

Abstract—Android open source mobile operating system has

been used by major smartphone manufacturing companies. Its

market share also exceeded 80% in the third quarter of 2013.

Turnkey solution, offed by MediaTek, helps phone makes to

build their phones from a phone template. This easy-to-make

solution produces a large volume of Android-powered no-brand

phones. It is crucial to ensure the compatibility and reliability of

apps run on these phones. This study proposes test cases for

performing system testing, compatibility testing, and automated

stress testing of Android apps. Our experimental results show

the validity of the test cases.

Index Terms—Android apps testing, no-brand smartphone,

test automation, test case.

I. INTRODUCTION

The market share of Android mobile operating system

exceeded 80% in the third quarter of 2013 [1]. According to a

report published by New York Times regarding a modern

smartphone making process, MediaTek, a Taiwanese chip

maker, not only simply provides a chip but also “offers

instructions on how to build a phone, the software architecture

to run it and dedicated consultants to advise phone makers

through the production process” [2]. The turnkey solution

offered by MediaTeck lowers the requirements to build a

smartphone, phone makers who adopt this solution can easily

build their own phones which are variations of the phone

template provided. Therefore, the “no-brand” phones can

reach the market quickly. Because of the large volume of

easy-to-make no-brand phones, it is important for the makers

to have a good testing plan to ensure the quality, compatibility,

and reliability of their products. Android operating system has

been widely adopted by these no-brand phones. Therefore,

there is a need to have good test cases to guide the testing of

Android apps run on these phones.

Most of past studies focused on the testing of computer

software, little attention has been paid to the testing of mobile

applications. In order to fill in the gap on mobile application

testing, this study attempts to answer the following research

questions:

 How to develop test cases for verifying the functionality

of mobile phones?

 How to prepare test scripts for automation?

Manuscript received April 9, 2014; revised June 15, 2014.

Hsiu-Li Liao and Wan-Chun Chao are with the Department of

Information Management, School of Business, Chung Yuan Christian

University, Chung Li, Taiwan 32023 ROC (e-mail: hsiuliliao@cycu.edu.tw,

wsnjing@gmail.com).

Chen-Huei Chou is with the School of Business, College of Charleston,

Charleston SC 29464 USA (e-mail: chouc@cofc.edu).

 Does test automation improve the effectiveness of mobile

application testing?

The rest of the paper is organized as follows. First, we

discuss the background of software testing and Android

application development. We next propose some test cases

for coverage testing in the research methodology section.

Moreover, we report the experimental results. Finally,

conclusions and discussions are made.

II. BACKGROUND

A. Software Testing

Computer programs may contain errors which are not

detectable by compiler. Compiler can detect syntax errors but

not the meaning of the program [3]. Myers [4] stated that

“testing is the process of executing a program with the intent

of finding errors.” Also, software testing is any activity

“aimed at evaluating an attribute or capability of a program or

system” [5]. It was recommended that the testing is better to

be performed by someone who is not part of the developers.

Moreover, using a good test case has a high probability of

finding an undiscovered error.

Testing can be broadly categorized into white-box testing

and black-box testing. White-box testing is normally

performed internally especially during the early stage of

software development, while black-box testing is normally

conducted externally when the development is completed.

The focus of the white-box testing is on the depth of testing.

Structural testing over all possible inputs over statements (e.g.

if, while, loop, etc.) is performed and expected outcomes are

compared. The goal of black-box testing is to confirm that the

program works the way it is supposed to work. The coverage

of testing which utilizes normal and extreme input values is

the aim of black-box testing.

B. Android Mobile Application Development

The applications run on Android mobile phones are the

apps written in Java programming language. Google released

the first edition of Android Software Development Kit (SDK)

on September 2008. The SDK compiles the application codes,

data, and recourse files into an archive package called

Android Package (APK). This package file has an .apk suffix.

The APK of an app can be installed to Android operating

system which is a Linux-based system to host different apps.

Each app is treated as a different user in the operating system

and one unique user ID is assigned to the app when the app is

executed. All files related to the app are restricted to the app

based on the assigned user ID. Each app has its own virtual

machine and this virtual machine is isolated from other apps.

Functional Validation and Test Automation for Android

Apps

Hsiu-Li Liao, Chen-Huei Chou, and Wan-Chun Chao

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

553DOI: 10.7763/IJMLC.2014.V4.472

Android Debug Bridge (ADB) is a command line tool

provided by the SDK. It allows developers to communicate

with a connected Android-powered device. It also offers a

way to install APKs, run shell commands, store logs, and

emulate touch actions from screen. The shell commands,

emulation of touchscreen actions, and captured logs are

beneficial for testing. The shell commands can be used to

verify the connection between a PC and Android-powered

devices. A hit from touchscreen can be emulated based on the

coordinate information given. The shell commands can also

be automated by running a script. ADB can be used for

grey-box testing, which is a mixture of white-box testing and

black-box testing.

In addition, monkeyrunner is another tool provided by

SDK. It’s powered by Python program. It provides event

control over an Android-powered device. The events include

key/button controls, drag/slide actions, touch actions, capture

screenshots, and multiple device control. It can be used for

functional testing by providing action keycode and

corresponding coordinate. The captured screenshots can be

compared with expected outcomes for regression testing.

Monkeyrunner can be used for black-box testing through the

emulation of actions.

III. RESEARCH METHODOLOGY

One of the main focuses of the study is on the test case

development for the applications on Android mobile phones.

In particular, we developed test cases for system testing,

compatibility testing, and stress testing of Android apps.

In testing mobile applications, Selvam and Karthikeyani [6]

raised up some concerns and challenges. These include the

type of model device, the version of mobile operating systems,

the method to test compatibility, and the amount of required

testing. Testing can be further categorized into different levels:

unit testing, integration testing, system testing, user-interface

testing, regression testing, and acceptance testing.

Different from software on computers, the mobile

applications are normally embedded to hardware devices

which need to follow telecommunication regulations from

various countries. The mobile applications on smart phones

deal with a variety of activities such as the interactions with

various hardware components, communications with

operation system, memory management, and interactions with

other applications and user interface. In order to test a

particular mobile application, it is recommended to have a

comprehensive test case. The analysis of logs generated by

the test tool would be helpful to identify the defects of the

application [7].

Following the guidelines provided by GSM Association [8],

MMS Conference Document Version 2.0.0 [9], and CMMI

for Software Engineering Version 1.1 [10], [11], we

developed test cases for testing mobile applications. In each

case, we clearly define the test purpose, initial condition,

testing procedure, and expected behavior.

A. Test Case Design for System Testing

The main focus of the testing coverage was on the system

testing and the compatibility testing. Although there is no

message size limit specified in the Multimedia Messaging

Service (MMS) standard, different carriers set different limits

for their users while sending files over MMS. For example,

AT&T limits the message size to 600 kilobytes
1
 and Verizon

set the size limit to 1.2 megabytes
2
. To reflect the reality using

transmissions of images over MMS, we developed a test case

using four different types of images to handle the coverage of

testing. The images varied in file sizes and image resolutions.

The JPEG images were: 1) with the normal size under the

limit of 600 kilobytes specified by AT&T, 2) with the large

size above the limit of 600 kilobytes, 3) with small pixels

160x120, and 4) with large pixels 640×480, 1280×960,

2400×1800. Fig. 1 shows the details of the test case. This test

case should be performed four times using four different

JPEG images. Correct JPEG file should be loaded on step 1 of

the test procedure.

 Test Purpose

To ensure that a JPEG image is correctly transferred over

Multimedia Messaging Service.

 Initial Condition

1. The MMS on both sender’s and recipient’s mobile

phone is in idle mode.

2. On sender’s side, the JPEG image is available in the

picture browser of the MMS.

 Test Procedure

1. On sender’s side, create a new MMS, insert the

JPEG image file, and send the message.

2. Check recipient’s MMS application. If a JPEG

image is received. Verify the image with the source

from the sender.

 Expected Behavior

The message is correctly sent from sender’s MMS and

received by recipient’s MMS with correct JPEG image.
Fig. 1. Test case for transferring a JPEG file over MMS.

B. Test Case Design for Compatibility Test

In order to test the compatibility of video playback feature

of a mobile application, we developed a test case (listed in Fig.

2) using different video formats. A video file saved with the

same file extension may use different codecs to encode. For

example, AVI (Audio Video Interleave) is a popular

container file format created by Microsoft in 1992. An AVI

file can contain video and audio encoded by different

combinations of codecs such as uncompressed, DivX, H.264

AVC, etc. If a codec is not supported by a player, the video

cannot be decoded to be played. We used FFmpeg

(http://www.ffmepg.org) to prepare video clips in various

formats using different codecs listed as follows:

1) Flash Video in .flv

2) MPEG-4 in .mp4

3) H.264 in .avi

4) Matroska in .mkv

5) Quick Time in .mov

1 AT&T MMS size limitation listed on its official webpage:

http://www.att.com/esupport/article.jsp?sid=53119&cv=820#fbid=hE2-xB

m08w9
2 Verizon MSS size limitation listed on its official webpage:

http://developer.verizon.com/content/vdc/en/verizon-tools-apis/verizon_api

s/network-api/faqs/faq-multimedia-messaging-system-mms.html#8

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

554

 Test Purpose

To validate the compatibility of a media player.

 Initial Condition

1. A video clip stored on Android-powered phone or

external storage such as SD card.

2. Run the media player being validated.

3. Load the video clip.

 Test Procedure

Whenever possible, this procedure should be repeated

as follows:

1. Start playing the video clip.

2. Pause/Stop/Forward/Rewind the clip.

3. Play the clip until the content is finished at the end.

 Expected Behavior

The clip is played correctly and the playback is

finished without any error.
Fig. 2. Test case for compatibility testing of media player.

 Test Purpose

To ensure that the functionalities of the audio,

camcorder, and camera features work properly while

using and switching them in a resource constrained

environment.

 Initial Condition

1. An Android mobile phone is fully charged.

2. At least one music file is stored in the SD card.

 Test Procedure (automatic procedure)

1. Load music player, load the music file, and wait for

five seconds. Play the music file for 15 seconds.

2. Load camera application and wait five seconds.

3. With back camera selected, take a picture and wait

five seconds for storing the picture.

4. Switch to front camera. Take a picture and wait five

seconds for storing the picture.

5. Switch video mode and wait five seconds. With

back camera selected, record a video for 15 seconds

and wait five seconds for storing the video.

6. Switch to front camera. Record a video for 15

seconds and wait five seconds for storing the video.

7. Repeat steps 1-6 1000 times.

 Expected Behavior

1. While switching applications, there is no ANR

(Application Not Responding).

2. Music file can be loaded and played correctly by

music application.

3. Pictures can be taken and stored correctly by

camera application using both front and back

cameras.

4. Videos can be taken and stored correctly by camera

application. A video clip includes both audio and

motion parts.

5. During the repetitive testing, the mobile phone

won’t fail, reboot, or crash.

6. Thumbnails of pictures and videos in media library

can be loaded correctly.

7. Pictures and videos stored in the media library can

be browsed and played correctly.
Fig. 3. Test Case for Automated Stress Testing

C. Test Case Design for Automated Stress Testing

For stress testing, we prepared a test case which utilizes

audio, camcorder, and camera features of a mobile phone.

The test can be performed automatically. The Android APKs

involved are music player, camcorder, and camera. Fig. 3

shows the details of the test case.

IV. EXPERIMENTS AND RESULTS

A. Experimental Environment

We used two no-brand mobile phones equipped with

Android 2.2 and a 5-inch WVGA (800x600) screen. It has

front and back cameras. 4GB SD card was inserted. While

performing automatic testing, a PC with Windows 7 was used.

For system testing, we used AT&T and Verizon for

experiments. For each of the four types of image files, we took

turns using either the AT&T phone or the Verizon phone as

the sender.

During the repeated coverage testing on playing video clips,

we chose a top ranked Android media player MX Player. It

claims to support a variety of video formats.

Finally, we used ADB shell and monkeyrunner to emulate

touchscreen controls for a series of stress tests. Both methods

were carried 10 times. In the next sub-section, we describe the

details of configurations using the two emulation tools.

B. Automatic Testing Configuration

1) Configuration using android debug bridge

Android Debug Bridge (ADB) shell was used to

automatically control mobile phone and perform stress testing.

After installing ADB shell and setting Windows environment

variables, “adb device” command was used to confirm the

connection between the mobile phone and PC over USB cable.

Following the procedure listed in stress test case, a script was

prepared to call ADB commands and perform various tests.

Table I shows the ADB shell commands used in the script.

The script used is listed in Appendix A. In order to perform

the script 1000 times for stress test, a batch file which

included a loop was used.

TABLE I: ADB SHELL COMMAND

Command Action

adb device List Android device attached

adb logcat Read log of events

adb shell am start –n “APK” Load a particular APK application

adb shell getevent Get event triggered from touchscreen, X

and Y coordinate can be retrieved

adb shell input keyevent “value” Trigger a particular event

value=27: camera

value=79: headsethook

adb shell sleep “SEC” Pause for SEC seconds

2) Configuration using monkeyrunner

Before running a script using monkeyrunner, we used the

same “adb device” command to confirm the connection of the

phone. In order to use monkeyrunner to emulate touch screen

actions, we used Hierarchy Viewer provided by Android SDK

to get coordinate of application icons. Monkeyrunner requires

Python to run. The script we used was written in Python. The

device.touch(X, Y, ”DOWN_AND_UP) command was used

to emulate a complete touch action on coordinate (X,Y). The

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

555

monkeyrunner API MonkeyRunner.sleep(“value”) was used

to pause the test for the number of seconds specified in

“value”. The complete script is attached in Appendix B.

C. Results

1) System testing results

Four different image files were used for system testing.

When using a JPEG image less than 600 kilobytes, both

phones can send and receive the image file over MMS

correctly, no matter using AT&T or Verizon as the sender.

Similarly, we did not find any error using small resolution file

with 160×120 pixel dimension. Errors occurred during the

transmissions of image files larger than 600 kilobytes and

image files in 640×480, 1280×960, 2400×1800 pixel

dimensions. The possible reason of the errors was due to the

limitation of AT&T’s support of large size files over MMS.

2) Compatibility testing results

Since a top ranked Android media player MX Player was

used for compatibility test, the player passed the playback

testing of all five video formats prepared. Their claim of

wide-range video-format support was validated in our test.

Also, the phone supported the features carried by the player.

3) Stress test results

Based on the 10-run logs captured from ADB shell and

monkeyrunner, we did not find any error occurred. Both

methods showed that the no-brand Android-powered phone

passed the stress testing. ADB shell not only emulates the

touch actions but also sends system commands to load

applications. Since ADB makes system calls to load APKs, it

can capture potential errors occurred among the switch of

applications if they share the same resources on multitasking.

However, monkeyrunner completely emulates users’ touch

actions on everything. It is great for functional testing in

automation.

In addition, each cycle took about 110 seconds to complete.

In order to finish the 10-run 1000-cycle tests, the automation

process spent over 300 hours. Although this is a relatively

long term testing, the testing in automation provided a reliable,

efficient, and effective solution, compared to testing

performed by human software engineers.

V. CONCLUSION

Due to the needs of low-cost smartphones in low income

countries, no-brand Android-powered smartphones have been

manufactured to meet the demand. However, the reliability

and compatibility of such phones have been the major

concerns to potential consumers. This study established

system and compatibility test cases as well as automated stress

test cases to address the concerns.

The contribution of this study is in two folds. First, it fills in

the gap of empirical research testing functionality of no-brand

Android-powered smartphones. Second, it demonstrates the

feasibility of performing automated testing on Android apps.

Practitioners or software engineers may replicate the tests

with minor changes to meet their requirements (e.g. different

coordinate due to different screen sizes).

This study established the test cases for some typical

functionality of modern Android-powered smartphones.

However, there are many other apps not included in the study.

Future studies may adapt our test cases for other apps. Also,

for the purpose of generalizability, it is suggested to replicate

the study using different versions of operating system and

different phones.

APPENDIX

A. Android Debug Bridge Test Script

adb shell sleep 5

adb shell am start -n

com.android.music/com.android.music.MediaPlaybackActivity

adb shell echo -e "***************Enter Music***************"

adb shell sleep 5

adb shell input keyevent 79

adb shell sleep 15

adb shell sendevent /dev/input/event0 1 158 1

adb shell sendevent /dev/input/event0 1 158 0

adb shell sleep 5

adb shell am start -n com.android.camera/com.android.camera.Camera

adb shell echo -e "***************Enter Camera***************"

adb shell sleep 5

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 0

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

adb shell sendevent /dev/input/event1 3 50 0

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell echo -e "======Sensor 1 Capture Picture Finished======"

adb shell sleep 5

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 293

adb shell sendevent /dev/input/event1 3 54 35

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 0

adb shell sendevent /dev/input/event1 3 53 293

adb shell sendevent /dev/input/event1 3 54 35

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

echo -e "---Switch Camera Sensor---"

adb shell sleep 5

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 0

adb shell sendevent /dev/input/event1 3 53 42

adb shell sendevent /dev/input/event1 3 54 465

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

556

adb shell sendevent /dev/input/event1 3 50 0

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell echo -e "======Sensor 2 Capture Picture Finished======"

adb shell sleep 5

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 180

adb shell sendevent /dev/input/event1 3 54 463

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 0

adb shell sendevent /dev/input/event1 3 53 180

adb shell sendevent /dev/input/event1 3 54 463

adb shell sendevent /dev/input/event1 3 50 0

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell echo -e "***************Enter Camcorder**************"

adb shell sleep 5

adb shell input keyevent 27

adb shell sleep 15

adb shell input keyevent 27

adb shell echo -e "======Sensor 1 Record Video Finished======"

adb shell sleep 5

adb shell sendevent /dev/input/event1 3 48 255

adb shell sendevent /dev/input/event1 3 53 293

adb shell sendevent /dev/input/event1 3 54 35

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

adb shell sendevent /dev/input/event1 3 48 0

adb shell sendevent /dev/input/event1 3 53 293

adb shell sendevent /dev/input/event1 3 54 35

adb shell sendevent /dev/input/event1 3 50 6

adb shell sendevent /dev/input/event1 0 2 0

adb shell sendevent /dev/input/event1 0 0 0

echo -e "---Switch Camera Sensor---"

adb shell sleep 5

adb shell input keyevent 27

adb shell sleep 15

adb shell input keyevent 27

adb shell echo -e "======Sensor 1 Record Video Finished======"

adb shell sleep 5

adb shell sendevent /dev/input/event0 1 158 1

adb shell sendevent /dev/input/event0 1 158 0

adb shell sleep 5

adb shell echo -e "***************Test Complete***************"

B. Monkeyrunner Test Script

Imports the Monkeyrunner modules used by this program

from com.android.monkeyrunner import MonkeyRunner,

MonkeyDevice, MonkeyImage

Connects to the current device, returning a MonkeyDevice object

device = MonkeyRunner.waitForConnection()

for i in range(0, 1000):

 # Launch Music

 device.touch(180,457,"DOWN_AND_UP")

 print "Launch Music"

 MonkeyRunner.sleep(5)

 # Play Music

 device.touch(185,190,'DOWN_AND_UP')

 print "Capture and then wait for 15 sec"

 MonkeyRunner.sleep(15)

 # Return to desktop

 print "Return desktop"

 device.press('KEYCODE_BACK','DOWN_AND_UP')

 MonkeyRunner.sleep(1)

 device.press('KEYCODE_BACK','DOWN_AND_UP')

 MonkeyRunner.sleep(5)

 # Launch Camera

 device.touch(180,630,"DOWN_AND_UP")

 print "Launch camera"

 MonkeyRunner.sleep(5)

 # Sensor 1 Capture

 device.touch(760,430,'DOWN_AND_UP')

 print "Capture and then wait for 5 sec"

 MonkeyRunner.sleep(5)

 #sensor switch

 device.touch(440,40,"DOWN_AND_UP")

 print "Switch Sensor"

 MonkeyRunner.sleep(5)

 # Sensor 2 Capture

 device.touch(760,430,'DOWN_AND_UP')

 print "Capture and then wait for 5 sec"

 MonkeyRunner.sleep(5)

 # Switch to Camcorder

 device.touch(760,220,'DOWN_AND_UP')

 print "Switch to Camcorder"

 MonkeyRunner.sleep(5)

 # Sensor 1 Record

 device.touch(760,430,'DOWN_AND_UP')

 print "Record and then wait for 15 sec"

 MonkeyRunner.sleep(15)

 device.touch(760,430,'DOWN_AND_UP')

 MonkeyRunner.sleep(5)

 #sensor switch

 device.touch(440,40,"DOWN_AND_UP")

 print "Switch Sensor"

 MonkeyRunner.sleep(5)

 # Sensor 2 Record

 device.touch(760,430,'DOWN_AND_UP')

 print "Record and then wait for 15 sec"

 MonkeyRunner.sleep(15)

 device.touch(760,430,'DOWN_AND_UP')

 MonkeyRunner.sleep(5)

 # Return to desktop

 print "Return desktop"

 device.press('KEYCODE_BACK','DOWN_AND_UP')

 print "Script",i,"done"

 MonkeyRunner.sleep(5)

print "Script Complete"

REFERENCES

[1] IDC. (2013). Android Pushes Past 80% Market Share While Windows

Phone Shipments Leap 156.0% Year Over Year in the Third Quarter.

[Online]. Available:

http://www.idc.com/getdoc.jsp?containerId=prUS24442013

[2] L. Yang. (2013). Providing a template to challenge apple. New York

Times. [Online]. Available:

http://www.nytimes.com/2013/01/07/technology/07iht-mediatek07.ht

ml?_r=0

[3] P. Sestoft, Systematic Software Testing, Version 2, 2008.

[4] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,

John Wiley & Sons, 2011.

[5] W. C. Hetzel and B. Hetzel, The Complete Guide to Software Testing,

Wellesley, MA: QED Information Sciences, 1988.

[6] R. Selvam and V. Karthikeyani, “Mobile Software Testing-Automated

Test Case Design Strategies,” International Journal on Computer

Science & Engineering, vol. 3, no. 4, 2011.

[7] P. Gilbert et al., Automating privacy testing of smartphone

applications, Technical Report CS-2011-02, Duke University, 2011.

[8] GSM Association, “TS.11 device field and lab test guidelines v11.5,”

Technical Report, Global System for Mobile Communications

Association, 2013.

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

557

[9] CMG, Comverse, Sony Ericsson, and Motorola Logica, Nokia and

Siemens, MMS Conformance Document Version 2.0.0, 2002.

[10] CMMI Product Team. (2002). CMMI for Software Engineering,

Version 1.1, Staged Representation (CMMI-SW, V1.1, Staged).

Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, Pennsylvania. Technical Report CMU/SEI-2002-TR-029.

[Online]. Available:

http://www.sei.cmu.edu/library/abstracts/reports/02tr029.cfm

[11] CMMI Product Team. (2002). CMMI for Software Engineering,

Version 1.1. Continuous Representation (CMMI-SW, V1.1,

Continuous). Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania. Technical Report

CMU/SEI-2002-TR-028. [Online]. Available:

http://www.sei.cmu.edu/library/abstracts/reports/02tr028.cfm

Hsiu-Li Liao received her Ph.D. degree in

information management from National Taiwan

University Science and Technology in 2008. She is

currently working as an associate professor at the

Department of Information Management at Chung

Yuan Christian University. She has published refereed

papers in Computers & Education, Computers in

Human Behavior, International Journal of Services

Technology and Management, Review of Economics

& Finance, Social Behavior and Personality, Journal of Software,

International Journal of Electronic Business Management, Lecture Notes in

Computer Science, Issues in Information Systems, and other Chinese

management journals. She is also a reviewer of eight IS international

journals. She is a member of IACIS and SIim.

Chen-Huei Chou is an assistant professor of

management information systems and decision

sciences in the School of Business at the College of

Charleston, SC, U.S.A. His areas of interests include

web design issues in disaster management, ontology

development, Internet abuse in the workplace, text

mining, and data mining. His research has been

published in MIS journals and major conference

proceedings, including Journal of Association for

Information Systems, Decision Support Systems, IEEE Transactions on

Systems, Man, and Cybernetics, Journal of Information Systems and

e-Business Management, and Computers in Human Behavior.

Wan-Chun Chao received her master degree in

information management from Chung Yuan Christian

University in 2013. Her research interests include

smartphone application, no-brand handset, electronic

commerce, system development, functional

verification, test automation, and management

information system.

International Journal of Machine Learning and Computing, Vol. 4, No. 6, December 2014

558

