
  

  
Abstract—The main goal of Knowledge Discovery in 

Databases is to find interesting and usable patterns, meaningful 
in their domain. Actionable Knowledge Discovery came to 
existence as a direct respond to the need of finding more usable 
patterns called actionable patterns. Traditional data mining 
and algorithms are often confined to deliver frequent patterns 
and come short for suggesting how to make these patterns 
actionable. In this scenario the users are expected to act. 
However, the users are not advised about what to do with 
delivered patterns in order to make them usable.  In this paper, 
we present an automated approach to focus on not only creating 
rules but also making the discovered rules actionable. 

Up to now few works have been reported in this field which   
lacking incomprehensibility to the user, overlooking the cost 
and  not providing rule generality. Here we attempt to present a 
method to resolving these issues. In this paper CEARDM 
method is proposed to discover cost-effective action rules from 
data. These rules offer some cost-effective changes to 
transferring low profitable instances to higher profitable ones. 
We also propose an idea for improving in CEARDM method.   
 

Index Terms—actionable knowledge discovery, cost-effective 
action rules, profit mining.  
 

I. INTRODUCTION 
Data mining has focused on studying how to build 

statistical models such as classification rules, association 
rules . . . etc of large database. These models often satisfy 
expected technical interestingness and provide passive 
knowledge. Using these models in real world business, users 
can only discover object (customer) models or profiles. But 
real world businesses often are interested to be delivered 
active knowledge such as marketing strategies. For example a 
company may want to produce marketing strategies for 
stopping their valuable customers from leaving. Since data 
mining algorithms often limited to deliver frequent patterns 
usually don't take any step for suggesting active knowledge 
and users will be responsible for it. So users will be faced 
with many patterns that they are confused about how and 
what to do with them. It is because of the gap between the 
academia and business aims. A general requirement in 
bridging the gap between academia and business is to 
consider domain and business factors and constraints in data 
mining process. It has been done by domain driven data 
mining [1,2,3]. Actionable Knowledge Discovery is a 
paradigm moving toward Domain-Driven Data Mining that is 
 

 

aimed at discovering active knowledge called actionable 
patterns. 

Let illustrate this concept by an example in CRM. 
Consider a bank loan system. We can define two types of 
useful knowledge in this system. First, “How much is the 
probability of a customer pay back his loan?” and second, 
“How we can increase the probability of a customer pay back 
his loan?” The first question is passive knowledge that is 
more informative and less actionable and it is the concern of 
traditional data mining, but the second one is active 
knowledge that is more actionable and AKD aiming for 
answering it.  

We can divide the works that have been done in AKD from 
the types of mined patterns point of view into two categories: 
those who try to define some actionability measures for 
filtering mined patterns[5,6] and those who try to extract new 
actionable patterns from mined patterns[7,8]. In other words 
methods in first category don’t create new patterns but those 
in second one extract new type of pattern. One type of these 
created patterns called “action rules”. This presented work is 
an action rule creating work. 

Action rule generally means a rule that suggest an action to 
user to gain a profit in his/her domain. For example in our 
bank loan system an action rule could be like this : “If we can 
change marital status of male customers from single to 
married in some way then the probability of they pay back 
their loan will be more ”. It is worth noting that action rules 
are not talking about causality but about probability. 

Up to now a few works have been done on mining action 
rules. For example in [7,8] a method for extracting 
cost-effective action rules for each customer from decision 
tree is proposed. In [9] some pruning strategies devised for 
filtering most actionable patterns. In that work the actions 
supposed to be present. Constructing action rules from 
certain pairs of previously mined classification rules is 
presented in [10,11,12,13,14,15,16] but in these works the 
cost of actions is neglected.  

There are two important factors in constructing an action 
rule. First is the generality of action rule that means to how 
many instances it can apply. Second is the cost of action rule 
in its domain. In current paper a new method is proposed for 
mining cost-effective action rules. Our contribution is to 
combine the generalization power of E-action rules [12] and 
cost-effectiveness. For doing this a new algorithm, namely 
CEARDM is devised for extracting cost effective E-action 
rules from an information system. We also purpose an idea 
for improving this algorithm. The rest of paper is as follows:  
In Section II action rules are defined and the method of 
constructing them is described. The CEARDM is explained 
in Section III.  Correctness of purpose algorithm is proved in 
section IV. An idea for improving CEARDM algorithm is 
presented in Section V. Finally we conclude the paper in 
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Section VI.  

II. ACTION RULES 
Action rules would be constructed from certain pairs of 

previously mined classification rules [13,14]. These rules 
suggest changes in the value of some attributes of an instance 
to make it probably more profitable. For example let assume 
after mining purchasing data of a company two classification 
rules have been found as follows: 

1 : ( , ) ( , ) ( , )r sex male service H loyality high∧ →  
1 : ( , ) ( , ) ( , )r sex male service L loyality low∧ →  
By combining these two rules that are only informative we 

can make this action rule that suggests some changes to 
improve the loyalty of a group of customers: 

1 2?  : ( , ) ( , )

( , )

r r action rule sex male service L H

loyality low high

− ∧ → →

→
 

This rule suggests if we change the service status of male 
customers from low to high then it will be probable that their 
loyalty goes from low to high. But the problem is how to 
construct these rules from data and how to find the most 
valuable of them. Both of these will be discussed in this 
paper.  

We assume data are placed in a table named decision table. 
Columns of table are attributes and rows are instances. 
Attributes are of two types: condition attributes and decision 
attributes. Decision attributes are attributes that profit in 
domain is related to them directly.  In above example “loyalty” 
is a decision attribute and “sex” and “service” are condition 
attributes. Table 1 is a decision table for a fictitious problem. 
In this table {A,B,C,D,E,F} are condition attributes, Z is a 
decision attribute and {X1,X2,…,X13} are instances. For 
simplicity it’s assumed that values of condition attributes are 
numbers or are mapped to numbers, and there is only one 
decision attribute shown by Z. 

Domain Driven Data Mining [21, 22] suggests that for 
making the results of DM process more applicable in real 
domains more characteristics of domain must be integrated to 
the process. According to this rule we took a more realistic 
look at condition attributes and divided them to three types: 1. 
Stable attributes whose values can’t change at sensible cost 
like “sex”. 2. Flexible attributes which their values can 
change at reasonable cost i.e. “service level”. 3. Asymmetric 
attributes which changing some of their values is sensible and 
others is not, i.e. “experience level” that it can be changed 
from low to high by spending some money and time but it 
can’t be changed from high to low at a sensible cost. 

For integrating characteristics of all types of attributes in 
mining cost-effective action rules it is defined a cost matrix 
CMA for each attribute A. Rows and columns of CMA are 
both values of attribute A and CMA[i][j] shows the cost of 
changing ith value to jth value; changes with unreasonable cost 
show by infinity value in their corresponding cells. Cost 
matrixes for attributes of above example are depicted in Fig. 
1. In addition to cost, we must consider the profit that gained 
from an action. In this work we assume the decision attribute 
has two values low and high and the profit of changing 
decision attribute value from low to high for an instance that 
is measurable and is shown by ( )P L H→ .  Changes whose 

cost is more than ( )P L H→ are worthless. The minimum 
cost of a change in value of an attribute is called flexibility 
factor of that attribute and it can be simply computed from 
cost matrix of each attribute.  

 
TABLE I: A SAMPLE DECISION TABLE 

 A B C D E F Z
X1 1 1 2 1 1 2 L
X2 1 1 2 1 2 2 L
X3 2 2 2 2 1 1 L
X4 2 2 2 1 1 2 L
X5 1 1 2 2 1 2 L
X6 1 1 1 2 1 2 L
X7 1 2 2 2 2 1 H
X8 2 3 2 2 2 1 H
X9 1 1 1 2 2 1 H
X10 2 1 1 1 1 1 H
X11 1 1 2 2 1 2 L
X12 1 1 1 1 1 2 L
X13 1 1 2 2 1 1 L

 

Figure. 1. Cost Matrixes for attributes in decision table shown in table I 

 
Based on the above discussion the attributes are divided 

into two main types: Attributes that their flexibility factor is 
more than ( )P L H→ , namely invaluable attributes and those 
with flexibility factor less than ( )P L H→ , namely valuable 
attributes. 

Valuable attributes contain at least one possible change at a 
reasonable cost regarding the most profit that may be gained. 
If V stands for set of valuable attributes of decision table T 
and IV for its invaluable attributes then table schema can be 
shown by ( { })T V IV Z∪ ∪ . The new concept of valuable and 
invaluable attributes makes it possible to define flexibility or 
stability of attributes in a dynamic way which means their 
flexibility in a particular domain will depend on the profit 
that may be obtained by their changes in that domain. 

Classification rules are the raw material of action rules, so 
that for discovery of action rules the first step is mining 
classification rules from data. There are many algorithms for 
finding classification rules like C4.5, ID3, CART [23].  Table 
2 shows some classification rules mined from decision table 
shown in Table 1. In this table each row represents a 
classification rule and first column of each row shows the 
instances satisfied that rule. For example the first row of the 
table represents the following rule R and also informs 
instances X1 and X2 satisfy this rule. 

: ( 1) ( 1) ( 2) ( 2) ( )R A B C F Z low= ∧ = ∧ = ∧ = → =  

For describing the process of constructing action rules 
some notations must be defined. Let LR to be the set of the left 
attributes of rule R, ValR,A to be the value of attribute A in rule 
R and DR to be the value of decision attribute of R. So that for 
above rule, LR would be the set {A,B,C,F}, ValR,A equals 1 and 
DR would be “low”. Also the following notations are 

2 1C
15 01
0 82

 

3 2 1 B
50 30 0 1
40 0 100 2
0 50 20 3

2 1 A 
1000 1 
0 1002 

 

21F
801 
032 

2 1 E 
1 0 1 
0 1 2 

2 1 D 
1000 1 
0 182 
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presumed: 

• ( , )A v  means attribute A must have the value of v. 
• ( , )A v→ means the value of attribute A must be 

changed to the value of v. 
• ( , )A v w→ means attributes A must be changed 

from the value of v to the value of w.  
 

TABLE II: MINED CLASSIFICATION RULES WITH THEIR SUPPORTING OBJECTS 
 A B C D E F Z
x1,x2 1 1 2 1  2 L
x3,x4 2 2 2  1  L
x1,x5,x6,x11,x12,x13 1 1   1  L
x7,x8   2 2 2 1 H
x9,x10  1 1   1 H

 
There are two following preconditions for each pair R1 and 

R2 of classification rules to be able to construct an action rule: 

• { }
1 21 2, , R RR R

Val Val attr IV L L
attr attr

= ∈ ∩ ∩  

• 
1 2, ,R R

Val low Val high
Z Z

= ∧ =  

where LR is the set of attributes in left side of rule R. If the 
preconditions hold then R1 and R2 can construct an action rule 
by the algorithm described in Algorithm 1. 

But the problems are how to find the consistence pair of 
classification rules and how to extract the most cost-effective 
action rules. In the next section the CEAT algorithm is 
presented as a solution to these problems. 

 

III. EXTRACTING COST-EFFECTIVE ACTION RULES 

A. Net Profit of Action Rule 
For computing the net profit of an action rule it is 

necessary to compute the number of instances that support it 
in the population of instances. Let assume R be an action rule 
that has been constructed from R1 and R2, (b1, b2,.., bp) be set 
of all valuable attributes of R which have different values in 
R1 and R2. If vi and wi stands for values of attribute bi in R1 
and R2 respectively, then instance X is said to support R if 
there is another instance Y as the following conditions hold: 

• , ,X Z Y ZVal low Val high= ∧ =  

• ,, X iibi p Val v∀ ≤ =  

• ,, Y iibi p Val w∀ ≤ =  

• , ,{ },R X attr Y attrattr IV L Val Val∀ ∈ ∩ =  

• 1support X R  

• 2support Y R  

The above conditions simply say that an object X supports 
an action rule R if there is another instance Y that it is possible 
to apply R on X and convert it to Y. This definition is close to 
that described in [12] but with a change in defining new 
concept of valuable and invaluable attributes instead of 
flexible and stable attributes. 

 
Algorithm 1: The algorithm of constructing an action rule from a pair of 
classification rules. 

The net profit of an action rule R defines as follow: 

( ) ( , )    support?PNet r PNet x rx set of objects that r∑= ∀ ∈        (1) 

where PNet(x,r) is the net profit that gained from applying 
action rule R on the instance X and can be computed using Eq. 
(2): 

( , ) ( ) ( )PNet x r P L H Cost xi i∑= → −                   (2) 

where Costi(x) is the cost of changing ith attribute of instance 
X based on action rule R. For example, consider rule r as 
below that is extracted from two rules which exist in first row 
and last row of Table II.  

: ( ,1) ( , 2 1) ( , 2 1) ( , )r B C F Z L H∧ → ∧ → → →  

Based on above formulas its net profit can be computed as 
follow:  

( ) ( 1, ) ( 2, ) 2(10 (8 3)) 2PNet r PNet x r PNet x r= + = − + = −  

We assume ( )P L H→  = 10; the negative value for net profit 
shows this rule is not cost-effective. 

B. Discovering Cost-Effective Action Rule Algorithm 
In this section we present a new algorithm for discovering 

Cost-Effective action rules called CEARDM. 
The algorithm works in two phases: 1- constructing a 

cost-effective action tree from previously mined 
classification rules, 2- Extracting cost-effective action rules 
from the action tree.  Action tree partitions rules based on 
invaluable attributes. Each leaf of action tree will be 
containing set of rules that the values of their invaluable 
attributes have no conflict with each other. Two rules have no 
conflict in their invaluable attributes if the values of their 
invaluable attributes are the same or not important in at least 
one of them. After constructing the action tree, algorithm 
extracts action rules from the rules placed in leaves of the 
action tree using algorithm 1 and finally select the most 
cost-effective of them using Eq. (1).  The complete algorithm 
is shown in Algorithm 2. 

ARCM (R1, R2, IV, V) { 
R= {}; 

for each   do 

 

for each  do 

If ( ) then 

 

 for each  do 

 
return R; 
 

} 

2 1

   [ ( )]A IV L L
R R

∈ ∩ −

2

[ ,? ];
,R

R R A Val
A

= ∪

2 1

   [ ( )]A V L L
R R

∈ ∩ ∩

1 2

  & &? 
, ,

Val vi Val wi
R A R A

= =

1 2

[ ,? ];
, ,

R R A Val Val
R A R A

= ∪ →

2 1

   [ ( )]A V L L
R R

∈ ∩ −

2

[ ,? ];
,

R R A Val
R A

= ∪ →
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Let us take Table I as an example of a decision table T that 
cost matrixes of its attributes are presented in Fig. 1. Assume 
now that our goal is to re-classify some objects from the class 
H into the class L. 

We represent the set R of classification rules extracted 
from T as a table (see Table 2). First, CEARDM method finds 
set of invaluable attributes and sorts them descending based 
on theirs FF values. Since in our example FFA=100, FFB=20, 
FFC=8, FFD=18, FFE=1, FFF=3, this set will be like IV= {A, B, 
D}. Then the algorithm calls CEAT method.  In this step the 
construction of a cost-effective action tree starts with all 
extracted classification rules as the root of the tree (T1 in Fig. 
2). Then CEAT select an unmarked attribute from AIV which 
number of its different values in current node be more than 
one, then marks it and creates a branch for each of its values. 
Then it places rules on corresponding branches based on their 
value of selected attribute. Rules with “don’t care” value for 
selected attribute will be placed in all branches. 

 

 

 

In our example the root node selection is attribute A, so the 
table is divided into two sub-tables: one table contains rules 
with value “1” or “don’t care” for attribute A and the other 
contains rules with value “2”  or “don’t care” for A. Then the 
process is repeated recursively for each child node. If at any 
time all instances at one node have the same decision value, 
then the algorithm stops growing the tree through that node 
(T3 in Fig. 2). When all invaluable attributes are selected, 
tables in leaf nodes which contain at least two rules with 
different decision values will be added to EndTables (T4, T6, 
and T7 in Fig. 2). In second phase cost-effective action rules 
will be extracted from each table in EndTables. 

The following action rule is extracted from T4 and it is 
considered as cost-effective action rule because its net profit 
is positive: 

1
: ( , 2) ( , 2) ( ,1 2) ( , 1) ( , )r D C E F Z L H∧ ∧ → ∧ → → →

1 3 1
( ) ( , ) 9PNet r PNet x r= =  

T6 results the following action rule that is not considered as 
cost-effective action rule because its net profit is not positive. 

2
: ( ,1) ( , 2 1) ( , 2 1) ( , )r B C F Z L H∧ → ∧ → → →

2 1 2 2 2
( ) ( , ) ( , ) 2PNet r PNet x r PNet x r= + = −  

Also r3 that is a cost-effective action rule is gained from T7:  
: ( , 2) ( , 2) ( ,1 2) ( , 1) ( , )

3
r D C E F Z L H∧ → ∧ → ∧ → → →

13 3

3 5 3 6 3 11 3
( ) ( , ) ( , ) ( , )

( , ) 12

PNet r PNet x r PNet x r PNet x r

PNet x r

= + + +

=
 

Presented algorithm returns all cost-effective action rules 
without any unnecessary comparison. It selects an attribute 
with maximum FF value in each level of tree and dividing 
rules based on it. If the cost of changing selected attribute is 
more than resulting profit of changing decision attribute from 
low to high, algorithm continues. Selecting attributes and 
dividing table will be continued until FF value of the selected 
attribute becomes less than ( )P L H→ . In this step more 
dividing the table may cause losing some cost-effective 
action rules. After stopping the branching process algorithm 
will extract all cost-effective action rules from resulted tables 
in leaves of action tree. Then it is possible to sort them based 
on their net profit and select the most cost-effective ones.  

 

IV. PROOF 
In this section we show the correctness of above algorithm. 

As it mentioned before our aim is finding all of profitable 
action rules. We show that above algorithm returns all of 
profitable action rules without any unnecessary comparison. 

The algorithm selects an attribute with maximum FF value 
in each level of tree for dividing rules based on it, in other 
words it selects the attribute that the minimum cost of 
changing its values is maximum in comparison with other 
attributes. Now if this cost of selected attribute is more than 
resulting profit of changing decision attribute from low 
position to high position, the algorithm will continue for 
dividing rules. This is because of value changing for this 
attribute is not cost-effective. Selecting attributes and 
dividing rules will be continued until FF value of the selected Algorithm2: Cost-Effective Action Rule Discovery Method

  Define EndTables as a global empty set of tables; 
  CEARDM (T, Attributes, CostMatrixes) { 
  Input: 
   T: Table of instances 
   Attributes: Set of all attributes  
   CostMatrixes: Set of all Cost Matrixes of attributes 
  Output:   
   print all cost-effective action rules 

 
    IV = an empty list of attributes ; 
    for each A  Attributes do 
         FFA = minimum value of CMA ; 
         if  ( ( ) Ap L H FF→ < )  then 

          Add A to IV 
    Sort IV descending based on the FF values ; 
    UnMarked = IV; 
    Marked = an empty list of attributes ; 
    CEAT ( T , UnMarked , Marked ) ; 
    CEAR ( CostMatrixes ) ;  
 } 
 
 CEAT ( T , UnMarked , Marked ) { 

 if  ( ∃ ri, rj∈ rows of T that decision value of ri ≠ decision value of rj )  
then 

       A= first attribute of UnMarked; 
      NV= number of different values of attribute A in T   
      while ( A ! = null && NV < 1) do 
          Move A from UnMarked to Marked;   
          A =  next attribute of UnMarked;  
      if  ( A ! = null )  then 
         Move A from UnMarked to Marked; 
         for each vi ∈ set of different values of attribute A in T  do 
             t = empty table; 
            Add to t ∈each ri  rows of T that have vi or null value for attribute A;
           CEAT ( t , UnMarked , Marked ); 
      else 
        Add T to EndTables ; 
 } 
 
 CEAR ( CostMatrixes ) { 
  for each table t in EndTables do 
      for each row ri of t with decision value of L do 
         for each row rj of t with decision value of H do 
           AR = Construct an action rule by Algorithm1; 
           NP = Calculate the net profit of AR by Eq. (1); 
           if   (NP > 0)  
              Print AR as a cost-effective action rule; 
 } 
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attribute becomes less than ( )P L H→ .  In this stage more 
dividing rules may cause losing some profitable action rules 
such as an action rule which include the change with the 
minimum cost for changing the values of selected attribute. 
So that the algorithm stops dividing the table at this step and 
goes to the phase of extracting action rules because of not 
losing profitable action rules. We follow an example for 
further understanding. Suppose Table 3 as a decision table, 
and cost matrix of all its attributes that is presented in Fig. 3. 
We start with set R (Table 4) of classification rules extracted 
from Table 3 in root of tree and continue according to 
CEARM algorithm (Fig. 4). Since IV= {A}, this table is 
divided into two sub-tables base on A's different values. Then 
because of non existence of more IV attribute, dividing 
sub-tables is stopped in second level of tree. It results 
following candidate action rules. 

1
( ) 21: ( ,1 3) ( , 2) ( , ),PNet rr B C Z L H = −→ ∧ → → →  

2
( ) 32: ( , 1) ( ,1 0) ( , ),PNet rr B C Z L H =→ ∧ → → →  

1
( ) 163: ( , 3) ( ,1 2) ( , ),PNet rr B C Z L H = −→ ∧ → → →  

Now consider more dividing and stopping in next levels 
(Fig. 5). It causes losing some candidate action rules that may 
be profitable. For example consider we select attribute with 
maximum FF among unselected attributes ({B, C}) and 
continue dividing sub-tables based on its different values 
then stop in third level. It results only one following 
candidate action rule. 

1
( ) 21: ( ,1 3) ( , 2) ( , ),PNet rr B C Z L H = −→ ∧ → → →  

Also stopping in previous level of second level not only 
doesn't lead to be found any more cost-effective action rules 
than DCEAR, but also need extra unnecessary comparisons. 
So DCEAR algorithm finds all of profitable action rules 
without any unnecessary comparison. 

 
 
 

A B C D E F Z

1 1 2 1  2 L
2 2 2  1  L
1 1   1  L
  2 2 2 1 H
 1 1   1 H

 
A B C D E F Z 

1 1 2 1  2 L 
1 1   1  L 
  2 2 2 1 H 
 1 1   1 H 

 
A B C D E F Z 

2 2 2  1  L 
  2 2 2 1 H 
 1 1   1 H 

 
A B C D E F Z

1 1   1  L
  2 2 2 1 H
 1 1   1 H

 
A B C D E F Z

1 1 2 1  2 L
1 1   1  L
 1 1   1 H

 

A B C D E F Z

2 2 2  1  L
  2 2 2 1 H

 
A B C D E F Z 

  2 2 2 1 H 
 1 1   1 H 

 
 

Figure. 2. Cost-effective action tree for discussed example 
 

 
TABLE 3: A SAMPLE DECISION TABLE 

 A B C Z 
X1 2 1 2 L 
X2 2 1 2 L 
X3 1 1 0 H 
X4 1 1 0 H 
X5 2 3 2 H 
X6 2 3 2 H 
X7 2 1 1 L 
X8 2 1 1 L 
X9 2 2 1 L 
X10 2 3 0 L 
X11 1 1 2 H 
X12 1 1 1 H 

 
 

2 1 A 
100 0 1 
0 100 2 

 
3 2 1 B 
5 3 0 1 
3 0 3 2 
0 20 3 3 

 
2 1 0 C 
10 20 0 0 
11 0 8 1 
0 40 50 2 

Figure. 3. Cost matrix 
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L 1  2
H   1
H 0 1  
H 2 3  

ZCBA 

L 12 

L1 2 

H01 

H23 

ZCBA

H  1

H01

H23

Figure. 4. Cost-effective action tree 
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TABLE 4: SET OF RULES R WITH SUPPORTING OBJECTS 

Z C B A  
L   1 x3,x4,x11,x12 
L  1 2 x1,x2,x7,x8 
H 1  2 x7,x8,x9 
H 0 1  x3,x4 
H 2 3  x5,x6 

 
 

 

Z C B A 

L  1 2 
L 1  2 
H   1 
H 0 1  
H 2 3  

 

 

Z C B A

L  1 2
L 1  2
H 0 1  
H 2 3  

 
 

Z C B A 

H   1 
H 0 1  

H 2 3  

ZCBA 

L 12 

H23 

Z C B A 

L  1 2 

L 1  2  

Z C B A 

L  1 2 

H 0 1   

Figure. 5. Action tree 
 

V. IMPROVEMENT 
In this section we purpose an idea for improving CEAT 

algorithm. By this idea we can decrease number of iterations 
for above algorithm.  

We mentioned before that CEAT marks next unmarked 
attribute in AIV set while finds an attribute that the number of 
its different values in current table be more than one, then 
marks it and for each of these values a branch will be created. 
In this step of algorithm we can make a change and create a 
branch only for useful values of selected attribute in current 
table. Useful values of an attribute in a table are values that for 
each of them in the table either exist at least two rules with 
different decision values that both of them have a value for 
the attribute, Or exist at least two rules with different decision 
values one with a value for the attribute and other with a don't 
care value for it.  It causes to identify values that lead to 
create a table with same decision value earlier and prevent for 
creating table and recalling the algorithm for them. For 
example for T2 in Fig. 2 we selected attribute B for dividing 
table and created a branch for each of its values. As you see 
T3 has two entries with same decision values. But by 
mentioned change in algorithm we can check it in previous 
level and prevent from creating the table and recalling 
algorithm for it. 
 

VI. CONCLUSION 
Discovering useful knowledge from large database and 

acting on that knowledge is becoming increasingly important 
in today’s competitive world. This knowledge is an active 

knowledge and can be provided by actionable patterns by 
actionable knowledge discovery methods. Action rules are 
one of the most effective actionable patterns that have 
attracted a lot of attentions recently.  

In this work cost-effective action rules and a new method 
for discovering them is presented.. Not like traditional action 
rules, cost-effective action rules consider cost of an action in 
addition to its profit.  To implement the approach a cost 
matrix for each attribute is created and integrated it into 
action rule mining process. 

The method reported in this paper can integrate more 
background knowledge into mining process and therefore can 
find more useable actions. The detailed algorithm along with 
step by step examples has been presented in to show the 
functionality and effectiveness of the new method. 
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