

Abstract—The main goal of Knowledge Discovery in

Databases is to find interesting and usable patterns, meaningful
in their domain. Actionable Knowledge Discovery came to
existence as a direct respond to the need of finding more usable
patterns called actionable patterns. Traditional data mining
and algorithms are often confined to deliver frequent patterns
and come short for suggesting how to make these patterns
actionable. In this scenario the users are expected to act.
However, the users are not advised about what to do with
delivered patterns in order to make them usable. In this paper,
we present an automated approach to focus on not only creating
rules but also making the discovered rules actionable.

Up to now few works have been reported in this field which
lacking incomprehensibility to the user, overlooking the cost
and not providing rule generality. Here we attempt to present a
method to resolving these issues. In this paper CEARDM
method is proposed to discover cost-effective action rules from
data. These rules offer some cost-effective changes to
transferring low profitable instances to higher profitable ones.
We also propose an idea for improving in CEARDM method.

Index Terms—actionable knowledge discovery, cost-effective
action rules, profit mining.

I. INTRODUCTION
Data mining has focused on studying how to build

statistical models such as classification rules, association
rules . . . etc of large database. These models often satisfy
expected technical interestingness and provide passive
knowledge. Using these models in real world business, users
can only discover object (customer) models or profiles. But
real world businesses often are interested to be delivered
active knowledge such as marketing strategies. For example a
company may want to produce marketing strategies for
stopping their valuable customers from leaving. Since data
mining algorithms often limited to deliver frequent patterns
usually don't take any step for suggesting active knowledge
and users will be responsible for it. So users will be faced
with many patterns that they are confused about how and
what to do with them. It is because of the gap between the
academia and business aims. A general requirement in
bridging the gap between academia and business is to
consider domain and business factors and constraints in data
mining process. It has been done by domain driven data
mining [1,2,3]. Actionable Knowledge Discovery is a
paradigm moving toward Domain-Driven Data Mining that is

aimed at discovering active knowledge called actionable
patterns.

Let illustrate this concept by an example in CRM.
Consider a bank loan system. We can define two types of
useful knowledge in this system. First, “How much is the
probability of a customer pay back his loan?” and second,
“How we can increase the probability of a customer pay back
his loan?” The first question is passive knowledge that is
more informative and less actionable and it is the concern of
traditional data mining, but the second one is active
knowledge that is more actionable and AKD aiming for
answering it.

We can divide the works that have been done in AKD from
the types of mined patterns point of view into two categories:
those who try to define some actionability measures for
filtering mined patterns[5,6] and those who try to extract new
actionable patterns from mined patterns[7,8]. In other words
methods in first category don’t create new patterns but those
in second one extract new type of pattern. One type of these
created patterns called “action rules”. This presented work is
an action rule creating work.

Action rule generally means a rule that suggest an action to
user to gain a profit in his/her domain. For example in our
bank loan system an action rule could be like this : “If we can
change marital status of male customers from single to
married in some way then the probability of they pay back
their loan will be more ”. It is worth noting that action rules
are not talking about causality but about probability.

Up to now a few works have been done on mining action
rules. For example in [7,8] a method for extracting
cost-effective action rules for each customer from decision
tree is proposed. In [9] some pruning strategies devised for
filtering most actionable patterns. In that work the actions
supposed to be present. Constructing action rules from
certain pairs of previously mined classification rules is
presented in [10,11,12,13,14,15,16] but in these works the
cost of actions is neglected.

There are two important factors in constructing an action
rule. First is the generality of action rule that means to how
many instances it can apply. Second is the cost of action rule
in its domain. In current paper a new method is proposed for
mining cost-effective action rules. Our contribution is to
combine the generalization power of E-action rules [12] and
cost-effectiveness. For doing this a new algorithm, namely
CEARDM is devised for extracting cost effective E-action
rules from an information system. We also purpose an idea
for improving this algorithm. The rest of paper is as follows:
In Section II action rules are defined and the method of
constructing them is described. The CEARDM is explained
in Section III. Correctness of purpose algorithm is proved in
section IV. An idea for improving CEARDM algorithm is
presented in Section V. Finally we conclude the paper in

Nasrin Kalanat, Pirooz Shamsinejad, and Mohamad Saraee

Robust and Cost-Effective Approach for Discovering
Action Rules

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

325

Manuscript received September 8, 2011, revised September 13, 2011.

Nasrin Kalanat and Pirooz Shamsinejadbabaki are with Electrical and
Computer Engineering Department of Isfahan University of Technology,

Isfahan, Iran (e-mail: n.kalanat@ec.iut.ac.ir; p_shamsinejad@ec.iut.ac.ir).

Mohammad Saraee is the founder and Director of the Intelligent

Databases, Data Mining and Bioinformatics Research Centre.

Section VI.

II. ACTION RULES
Action rules would be constructed from certain pairs of

previously mined classification rules [13,14]. These rules
suggest changes in the value of some attributes of an instance
to make it probably more profitable. For example let assume
after mining purchasing data of a company two classification
rules have been found as follows:

1 : (,) (,) (,)r sex male service H loyality high∧ →
1 : (,) (,) (,)r sex male service L loyality low∧ →
By combining these two rules that are only informative we

can make this action rule that suggests some changes to
improve the loyalty of a group of customers:

1 2? : (,) (,)

(,)

r r action rule sex male service L H

loyality low high

− ∧ → →

→

This rule suggests if we change the service status of male
customers from low to high then it will be probable that their
loyalty goes from low to high. But the problem is how to
construct these rules from data and how to find the most
valuable of them. Both of these will be discussed in this
paper.

We assume data are placed in a table named decision table.
Columns of table are attributes and rows are instances.
Attributes are of two types: condition attributes and decision
attributes. Decision attributes are attributes that profit in
domain is related to them directly. In above example “loyalty”
is a decision attribute and “sex” and “service” are condition
attributes. Table 1 is a decision table for a fictitious problem.
In this table {A,B,C,D,E,F} are condition attributes, Z is a
decision attribute and {X1,X2,…,X13} are instances. For
simplicity it’s assumed that values of condition attributes are
numbers or are mapped to numbers, and there is only one
decision attribute shown by Z.

Domain Driven Data Mining [21, 22] suggests that for
making the results of DM process more applicable in real
domains more characteristics of domain must be integrated to
the process. According to this rule we took a more realistic
look at condition attributes and divided them to three types: 1.
Stable attributes whose values can’t change at sensible cost
like “sex”. 2. Flexible attributes which their values can
change at reasonable cost i.e. “service level”. 3. Asymmetric
attributes which changing some of their values is sensible and
others is not, i.e. “experience level” that it can be changed
from low to high by spending some money and time but it
can’t be changed from high to low at a sensible cost.

For integrating characteristics of all types of attributes in
mining cost-effective action rules it is defined a cost matrix
CMA for each attribute A. Rows and columns of CMA are
both values of attribute A and CMA[i][j] shows the cost of
changing ith value to jth value; changes with unreasonable cost
show by infinity value in their corresponding cells. Cost
matrixes for attributes of above example are depicted in Fig.
1. In addition to cost, we must consider the profit that gained
from an action. In this work we assume the decision attribute
has two values low and high and the profit of changing
decision attribute value from low to high for an instance that
is measurable and is shown by ()P L H→ . Changes whose

cost is more than ()P L H→ are worthless. The minimum
cost of a change in value of an attribute is called flexibility
factor of that attribute and it can be simply computed from
cost matrix of each attribute.

TABLE I: A SAMPLE DECISION TABLE

 A B C D E F Z
X1 1 1 2 1 1 2 L
X2 1 1 2 1 2 2 L
X3 2 2 2 2 1 1 L
X4 2 2 2 1 1 2 L
X5 1 1 2 2 1 2 L
X6 1 1 1 2 1 2 L
X7 1 2 2 2 2 1 H
X8 2 3 2 2 2 1 H
X9 1 1 1 2 2 1 H
X10 2 1 1 1 1 1 H
X11 1 1 2 2 1 2 L
X12 1 1 1 1 1 2 L
X13 1 1 2 2 1 1 L

Figure. 1. Cost Matrixes for attributes in decision table shown in table I

Based on the above discussion the attributes are divided

into two main types: Attributes that their flexibility factor is
more than ()P L H→ , namely invaluable attributes and those
with flexibility factor less than ()P L H→ , namely valuable
attributes.

Valuable attributes contain at least one possible change at a
reasonable cost regarding the most profit that may be gained.
If V stands for set of valuable attributes of decision table T
and IV for its invaluable attributes then table schema can be
shown by ({ })T V IV Z∪ ∪ . The new concept of valuable and
invaluable attributes makes it possible to define flexibility or
stability of attributes in a dynamic way which means their
flexibility in a particular domain will depend on the profit
that may be obtained by their changes in that domain.

Classification rules are the raw material of action rules, so
that for discovery of action rules the first step is mining
classification rules from data. There are many algorithms for
finding classification rules like C4.5, ID3, CART [23]. Table
2 shows some classification rules mined from decision table
shown in Table 1. In this table each row represents a
classification rule and first column of each row shows the
instances satisfied that rule. For example the first row of the
table represents the following rule R and also informs
instances X1 and X2 satisfy this rule.

: (1) (1) (2) (2) ()R A B C F Z low= ∧ = ∧ = ∧ = → =

For describing the process of constructing action rules
some notations must be defined. Let LR to be the set of the left
attributes of rule R, ValR,A to be the value of attribute A in rule
R and DR to be the value of decision attribute of R. So that for
above rule, LR would be the set {A,B,C,F}, ValR,A equals 1 and
DR would be “low”. Also the following notations are

2 1C
15 01
0 82

3 2 1 B
50 30 0 1
40 0 100 2
0 50 20 3

2 1 A
1000 1
0 1002

21F
801
032

2 1 E
1 0 1
0 1 2

2 1 D
1000 1
0 182

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

326

presumed:

• (,)A v means attribute A must have the value of v.
• (,)A v→ means the value of attribute A must be

changed to the value of v.
• (,)A v w→ means attributes A must be changed

from the value of v to the value of w.

TABLE II: MINED CLASSIFICATION RULES WITH THEIR SUPPORTING OBJECTS
 A B C D E F Z
x1,x2 1 1 2 1 2 L
x3,x4 2 2 2 1 L
x1,x5,x6,x11,x12,x13 1 1 1 L
x7,x8 2 2 2 1 H
x9,x10 1 1 1 H

There are two following preconditions for each pair R1 and

R2 of classification rules to be able to construct an action rule:

• { }
1 21 2, , R RR R

Val Val attr IV L L
attr attr

= ∈ ∩ ∩

•
1 2, ,R R

Val low Val high
Z Z

= ∧ =

where LR is the set of attributes in left side of rule R. If the
preconditions hold then R1 and R2 can construct an action rule
by the algorithm described in Algorithm 1.

But the problems are how to find the consistence pair of
classification rules and how to extract the most cost-effective
action rules. In the next section the CEAT algorithm is
presented as a solution to these problems.

III. EXTRACTING COST-EFFECTIVE ACTION RULES

A. Net Profit of Action Rule
For computing the net profit of an action rule it is

necessary to compute the number of instances that support it
in the population of instances. Let assume R be an action rule
that has been constructed from R1 and R2, (b1, b2,.., bp) be set
of all valuable attributes of R which have different values in
R1 and R2. If vi and wi stands for values of attribute bi in R1
and R2 respectively, then instance X is said to support R if
there is another instance Y as the following conditions hold:

• , ,X Z Y ZVal low Val high= ∧ =

• ,, X iibi p Val v∀ ≤ =

• ,, Y iibi p Val w∀ ≤ =

• , ,{ },R X attr Y attrattr IV L Val Val∀ ∈ ∩ =

• 1support X R

• 2support Y R

The above conditions simply say that an object X supports
an action rule R if there is another instance Y that it is possible
to apply R on X and convert it to Y. This definition is close to
that described in [12] but with a change in defining new
concept of valuable and invaluable attributes instead of
flexible and stable attributes.

Algorithm 1: The algorithm of constructing an action rule from a pair of
classification rules.

The net profit of an action rule R defines as follow:

() (,) support?PNet r PNet x rx set of objects that r∑= ∀ ∈ (1)

where PNet(x,r) is the net profit that gained from applying
action rule R on the instance X and can be computed using Eq.
(2):

(,) () ()PNet x r P L H Cost xi i∑= → − (2)

where Costi(x) is the cost of changing ith attribute of instance
X based on action rule R. For example, consider rule r as
below that is extracted from two rules which exist in first row
and last row of Table II.

: (,1) (, 2 1) (, 2 1) (,)r B C F Z L H∧ → ∧ → → →

Based on above formulas its net profit can be computed as
follow:

() (1,) (2,) 2(10 (8 3)) 2PNet r PNet x r PNet x r= + = − + = −

We assume ()P L H→ = 10; the negative value for net profit
shows this rule is not cost-effective.

B. Discovering Cost-Effective Action Rule Algorithm
In this section we present a new algorithm for discovering

Cost-Effective action rules called CEARDM.
The algorithm works in two phases: 1- constructing a

cost-effective action tree from previously mined
classification rules, 2- Extracting cost-effective action rules
from the action tree. Action tree partitions rules based on
invaluable attributes. Each leaf of action tree will be
containing set of rules that the values of their invaluable
attributes have no conflict with each other. Two rules have no
conflict in their invaluable attributes if the values of their
invaluable attributes are the same or not important in at least
one of them. After constructing the action tree, algorithm
extracts action rules from the rules placed in leaves of the
action tree using algorithm 1 and finally select the most
cost-effective of them using Eq. (1). The complete algorithm
is shown in Algorithm 2.

ARCM (R1, R2, IV, V) {
R= {};

for each do

for each do

If () then

 for each do

return R;

}

2 1

 [()]A IV L L
R R

∈ ∩ −

2

[,?];
,R

R R A Val
A

= ∪

2 1

 [()]A V L L
R R

∈ ∩ ∩

1 2

 & &?
, ,

Val vi Val wi
R A R A

= =

1 2

[,?];
, ,

R R A Val Val
R A R A

= ∪ →

2 1

 [()]A V L L
R R

∈ ∩ −

2

[,?];
,

R R A Val
R A

= ∪ →

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

327

Let us take Table I as an example of a decision table T that
cost matrixes of its attributes are presented in Fig. 1. Assume
now that our goal is to re-classify some objects from the class
H into the class L.

We represent the set R of classification rules extracted
from T as a table (see Table 2). First, CEARDM method finds
set of invaluable attributes and sorts them descending based
on theirs FF values. Since in our example FFA=100, FFB=20,
FFC=8, FFD=18, FFE=1, FFF=3, this set will be like IV= {A, B,
D}. Then the algorithm calls CEAT method. In this step the
construction of a cost-effective action tree starts with all
extracted classification rules as the root of the tree (T1 in Fig.
2). Then CEAT select an unmarked attribute from AIV which
number of its different values in current node be more than
one, then marks it and creates a branch for each of its values.
Then it places rules on corresponding branches based on their
value of selected attribute. Rules with “don’t care” value for
selected attribute will be placed in all branches.

In our example the root node selection is attribute A, so the
table is divided into two sub-tables: one table contains rules
with value “1” or “don’t care” for attribute A and the other
contains rules with value “2” or “don’t care” for A. Then the
process is repeated recursively for each child node. If at any
time all instances at one node have the same decision value,
then the algorithm stops growing the tree through that node
(T3 in Fig. 2). When all invaluable attributes are selected,
tables in leaf nodes which contain at least two rules with
different decision values will be added to EndTables (T4, T6,
and T7 in Fig. 2). In second phase cost-effective action rules
will be extracted from each table in EndTables.

The following action rule is extracted from T4 and it is
considered as cost-effective action rule because its net profit
is positive:

1
: (, 2) (, 2) (,1 2) (, 1) (,)r D C E F Z L H∧ ∧ → ∧ → → →

1 3 1
() (,) 9PNet r PNet x r= =

T6 results the following action rule that is not considered as
cost-effective action rule because its net profit is not positive.

2
: (,1) (, 2 1) (, 2 1) (,)r B C F Z L H∧ → ∧ → → →

2 1 2 2 2
() (,) (,) 2PNet r PNet x r PNet x r= + = −

Also r3 that is a cost-effective action rule is gained from T7:
: (, 2) (, 2) (,1 2) (, 1) (,)

3
r D C E F Z L H∧ → ∧ → ∧ → → →

13 3

3 5 3 6 3 11 3
() (,) (,) (,)

(,) 12

PNet r PNet x r PNet x r PNet x r

PNet x r

= + + +

=

Presented algorithm returns all cost-effective action rules
without any unnecessary comparison. It selects an attribute
with maximum FF value in each level of tree and dividing
rules based on it. If the cost of changing selected attribute is
more than resulting profit of changing decision attribute from
low to high, algorithm continues. Selecting attributes and
dividing table will be continued until FF value of the selected
attribute becomes less than ()P L H→ . In this step more
dividing the table may cause losing some cost-effective
action rules. After stopping the branching process algorithm
will extract all cost-effective action rules from resulted tables
in leaves of action tree. Then it is possible to sort them based
on their net profit and select the most cost-effective ones.

IV. PROOF
In this section we show the correctness of above algorithm.

As it mentioned before our aim is finding all of profitable
action rules. We show that above algorithm returns all of
profitable action rules without any unnecessary comparison.

The algorithm selects an attribute with maximum FF value
in each level of tree for dividing rules based on it, in other
words it selects the attribute that the minimum cost of
changing its values is maximum in comparison with other
attributes. Now if this cost of selected attribute is more than
resulting profit of changing decision attribute from low
position to high position, the algorithm will continue for
dividing rules. This is because of value changing for this
attribute is not cost-effective. Selecting attributes and
dividing rules will be continued until FF value of the selected Algorithm2: Cost-Effective Action Rule Discovery Method

 Define EndTables as a global empty set of tables;
 CEARDM (T, Attributes, CostMatrixes) {
 Input:
 T: Table of instances
 Attributes: Set of all attributes
 CostMatrixes: Set of all Cost Matrixes of attributes
 Output:
 print all cost-effective action rules

 IV = an empty list of attributes ;
 for each A Attributes do
 FFA = minimum value of CMA ;
 if (() Ap L H FF→ <) then

 Add A to IV
 Sort IV descending based on the FF values ;
 UnMarked = IV;
 Marked = an empty list of attributes ;
 CEAT (T , UnMarked , Marked) ;
 CEAR (CostMatrixes) ;
 }

 CEAT (T , UnMarked , Marked) {

 if (∃ ri, rj∈ rows of T that decision value of ri ≠ decision value of rj)
then

 A= first attribute of UnMarked;
 NV= number of different values of attribute A in T
 while (A ! = null && NV < 1) do
 Move A from UnMarked to Marked;
 A = next attribute of UnMarked;
 if (A ! = null) then
 Move A from UnMarked to Marked;
 for each vi ∈ set of different values of attribute A in T do
 t = empty table;
 Add to t ∈each ri rows of T that have vi or null value for attribute A;
 CEAT (t , UnMarked , Marked);
 else
 Add T to EndTables ;
 }

 CEAR (CostMatrixes) {
 for each table t in EndTables do
 for each row ri of t with decision value of L do
 for each row rj of t with decision value of H do
 AR = Construct an action rule by Algorithm1;
 NP = Calculate the net profit of AR by Eq. (1);
 if (NP > 0)
 Print AR as a cost-effective action rule;
 }

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

328

attribute becomes less than ()P L H→ . In this stage more
dividing rules may cause losing some profitable action rules
such as an action rule which include the change with the
minimum cost for changing the values of selected attribute.
So that the algorithm stops dividing the table at this step and
goes to the phase of extracting action rules because of not
losing profitable action rules. We follow an example for
further understanding. Suppose Table 3 as a decision table,
and cost matrix of all its attributes that is presented in Fig. 3.
We start with set R (Table 4) of classification rules extracted
from Table 3 in root of tree and continue according to
CEARM algorithm (Fig. 4). Since IV= {A}, this table is
divided into two sub-tables base on A's different values. Then
because of non existence of more IV attribute, dividing
sub-tables is stopped in second level of tree. It results
following candidate action rules.

1
() 21: (,1 3) (, 2) (,),PNet rr B C Z L H = −→ ∧ → → →

2
() 32: (, 1) (,1 0) (,),PNet rr B C Z L H =→ ∧ → → →

1
() 163: (, 3) (,1 2) (,),PNet rr B C Z L H = −→ ∧ → → →

Now consider more dividing and stopping in next levels
(Fig. 5). It causes losing some candidate action rules that may
be profitable. For example consider we select attribute with
maximum FF among unselected attributes ({B, C}) and
continue dividing sub-tables based on its different values
then stop in third level. It results only one following
candidate action rule.

1
() 21: (,1 3) (, 2) (,),PNet rr B C Z L H = −→ ∧ → → →

Also stopping in previous level of second level not only
doesn't lead to be found any more cost-effective action rules
than DCEAR, but also need extra unnecessary comparisons.
So DCEAR algorithm finds all of profitable action rules
without any unnecessary comparison.

A B C D E F Z

1 1 2 1 2 L
2 2 2 1 L
1 1 1 L
 2 2 2 1 H
 1 1 1 H

A B C D E F Z

1 1 2 1 2 L
1 1 1 L
 2 2 2 1 H
 1 1 1 H

A B C D E F Z

2 2 2 1 L
 2 2 2 1 H
 1 1 1 H

A B C D E F Z

1 1 1 L
 2 2 2 1 H
 1 1 1 H

A B C D E F Z

1 1 2 1 2 L
1 1 1 L
 1 1 1 H

A B C D E F Z

2 2 2 1 L
 2 2 2 1 H

A B C D E F Z

 2 2 2 1 H
 1 1 1 H

Figure. 2. Cost-effective action tree for discussed example

TABLE 3: A SAMPLE DECISION TABLE

 A B C Z
X1 2 1 2 L
X2 2 1 2 L
X3 1 1 0 H
X4 1 1 0 H
X5 2 3 2 H
X6 2 3 2 H
X7 2 1 1 L
X8 2 1 1 L
X9 2 2 1 L
X10 2 3 0 L
X11 1 1 2 H
X12 1 1 1 H

2 1 A
100 0 1
0 100 2

3 2 1 B
5 3 0 1
3 0 3 2
0 20 3 3

2 1 0 C
10 20 0 0
11 0 8 1
0 40 50 2

Figure. 3. Cost matrix

Z C B A

L 1 2

L 1 2
H 1
H 0 1
H 2 3

ZCBA

L 12

L1 2

H01

H23

ZCBA

H 1

H01

H23

Figure. 4. Cost-effective action tree

B=1 D=2D=1

T5

B=2

A=2 A=1

T2

T1

T3 T4 T6 T7

A=1 A=2

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

329

TABLE 4: SET OF RULES R WITH SUPPORTING OBJECTS

Z C B A
L 1 x3,x4,x11,x12
L 1 2 x1,x2,x7,x8
H 1 2 x7,x8,x9
H 0 1 x3,x4
H 2 3 x5,x6

Z C B A

L 1 2
L 1 2
H 1
H 0 1
H 2 3

Z C B A

L 1 2
L 1 2
H 0 1
H 2 3

Z C B A

H 1
H 0 1

H 2 3

ZCBA

L 12

H23

Z C B A

L 1 2

L 1 2

Z C B A

L 1 2

H 0 1

Figure. 5. Action tree

V. IMPROVEMENT
In this section we purpose an idea for improving CEAT

algorithm. By this idea we can decrease number of iterations
for above algorithm.

We mentioned before that CEAT marks next unmarked
attribute in AIV set while finds an attribute that the number of
its different values in current table be more than one, then
marks it and for each of these values a branch will be created.
In this step of algorithm we can make a change and create a
branch only for useful values of selected attribute in current
table. Useful values of an attribute in a table are values that for
each of them in the table either exist at least two rules with
different decision values that both of them have a value for
the attribute, Or exist at least two rules with different decision
values one with a value for the attribute and other with a don't
care value for it. It causes to identify values that lead to
create a table with same decision value earlier and prevent for
creating table and recalling the algorithm for them. For
example for T2 in Fig. 2 we selected attribute B for dividing
table and created a branch for each of its values. As you see
T3 has two entries with same decision values. But by
mentioned change in algorithm we can check it in previous
level and prevent from creating the table and recalling
algorithm for it.

VI. CONCLUSION
Discovering useful knowledge from large database and

acting on that knowledge is becoming increasingly important
in today’s competitive world. This knowledge is an active

knowledge and can be provided by actionable patterns by
actionable knowledge discovery methods. Action rules are
one of the most effective actionable patterns that have
attracted a lot of attentions recently.

In this work cost-effective action rules and a new method
for discovering them is presented.. Not like traditional action
rules, cost-effective action rules consider cost of an action in
addition to its profit. To implement the approach a cost
matrix for each attribute is created and integrated it into
action rule mining process.

The method reported in this paper can integrate more
background knowledge into mining process and therefore can
find more useable actions. The detailed algorithm along with
step by step examples has been presented in to show the
functionality and effectiveness of the new method.

REFERENCES
[1] Zhengxiang Zhu, Jifa Gu, Wenxin Yang, Xingsen Li, “Toward

Domain-Driven Data Mining”, Intelligent Information Technology
Application Workshops, International Symposium, IEEE, pp. 44-48,
2008.

[2] Longbing Cao, “Domain Driven Data Mining”, International
Conference on Data Mining Workshops, IEEE, pp. 74-76, 2008.

[3] L. B. Cao, C. Q. Zhang, “Domain-driven, actionable knowledge
discovery,” IEEE Intelligent Systems, vol.22, pp.78–88, July 2007.

[4] I. Witten, E. Frank. Data Mining, Practical Machine Learning Tools
and Techniques, Morgan Kaufman, 2005.

[5] K. McGarry, “A Survey of Interestingness Measures for Knowledge
Discovery”. The Knowledge Engineering Review, pp. 39-41, 2005.

[6] B. Liu, W. Hsu, and Y. Ma. “Identifying non-actionable association
rules”. ACM New York, NY, USA, 2001.

[7] Q. Yang, J. Yin, C. Ling, and Rong Pan, “Extracting Actionable
Knowledge from Decision Trees”, IEEE Transactions on Knowledge
and Data Engineering, VOL. 19, NO. 1, pp. 43-56, January 2007.

[8] Q. Yang, J Y. Ling, T. Chen, “Postprocessing Decision Trees to Extract
Actionable Knowledge", Proceedings of the Third IEEE International
Conference on Data Mining, IEEE, pp. 685-688, 2003.

[9] K. Wang, Y. Jiang, A. Tuzhilin, “mining actionable patterns by role
models”, Proceedings of the 22nd International Conference on Data
Engineering, IEEE, 2006.

[10] L-S. Tsay, Z W. Ra´s, " E-Action Rules ", Post-Proceeding of FDM’04
Workshop Advances in soft Computing, Springer, Berlin Heidelberg
New York, pp. 277-288, 2006.

[11] L-S Tsay, Z W. Ras, “Action rules discovery: system DEAR2, method
and experiments”, Journal of Experimental & Theoretical Artificial
Intelligence, Vol. 17, No. 1–2, pp. 119–128, 2005.

[12] Z W. Ra´s, L-S Tsay, “Mining E-Action Rules, System DEAR”,
Studies in Computational, pp. 289-298, 2008.

[13] Z W. Ra´s, A. Wieczorkowska, “Action rules: how to increase profit of
a company”, Principles of Data Mining and Knowledge Discovery,
Proceedings of PKDD’00 (Eds: DA. Zighed, J. Komorowski, J.
Zytkow). Lyon, France, LNCS/LNAI, No. 1910, Springer, Berlin
Heidelberg New York, pp. 587–592, 2000.

[14] L-S Tsay, Z W. Ras, A. Wieczorkowska (2004) “Tree-based algorithm
for discovering extended action-rules (System DEAR2) ”. In:
Proceedings of the IIS’2004 Symposium, Zakopane, Poland, Springer,
459-464

[15] L-S Tsay, Z W. Ras, “Action rules discovery system DEAR3”. In:
Esposito, F., Ra´s, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006.
LNCS (LNAI), vol. 4203, pp. 483–492. Springer, Heidelberg (2006)

[16] Zbigniew W. Ra and Agnieszka Dardzinska, “Action Rules Discovery
Based on Tree Classifiers and Meta actions” J. Rauch et al. (Eds.):
ISMIS 2009, LNAI 5722, pp. 66–75, 2009.

[17] H. Geffner, J. Wainer, “ Modeling action, knowledge and control. In:
ECAI 98”, Proceedings of the 13th European Conference on AI, (Ed:
Prade H). Wiley, New York, 532–536, 1998

[18] Z. Pawlak, “Rough sets-theoretical aspects of reasoning about data
Algorithms for Packet Classification”, Kluwer, Dordrecht, 1991.

C=2C=0
C=1

A=1 A=2

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

330

[19] B. Liu, W. Hsu, S. Chen, “Using general impressions to analyze
discovered classification rules”, of KDD97 Conference. AAAI,
Newport Beach, CA288 L.-S. Tsay and Z.W. Ra´s, 1997.

[20] Z. Pawlak, “Information systems – theoretical foundations”,
InformationSystems Journal, Vol. 6, pp. 205–218, 1981.

[21] Z. Zhu, J. Gu, W. Yang, X. Li, “Toward Domain-Driven Data Mining”,
Intelligent Information Technology Application Workshops,
International Symposium, IEEE, pp. 44-48, 2008.

[22] L. Cao, “Domain Driven Data Mining”, International Conference on
Data Mining Workshops, IEEE, pp. 74-76, 2008.

[23] J. Han, M. Kamber, data mining : concepts and techniques, 2nd ed.,
Morgan Kaufman, 2006.

Nasrin kalanat born in Isfahan, Iran, 1986.
She is a M.Sc. student in Computer Software
Engineering at Electrical and Computer Engineering
Department of Isfahan University of Technology,
Isfahan, Iran, from 2009.
Her research interests include machine learning, data
base systems, data mining and knowledge discovery.

Pirooz Shamsinejadbabaki born in Tehran, Iran, 1984.
He has a B.Sc. in Computer Software Engineering from
Isfahan University of Technology, 2004. His M.Sc. is in
Computer Architecture from IUT, 2006. He is a Ph.D.
candidate in Computer Science at IUT from 2007.
His research interest is actionable knowledge discovery
from large databases, domain driven data mining, text
mining and genetic algorithms.

Dr Mohamad Saraee received his PhD from
University of Manchester in Computation, MSc from
University of Wyoming, USA in Software
Engineering and BSc from ShahidBeheshti
University, Iran.
His main areas of research are Intelligent databases,
Mining advanced and complex data including
medical and Bio, Text Mining and E-Commerce. He
has published extensively in each of these areas and

served on scientific and organizing committee on number of journals and
conferences.

International Journal of Machine Learning and Computing, Vol. 1, No. 4, October 2011

331

