In [13], although no explicit cycle 
partitioning was attempted, a method using linear prediction 
was proposed for fitting a sinusoidal signal to the noisy 
extracted signals. In [24], an adaptive filter was used to filter 
the foreground sum signal prior to the calculation of the gait 
cycles using the minima of this signal. In [25], the 
autocorrelation of the foreground sum signal was taken to 
calculate the walking period and compute the coefficients of 
an optimal filter for the denoising of the sum signal. 

 
 

Fig. 2. Block Diagram of a Gait recognition/authentication system. 

VI.  MODEL BASED APPROACHES 
Model-based approaches employ models whose 

parameters are determined using processing of gait 
sequences [22], [26], [27], [28]. Unlike holistic approaches, 
model-based approaches are, in general, view and scale 
invariant. This is a significant advantage over the holistic 
approaches since it is highly unlikely that a test gait 
sequence and a reference sequence will be captured from 
identical viewpoints. However, since model-based 
approaches rely on the identification of specific gait 
parameters in the gait sequence, these approaches usually 
require high-quality gait sequences to be useful.  

A multiview gait recognition method was proposed in [26] 
using recovered static body parameters, which are 
measurements taken from static gait frames. Gait dynamics 
are not used. The static parameters used in [26] are the 
height, the distance between head and pelvis, the maximum 
distance between pelvis and feet, and the distance between 
the feet [Figure 3(a)]. The static parameters are view 
invariant, which makes them very appropriate for 
recognition applications. In [22], the silhouette of a walking 
person was divided into seven regions. Ellipses were fit to 
each region [Figure 3(b)] and region feature vectors were 
formed, including averages of the centroid, the aspect ratio, 
and the orientation of the major axis of the ellipse. In [27], a 
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model-based feature analysis method was presented for the 
automatic extraction and description of human gait for 
recognition. The method generated a gait signature using a 
Fourier series expansion of a signal corresponding to the hip 
rotation [Figure 3(c)]. In [28], a more detailed model was 
proposed using ellipses for the torso and the head, line 
segments for the legs, and a rectangle for each foot [Figure 
3(d)]. 

 
 

Fig. 3. Graphical Representation of parameters used in model-based 
approaches. (a) Distance used as static parameters in [26], (b) Ellipse fitting 
in silhouette regions[22], (c) Hip rotation model [27] and (d) Model using a 

combination of shapes[28]. 

VII. MODEL FREE APPROACHES 
Model free solutions operate directly on the gait 

sequences without assuming any specific model for the 
walking human. A very interesting class of holistic 
techniques merely employs binary maps (silhouettes) of 
walking humans. Such techniques are particularly suited for 
most practical applications since color or texture 
information may not be available or extractable. The contour 
of the silhouette is probably the most reasonable feature in 
this class. It can be used directly [19], or it can be 
transformed to extract Fourier descriptors [29].The width of 
silhouette was proposed in [30] as a suitable feature for gait 
feature extraction. The width w[i] of silhouette is the 
horizontal distance between the leftmost and rightmost 
foreground pixels in each row i of the silhouette [Figure 
4(a)]. Although the calculation of width signals imposes 
minimal processing load on a gait system, algorithms that 
use this feature are vulnerable to spurious pixels that often 
render the identification of the leftmost and rightmost pixels 
inaccurate. For this reason, the authors in [30] propose a 
postprocessing technique to smooth and denoise the feature 
vectors prior to their deployment in gait recognition. 
Henceforth, we assume that each gait sequence is composed 
of several binary silhouettes, denoted as s[i, j], i = 0, . . . , M 

− 1,  j= 0, . . . , N – 1. Where M, N denote the number of 
rows and columns of the silhouette, respectively. 

Let [ ]
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The efficiency of this feature is based on the fact that it is 
sensitive to silhouette deformations since all pixel 
movements are reflected in the horizontal or vertical 
projection [Figure 4(b)]. Although this feature is similar to 
the width of silhouette (note the similarity between the 
width vector and the horizontal projection vector), it is more 
robust to spurious pixels. An angular transform of the silhouette 
was proposed in [20].The angular transform divides the 
silhouettes into angular sectors and computes the average 
distance between foreground pixels and the center (ic, jc) of 
the silhouette [Figure 4(c)].  
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where, θ is an angle, Fθ is the set of the pixels in the circular 
sector [ ])2/(),2/( θθθθ Δ+Δ− and  is the 

cardinality of θF . The transform coefficients were shown to 
be a linear function of the silhouette contour. 

 
 

Fig. 4. Features extracted from binary silhouettes for gait recognition (a) 
Width of silhouette, (b) Vertical and Horizontal Projections and (c) Angular 

representation. 

 
TABLE I: ADVANTAGES & DISADVANTAGES OF THE HOLISTIC AND MODEL BASED APPROACHES 

  HOLISTIC APPROACH 
FEATURE ADVANTAGES DISADVANTAGES 
CONTOUR Sensitive to Structural Differences High Complexity, Low Robustness 
WIDTH Sensitive to Structural Differences, Low Complexity Low Robustness 
PROJECTIONS Robustness, Low Complexity Coarse Structural Representation 
ANGULAR Robustness Coarse Structural Representation 
RELATIVE PHASES Compact Representation, Scale Invariance Complicated Determination of phases 
SILHOUETTE Lossless Representation Leads to high-complexity systems 

MODEL BASED APPROACH 
FEATURE ADVANTAGES DISADVANTAGES 
STATIC PARAMETERS View Invariant, Compact Representation Difficult Capturing 
ELLIPSE PARAMETERS Compact Representation Low Robustness 
HIP ANGLE Compact Representation Low Robustness 
COMPBINATION OF 
SHAPE PARAMETERS 

Compact Representation Low Robustness 
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The silhouette itself was used in several algorithms as a 
feature. Prior to their deployment, the silhouettes in a gait 
sequence should be appropriately scaled and aligned. In 
most cases, it appears that the silhouette is at least as 
efficient as the low-dimensional features that can be 
extracted from a silhouette. 

 

VIII. FREQUENCY TRANSFORMATION OF FEATURE TIME 
SERIES 

Since walking is a periodic activity, the Fourier analysis 
of the time-domain gait signals is a very appealing approach 
as most discriminative information is expected to be 
compacted in a few Fourier coefficients, providing a very 
efficient gait representation. Therefore, taking the Fourier 
transform of the feature vector series f(t).  
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where T is the walking period, yields a new representation 
that is related to the frequency content of the originally 
extracted features. Specifically, since the transform is 
calculated in increments of the angular frequency 2π/T, 
signals extracted from gait sequences with different walking 
periods are directly comparable. In practice, however, not all 
frequency components are useful for recognition. This is 
why there are methods that use only the magnitude and 
phase of the Fourier transform at the fundamental walking 
frequency [22], [31]. In [31], it was stated that all motions in 
a gait cycle share the same fundamental frequency, and a 
system was proposed which uses optical flow for measuring 
shape oscillations. A significant conclusion reached in [22] 
was that frequency signatures yielded superior performance 
in cases where the compared gait sequences were captured 
on different days (and, therefore, the structural information 
alone was not reliable). This provides an additional motive 
for investigating frequency- domain features. In the 
experimental assessment section, we will evaluate the 
performance of a simple scheme based on the direct 
transformation of features. In this system, the entire feature 
time series is expressed as a single complex feature vector 
through application of. In Figure 6, we display such a 
representation using silhouettes.  

 
Fig. 5. Frequency signatures: a complex silhouette template computed as 

the Fourier transform of the gait sequence at the fundamental frequency. (a) 
Real part and (b) imaginary part. 

 

IX. DIMENSIONALITY REDUCTION 
A natural question arises in the context of gait analysis: 

How much information do we need to extract from a gait 
sequence in order to capture most discriminative 
information? 

On the temporal axis, it appears that shape information 
can be captured using four or five characteristic frames [7], 
[24] or feature vectors. Since several of the elements in the 
feature vectors, extracted using the techniques in the 
previous sections, usually contain information that does not 
contribute to the purpose of recognition, methodologies such 
as principal component analysis (PCA) [30], [16], [19] or 
linear discriminant analysis (LDA) [16] are used to retain 
only the important elements of the original feature vector. 
Analysis of variance (ANOVA) can also be used for the 
identification of the significant components in a gait feature 
vector. Several works achieve good performance using 
holistic features of dimension as low as 100. On the other 
hand, feature vectors consisting of model parameters would 
carry more information than feature vectors extracted using 
a holistic method. 

 

X. PATTERN MATCHING AND CLASSIFICATION                                     

Once gait information is extracted from gait sequences 
and the associated feature vectors are formed, the actual 
recognition/classification task must be performed. Two main 
approaches can be taken, namely, a template-based approach 
or a stochastic approach. In both cases, an appropriate 
distance metric between feature vectors must be initially 
defined. The classical Euclidean distance is the measure that 
is used in most gait recognition applications. Other measures 
are the inner product distance [24] and the number of “ones” 
in the binary difference between frames [15]. A variety of 
other distance measures may also be used [32]. However, in 
this work, we use the classical Euclidean distance in the 
implementations of the presented gait methodologies. 

 
TABLE II:  IMPACT ON AVERAGE RESULTS DUE TO DIFFERENCE IN 

CAPTURING CONDITIONS 
PROBE DIFFERENCE RANK-1 RANK-5 

A View 90 98 
B Shoe 80 87 
C Shoe, View 68 83 
D Surface 25 53 
E Surface, Shoe 21 57 
F Surface, View 18 51 
G Surface, Shoe, View 18 46 

 

XI. TEMPLATE MATCHING 
The main concern in calculating distances between 

different gait representations (templates) is whether we 
compare corresponding quantities in the two representations. 
In case of frequency templates (e.g., harmonic components 
computed using Fourier analysis), the calculation of the 
distance between two templates is straightforward since the 
correspondence between frequency components in different 
templates is obvious. In the case of spatial templates, the 
gait representation is a sequence of features that must be 
compared with another sequence of features. When the 
fundamental walking periods T1 and T2 of the two sequences 
are not equal, their cumulative distance over a gait cycle is 
defined as 
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the distance between the feature vectors at time t. Based on 
the characteristics of the warping function, we can 
distinguish three approaches for the calculation of distances 
between feature sequences. The direct matching approach 
can be regarded as a brute-force attempt to match a pattern 
consisting of feature vectors (derived from frames in a gait 
cycle) by sliding it over a sequence of feature vectors of the 
reference sequence to find the position that yields the 
minimum distance. This is the approach taken in the 
baseline method created at USF [15]. The use of time 
normalization [33] is a more reasonable approach since 
reference and test sequences corresponding to the same 
subject may not necessarily have the same gait period. 
Consequently, if recognition is to be performed by template 
matching, some kind of compensation would have to be 
applied during the calculation of the distance. To this end, 
dynamic time warping (DTW) [33] can be used to calculate 
the distance between a test sequence and a reference 
sequence. Using DTW [30], [25], all distances between test 
and reference frames are computed and the total distance is 
defined as the accumulated distance along the minimum-
distance path (termed the optimal warping path). Another 
option is to use linear time normalization. Having computed 
the distances between a test subject and all subjects in a 
reference database, the recognition decision is taken as 

ijj Diidentity minarg)( =  

where Dij denotes the cumulative distance between the ith 
test subject and the jth reference subject. This means that the 
identity of the test subject is assumed to be the identity of 
the reference subject with which the test subject has the 
minimum distance. 

XII. STATISTICAL APPROACH: HMMS 
Stochastic approaches such as HMMs can also be used for 

gait recognition [24]. In practical HMM-based gait 
recognition, each walking subject is assumed to traverse a 
number of stances. In other words, each frame in a gait 
sequence is considered to be emitted from one of a limited 
number of stances. The a priori probabilities, as well as the 
transition probabilities, are used to define models λ for each 
subject in a reference database. For a test sequence of 
feature vectors, the probability that it was generated by one 
of the models associated with the database sequences can be 
calculated by  

 NjfP ji ...2,1),/( =λ  

where N is the number of subjects in the reference database. 
The subject corresponding to the model yielding the higher 
probability is considered to be identical to the test subject, 
i.e. 

NjfPiidentity jij ,....1),/(maxarg)( == λ  

The HMM-based methodology is, in many aspects, 
preferable to other techniques since it explicitly takes into 
consideration not only the similarity between shapes in the 
test and reference sequences, but also the probabilities with 
which shapes appear and succeed each other in a walking 
cycle of a specific subject. 

 

XIII. EXPERIMENTAL ASSESSMENT 
To evaluate the efficiency of the main gait analysis and 

recognition approaches that were presented previously, we 
considered several features, as well as both the template 
matching and statistical approaches for the recognition stage. 
Although there are several gait databases for the evaluation 
of the main approaches, as summarized in Table III, we used 
the USF database, which is used by most researchers in the 
gait community for reporting results. Prior to testing, we 
aligned the silhouettes to the center of the frames to give a 
fair comparison with features that are not translation-
invariant. We tested several features and recognition 
methods. We considered only holistic features here since 
they generally outperform the model-based features and they 
are more interesting from a signal processing perspective. 
For the evaluation of the efficiency of features, we formed 
feature vectors of appropriate size. The size of the width 
vector [30] was equal to the vertical dimension of the 
silhouettes. The width vector was filtered with a three-tap 
low-pass filter since this approach was reported to yield 
better results. The projections vector [17] was generated as a 
concatenation of the horizontal and vertical projections and, 
therefore, its size was set equal to the sum of the horizontal 
and vertical dimensions of the silhouettes. For the angular 
feature, we calculated the transform coefficients in circular 
sectors of 5◦. This yielded 72-dimensional feature vectors. 

In this section, we report results in terms of cumulative 
match scores. To calculate these scores, we conduct multiple 
tests using multiple test sequences. Each test sequence is 
compared to the sequences in the reference database (for 
each test sequence there is only one correct match in the 
reference database), and the sequences in the reference 
database are ranked according to their similarity with the 
test sequence. As proposed in [36], rank-n performance is 
calculated by measuring the percentage of tests in which the 
correct subject appears in the top n matches. The results, 
rank-1 and rank-5 scores averaged over all test sets in the 
gait challenge database, are tabulated in Table IV. It is seen 
that features that do not depend on the detection of boundary 
pixels offer the best performance. Despite the fact that the 
database on which the features were tested was quite noisy, 
experiments on less noisy conditions demonstrate that these 
features would still be superior, occasionally with a 
narrower margin. 

 In any case, the noisy conditions should be considered as 
the general rule in gait recognition since only in laboratory 
environments is it possible to achieve perfectly clean 
silhouettes. All features were combined and tested with 
several recognition methodologies.  
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TABLE III:  LIST OF DATABASES USED FOR GAIT RECOGNITION. 

DATA URL SUBJECTS PARAMETERS 
USF/NIST www.gaitchallenge.org 71 Viewpoint, Surface, Shoe 

CMU www.hid.ri.cmu.edu 25 Viewpoint, Walking Speed, Carried Object 
SOTON www.gait.ecs.soton.ac.uk 118 Viewpoint, Treadmill, Indoors/Outdoors 

SHAPE OF MOTION Pages.cpsc.ucalgary.ca/~boyd/gait/gait.html 6 - 
GATECH www.cc.gatech.edu/cpl/projects/hid/ 20 Viewpoint, Indoors/Outdoors 

CASIA www.sinobiometrics.com 20 Viewpoint 
MIT www.ai.mit.edu/projects/gait/ 25 Time 

 
 

TABLE IV: RESULTS OBTAINED FOR SEVERAL COMBINATIONS OF FEATURES & RECOGNITION METHODS OVER ALL SETS OF GAIT DATABASE CLASSIFIED 
INTO RANK-1 (R1) AND RANK-5(R5). 

FEATURE WIDTH PROJECTION ANGULAR SILHOUETTE AVERAGE 
 R1 R5 R1 R5 R1 R5 R1 R5 R1 R5 

Frequency Domain Distance 21 42 26 45 20 41 46 66 28 49 
Dynamic Time Wrapping 26 49 33 56 36 59 47 70 36 59 

Linear Time Normalization 28 49 35 55 36 60 46 74 36 59 
Hidden Markov Models 34 51 36 49 36 62 45 70 38 58 

Structural Matching 33 50 35 47 36 60 43 62 37 55 
Average 28 48 33 50 33 56 45 68 - - 

 
 
Although the frequency signatures constitute features 

derived from time-domain features, here we treat the 
frequency-domain approach as a recognition method that 
computes the Fourier transform of the feature time series at 
the walking frequency and compares the resultant 
components using a Euclidean distance. For DTW and linear 
time normalization, the distance between test and reference 
gait sequences was computed by taking the median of the 
distances from all combinations between cycles in the 
reference and test gait sequences. For testing the 
performance of HMMs for gait recognition, we 
implemented the algorithm in [35]. In the structural 
matching approach, we computed for each subject the 
minimum cumulative distance of gait frames to the 
exemplars determined using the HMM model. This 
experiment was intended to show how much of the 
performance of the HMM approach is due to the 
computation of structural similarities and how much is due 
to the exploitation of gait dynamics. Complete cumulative 
match score curves are shown in Figure 6 for recognition 
based on frequency signatures, DTW, linear time 
normalization, HMMs, and structural matching. As seen, the 
frequency signature approach is quite efficient despite the 
fact that it is the least complicated of all approaches in our 
comparison. Since the determination of similarity between 
frequency signatures is direct, i.e.,  there is no need to find 
the correspondences in two compared frequency 
representations, the savings in computational complexity is 
considerable and the approach appears to be rather 
appealing.   

 In general, the DTW and the linear time normalization 
approaches perform roughly the same. As mentioned in the 
previous section, this is a rather unexpected result since, in 
the context of speech recognition, it was reported [34] that 
DTW performed clearly better than linear time 
normalization. A possible explanation might lie in the fact 

that, in the case of gait, recognition using  these methods 
seems to be based predominantly on structural similarities 
between compared sequences and/or that the gait dynamics 
can be captured equally well by the linear and the nonlinear 
normalization processes. 

The results derived using the structural matching 
approach discloses the importance of shape in gait  
recognition. We see that, although gait dynamics are ignored, 
with this approach the performance of the system is 
generally good in comparison to the rest of the approaches. 
It also reinforces our belief that current approaches for gait 
recognition primarily depend on structure rather than on gait 
dynamics. The performance of the system deploying HMMs 
is better than that achieved using structural matching. 
However, the performance gain is not very impressive, and 
this makes us believe that there might be other more 
appropriate ways to exploit gait dynamics.  

 

XIV. CONCLUSION 
This article was intended to provide an overview of the 

basic research directions in the field of gait analysis and 
recognition. The recent developments in gait research 
indicate that gait technologies still need to mature and that 
limited practical applications should be expected in the 
immediate future. At present, there is a potential for initial 
deployment of gait for recognition in conjunction with other 
biometrics. However, future advances in gait analysis and    
recognition an open, challenging research area—are 
expected to result in wide deployment of gait technologies 
not only in surveillance, but in many other applications as 
well. We hope that this article will expose the gait analysis 
and recognition problem to the signal processing community 
and that it will stimulate the involvement of more 
researchers in gait research in the future. 
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Fig. 6. Cumulative match scores for different recognition approaches using the  silhouette feature.  (a) Frequency signature, (b) dynami time warping, (c) 

linear time normalization, (d) structural matching, and (e) hidden Markov models. 
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