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Abstract—Image denoising methods based on Markov 

random field (MRF) are often shown over-smooth phenomenon 

for strong noise image. Wavelet analysis has good 

time-frequency local ability and preserves the image edge 

information well for image denoising problem. Based on 

wavelet analysis and MRF theory, we propose a wavelet markov 

field of experts (WMFoE) framework to deal with image 

denoising problems. The noise image is divided into 

low-frequency and high-frequency component, and MRF are 

used to deal with low-frequency component. For 

high-frequency component, a clustering based soft-threshold 

method is used to remove the noise signal. Then, the restored 

image can be gotten by reconstruction from different 

components. Experiment results show that our method not only 

gets good PSNR and SSIM values but also preserves image edge 

information especially for strong noise image, compared with 

BM3D etc. state-of-art methods. 

 

Index Terms—Markov random field, image denoising, 

wavelet transformation, k-means clustering. 

 

I. INTRODUCTION 

Image restoration has been studied for decades in image 

processing. Traditionally, removing noise is achieved by 

linear filter processing such as Wiener filter, or Bayesian 

inference using image prior knowledge. 

Since Donoho proposed the soft-thresholding function [1], 

lots of research on image denoising has been focused on 

methods on wavelet domains, because high-frequency 

components in wavelet domain contain image noise signal 

and edge for natural image. Therefore, in thresholding-based 

method, it is important to set a thresholding function for 

distinguishing noise signal from wavelet high-frequency 

coefficients. S. Grace Chang, Bin Yu and Martin Vetterli 

developed an adaptive data driven threshold for image 

denoising via wavelet soft-thresholding function [2]. They 

present the thresholding function derived from Bayesian 

framework and the wavelet coefficients can be modeled as a 

distribution such as Generalized Gaussian Distribution. This 

model are demonstrated to be efficient for a wide range level 

of Gaussian noise. 

On the other hand, it is known for decades that image 

denoising can be expressed as energy minimization process 

of pixel-labelling task in Markov Random Fields (MRF). 

Richard Szeliski et al. do image denoising with 

smoothness-based priors in MRF [3], with fast MRF 
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inference solution method such as ICM, graph cut and belief 

propagation etc. They provide a set of energy minimization 

benchmarks and compare different energy minimization 

methods for image denoising problem. S. Roth developed a 

framework Fields of Experts (FoE) [4] to learn a generic 

expressive image prior knowledge that capture the statistic 

feature of natural scene images. 

In this paper, we propose the Wavelet Markov Fields of 

Experts (WMFoE) algorithm to remove image noise. The 

WMFoE algorithm deals with coefficients separately in 

wavelet domain, by introducing virtues of wavelet analysis 

and MRF models on image denoising problem. The outline of 

this paper follows: In Section II, we describe the proposed 

WMFoE algorithm. The experimental results are given in 

Section III. The conclusions and directions for future work 

are listed in Section IV. 

 

II. WAVELET MARKOV FIELDS OF EXPERTS 

In this section, we will give the framework of the proposed 

Wavelet Markov Fields of Experts algorithm. The Flowchart 

of our method is shown in Fig. 1. 

A. Framework of WMFoE Algorithm 

The discrete wavelet transform kernel function can be 

represented as one separable 2-D scaling function and three 

separable 2-D wavelets 

( , ) ( ) (y)x y x                                    (1) 

( , ) ( ) ( )H x y x y                                  (2) 

( , ) ( ) ( )V x y x y                                  (3) 

( , ) ( ) ( )D x y x y                                 (4) 

where ( )x  is the scaling function, ( )y  is the wavelets 

function, and ( , )H x y , ( , )V x y , and ( , )D x y  are called 

horizontal, vertical and diagonal wavelets. The 2-D signal
2( , ) ( )f x y L R , wavelet transform formulation can be written 

as: 

H V D

k k k k kw f g g g                              (5) 

where f
-
k is low-frequency coefficients, H

kg , V

kg , and D

kg  are 

the horizontal, vertical and diagonal ones at scale k yields.  

According to the wavelet transform, we can define the 

neighborhood factor 2

iS  as: 

2 21

j i

i j

w N

S w
M 

                                  (6) 

where 
iN  is the set of sites neighboring i and M is the 

number of sites in the neighborhood. 
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Suppose the noisy image y and original image x can be 

formulated as 

y = x + v                                     (7) 
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Fig. 1. Flowchart of the proposed image denoising algorithm. 

 

where additive Gaussian white noise 2(0, )v N  . Our 

algorithm firstly starts with wavelet transform 

y x vw w w                                                     (8) 

where yw is coefficients of noisy image, 
xw , and 

vw  are the 

transformation of signal x and v. And then, we adopt 

differentmethod for low-frequency and high-frequency 

wavelet transform coefficients. 

For purpose of removing the 
vw from noisy image 

coefficients yw , the threshold function method has been 

proposed and developed, however, the threshold function for 

high-frequency coefficients yg  have some disadvantages for 

recovery coefficient 
xg . For example, hard-thresholding can 

produce ringing artifact and the soft-thresholding would lead 

to edges over-smoothed. Therefore, in this paper, we apply a 

simple but efficient linear method instead of thresholding 

function which is expressed as 

ˆ ( , ) ( , )x ij yg i j g i j                             (9) 

where the shrinkage factor     can be defined as 

2 2max(1 2 log ,0)ij ijn S                    (10) 

  is the square deviation of sample signal, the parameter n 

is the sample length of signal similar to Donoho thresholding 

function and 2

ijS  can be computed by equation (6). Besides, 

the factor formula means it takes non negative value.  

On the other hand, we construct Markov Random Field for 

low frequent coefficients to remove the noise signal in 

low-frequency component. For our analysis of MRF in 

low-level vision, the probability density function is written as 

WMFoE (x; )1
(x; )

( )

E
p e

Z

 
 


                 (11) 

with the energy function  

WMFoE

1

(x; ) log (W x; )
i

M
T

j j j

x N j

E  
 

            (12) 

where Wj and j are the parameters of WMFoE model, M is 

the number of filters Wj. The function (x)  has the form 

over FoEs model with Student-t experts [4] 

 21
(W x; ) (1 (W x) )

2

jT T

j j j j


 


                (13) 

For Markov labeling problems, the maximum a posterior 

(MAP) solution, which is based on Bayes statistics theory in 

estimation and decision-making, is equivalently found by 

minimizing the posterior energy function [5]. Thus, we 

perform the posterior energy function of low-frequency 

coefficients fx as 

WMFoE( | ) ( | ) ( )x y y x xE f f E f f E f              (14) 

where the prior energy function as unary term  

2

2

1
( | ) ( )

2
y x y xE f f f f


                      (15) 

and WMFoE energy function as the pairwise term. We use 

the gradient descent method to minimize the energy by 

(t 1) (t) ( | )x x x yf f E f f                         (16) 

where the directional derivative E  is expressed as 

2 1

1
| | (W x; )

x

M T

f y x j j jj
x

E f f
f
 

 


   


      (17) 

After denoising on low-frequency and high-frequency 

components, we use inverse wavelet transform for wavelet 

reconstruction to get denoised image x̂ . 

B. Wavelet Coefficients Estimation 

For the high-frequency coefficients, we use equation (9) to 

update the wavelet coefficients, so we need to compute the 

square deviations. Due to statistical features of image, we 

perform distribution fitting which is realized by Expectation 

Maximization (EM) algorithm to compute square deviations 
2  of horizontal, vertical and diagonal coefficients 

respectively [6]. In fact, it is not appropriate to model all the 

wavelet coefficients in one subband with only one random 

variable for noisy image. Gathering pixel coefficients with 

some similarities is a good way for classification. Therefore, 

we define the features iU  of the site i of wavelet coefficient’s 

four or eight nearest neighbours for clustering method, such 

as k-means, to estimate the square deviations locally and 

exactly. 
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C. MRF Parameters Learning 

To better apply our method for different images, for 

low-frequency coefficients, it is essential to get suitable 

parameters for our WMFoE model. Generally, Maximum 

Likelihood Estimation (MLE) is used to get the suitable 

parameters on training sets. But according to Hinton’s work, 

MLE has disadvantages for computing the parameters W 

and 𝛼 [7]. So, for the low-frequency components of wavelet 

coefficients, we rely on the wavelet Markov fields of experts 

and train the filters Wj and weights 
j  by contrastive 

divergence [7]. Contrastive divergence is an efficient method 

to get maximum likelihood through minimizing the 

Kullback-Liebler divergence between the data distribution 

and equilibrium distribution over the visible variables written 

as 

WMFoE WMFoE

P X

E E

  

   
  

              (18) 

where 
P
 denotes the model distribution that we proposed 

as equation (11), 
X

 denotes the average distribution of 

training data X, and   is the learning rate. 

Due to the large number of natural image datasets for 

training, it is important to use subsampling strategy to 

estimate the parameters of our WMFoE model. Instead of 

inefficient direct sampling, Markov Chain Monte Carlo 

(MCMC) method is used. Running MCMC and Gibbs 

sampler for iterations starting from the training datasets will 

get the samples close to the target distribution. Then we 

perform Stochastic Gradient Descent (SGD) optimization 

method to update the parameters of WMFoE model. 

 

III. EXPERIMENTS 

In this section, we will evaluate and compare our algorithm 

with other methods on image denoising. 

A. Wavelet Selection and Parameter Learning 

The image denoising performance of our model is also 

based on the selection of wavelet function. A good wavelet 

transform function should not only make the high-frequency 

coefficients have histogram close to the distribution that we 

select, but also can concentrate noise signal on 

high-frequency. We select Discrete Meyer (D-Meyer) 

wavelets as the kernel function because of its high vanishing 

moments which can eliminate the correlation of pixels 

leading to get smaller high-frequency coefficients and 

concentrating on the energy of image. 

Besides, learning suitable parameters determine the 

efficiency and universality of the proposed model. We train 

the datasets from Berkeley Segmentation Database [8] to get 

the suitable parameters of our WMFoE model. We employ 

contrastive divergence and MCMC method with SDG for 

learning filters Wj  and weights j . We train 5×5 cliques’ 24 

filters of WMFoE model (shown in Fig. 2) on 200 natural 

images taken from Berkeley Segmentation Database. The 

properties of our low-frequency coefficients’ MRF model are 

obtained by MCMC sampling images of 50×50 image 

patches after wavelet transform, and then the sampling data is 

used by SGD with learning rate =0.1 . Training the WMFoE 

model is time-consuming, but occurs offline. 

B. Image Denoising 

We present experiments conducted with our proposed 

algorithm WMFoE in this section. The evaluation of our 

algorithm performance depends on two measurements: 

1) The Peak Signal-to-Noise Ratio (PSNR) defined as 

2

2

255
PSNR=10lg

ˆ(x x)
                        (19) 

The PSNR is a very widely used evaluation criterion for 

denoising but has some limitation that it does not fully reflect 

the quality of restored image. 

2) Structural similarity index (SSIM) [9] provides a more 

efficient method to evaluate the results of image denoising. 

The SSIM values range between 0 and 1, where the values 

which is closed to 1 means a perfect restoration method. 

According to the Section III-A, we decide to employ 

Discrete Meyer wavelets as the wavelet function and 5x5 

cliques’ 24 filters of WMFoE model that we train as the 

low-frequency component model parameters. For the 

high-frequency component, we initialize the number of 

clusters k =35, the 3×3 region to compute the neighborhood 

factor in equation (6) and we use k-means to cluster pixels’ 

feature which is composed by four nearest neighbors plus 

itself wavelet coefficients. To estimate the distribution of 

high-frequency coefficients, we employ the Laplacian 

distribution model.  

 
 

Fig. 2. 5×5 cliques’ 24 filters of WMFoE model learned by contrastive 

divergence on Berkeley segmentation database. 

 

Table I and Table II provides PSNR and SSIM values of 

the test images with different Additive White Gaussian Noise 

(AWGN) and we find our WMFoE algorithm works well for 

test images. Portilla et al. [10] and Roth S et al. [4] present 

denoising result on this dataset. We find that our denoising 

results are close to theirs (mostly within 0.3dB) and in some 

cases even outperform theirs (by about 0.5dB). Besides, 
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according to experimental results on SSIM value, the 

denoising performance is good especially when the image 

has lots of textures.  

 
TABLE I: OUR WMFOE ALGORITHM PERFORMANCE WITH PSNR 

σ2/PSNR Barbara Boat House Lena Peppers 

10/28.13 33.58 32.35 35.58 35.30 34.07 

15/24.61 32.04 31.17 34.31 33.65 32.72 

20/22.11 30.96 30.13 33.41 32.37 31.66 

25/20.17 30.01 29.21 32.60 31.33 30.68 

50/14.15 26.97 26.40 29.53 27.97 27.50 

75/10.63 24.42 24.62 26.29 25.32 24.67 

100/8.13 22.18 22.82 23.53 22.85 22.22 

 
TABLE II: OUR WMFOE ALGORITHM PERFORMANCE WITH SSIM 

σ2/PSNR Barbara Boat House Lena Peppers 

10/28.13 0.926  0.909  0.893  0.943  0.921  

15/24.61 0.897  0.885  0.871  0.922  0.902  

20/22.11 0.873  0.858  0.856  0.901  0.884  

25/20.17 0.848  0.826  0.841  0.880  0.866  

50/14.15 0.743  0.710  0.769  0.787  0.778  

75/10.63 0.629  0.643  0.677  0.689  0.647  

100/8.13 0.529  0.565  0.576  0.570  0.539  

To prove the performance of our WMFoE method further, 

we use BM3D [11], LMMSE [12], GHP [13] and FoE [4] for 

comparison. The codes of all the method above for 

comparison is provided by the authors on the Internet and we 

use the authors’ parameters setting. We employ all the 

denoising method on Lena, Barbara, House, and Pepper 

images with square deviation σ
2
=10, 15, 20, 25, 50 AWGN 

and the results are shown in Fig. 3 and Fig. 4. 

Table III and Table IV show the PSNR and SSIM values 

for different denoising method. We can see that our WMFoE 

algorithm is better than LMMSE and FoE method.  

Besides, our method also gets similar performance 

compared with BM3D and GHP on PSNR and SSIM measure. 

The experiments shows the different performance between 

WMFoE and other methods are more notable to hold the 

detail information while others are over-smoothed.  

In terms of PSNR value, the WMFoE performed slightly 

worse than the state-of-the-art BM3D for one of some noise 

levels, but the performance difference was not statistically 

significant in these cases. Overall, in majority of the cases the 

WMFoE denoising method performed good qualities and 

held more detail information than other methods. 

 

 

 
TABLE III: IMAGE DENOISING PERFORMANCE COMPARISON WITH PSNR 

σ2 10 15 20 25 50 10 15 20 25 50 

 
Lena Barbara 

BM3D 35.83 34.21 33.03 32.08 29.08 34.87 33.08 31.77 30.75 27.51 

LMMSE 34.64 32.19 30.63 29.51 26.54 32.83 30.37 29.09 28.33 25.85 

GHP 35.23 33.99 32.33 31.33 27.06 34.46 33.40 31.81 31.04 27.11 

FoE 35.04 33.27 31.92 30.82 26.49 32.83 30.22 28.32 27.04 23.15 

WMFoE 35.30 33.65 32.37 31.33 27.97 33.58 32.04 30.96 30.01 26.97 

 
House Pepper 

BM3D 36.37 34.75 33.54 32.67 29.65 34.38 32.31 30.87 29.80 26.46 

LMMSE 35.28 33.32 31.97 31.19 28.75 34.38 31.89 30.36 29.23 26.26 

GHP 36.67 35.46 33.40 32.60 27.63 32.40 31.76 29.97 29.48 26.57 

FoE 35.06 33.48 32.17 31.11 26.74 34.28 32.03 30.58 29.20 24.52 

WMFoE 35.58 34.31 33.41 32.60 29.53 34.07 32.72 31.66 30.68 27.50 

 
TABLE IV: IMAGE DENOISING PERFORMANCE COMPARISON WITH SSIM 

σ2 10 15 20 25 50 10 15 20 25 50 

 
Lena Barbara 

BM3D 0.953 0.931 0.907 0.887 0.808 0.951 0.922 0.892 0.867 0.769 

LMMSE 0.931 0.899 0.871 0.846 0.752 0.904 0.857 0.826 0.802 0.703 

GHP 0.952 0.934 0.895 0.879 0.708 0.946 0.932 0.910 0.893 0.778 

FoE 0.898 0.876 0.854 0.834 0.741 0.918 0.884 0.841 0.805 0.622 

WMFoE 0.943 0.922 0.901 0.880 0.787 0.926 0.897 0.873 0.848 0.743 

 
House Pepper 

BM3D 0.923 0.890 0.871 0.861 0.826 0.933 0.900 0.889 0.853 0.759 

LMMSE 0.880 0.861 0.846 0.835 0.781 0.921 0.895 0.872 0.850 0.772 

GHP 0.934 0.903 0.854 0.825 0.604 0.931 0.911 0.883 0.856 0.712 

FoE 0.880 0.866 0.850 0.836 0.763 0.932 0.901 0.879 0.853 0.735 

WMFoE 0.893 0.871 0.856 0.841 0.769 0.921 0.902 0.884 0.866 0.778 
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(a)                                        (b)                                       (c)                                       (d) 

    
(e)                                        (f)                                          (g)                                    (h) 

 

Fig. 3. House denoising results. (a) Original image. (b) Noisy image with AWGN (σ2 =25). (c) BM3D; PSNR=32.67dB. (d) D LMMSE; PSNR =31.19dB. (e) 

GHP; PSNR=32.60dB. (f) FoE; PSNR =31.11dB. (h) WMFoE; PSNR=32.60dB. (h) Difference between original image and our denoising method output. 

 

    
(a)                                             (b)                                           (c)                                               (d) 

    
(e)                                             (f)                                            (g)                                             (h) 

 
Fig. 4. Peppers denoising results. (a) Original image. (b) Noisy image with AWGN (σ2 =25). (c) BM3D; PSNR=29.80dB. (d) LMMSE; PSNR =29.23dB. (e) 

GHP; PSNR=29.48dB. (f) FoE; PSNR =29.20dB. (h) WMFoE; PSNR=30.68dB. (h) Difference between original image and our denoising method output. 

 

IV. CONCLUSION 

In this paper, we proposed a Wavelet Markov Fields of 

Experts (WMFoE) model to solve the image denoising 

problems. The experimental results demonstrate that our 

method has similar PSNR or SSIM values compared with 

BM3D, LMMSE, GHP, FoE and so on. Due to dealing with 

noisy image by dividing wavelet coefficients into low and 

high-frequency components, we could not only get good 

quality of image denoising results, but also make the 

algorithm faster by parallel computation. While our WMFoE 

hold the detail edge information while other methods show 

over-smoothed phenomenon across different image region. 

Although WMFoE algorithm has a good quality of image 

restoration, the scheme has some parameters to initialize and 

those would affect the results of denoising. Yet, a few images 

with weak noise do not get a good PSNR or SSIM values. 

This situation might be caused by high-frequency 

coefficients processing, because those components contain 

both noise signal and edge information of image. In the future, 

we will extend WMFoE algorithm for increasing the quality 

of weak noisy image and other image denoising tasks. 
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