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Abstract—A well-known polynomial-based (k, n) secret image 

sharing (SIS) scheme is to share a secret image into n noise-like 

shadow images, and the secret image can be recovered from any 

k shadow images. In this polynomial-based (k, n)-SIS scheme, 

the pixels of the secret image should be permuted to achieve the 

randomness of shadow images. If we do not permute secret 

image, there will be a problem of remanent secret image on 

shadow images. However, if we use a key to permute secret 

image then we need keeping this permutation key in advance or 

sharing it among all participants. In this paper, we adopt Reed 

Solomon code, a maximum distance separable code, to propose a 

(k, n)-SIS scheme. Our (k, n)-SIS scheme solves the problem of 

remanent secret image on shadows, and does not need 

permuting secret image. Meantime, we can reduce the shadow 

size like polynomial-based (k, n)-SIS that reduces shadow size to 

1/k of secret image size. 

 

Index Terms—Secret sharing, secret image sharing, Reed 

Solomon (RS) code, maximum distance separable (MDS) code.  

 

I. INTRODUCTION 

Secret image sharing (SIS) combines methods and 

techniques from cryptography and image processing. So, it is 

an important research area and has attracted researchers in 

multimedia community. A SIS scheme shares a secret 

message into shadow images, which are referred to as 

shadows, in the way that if shadows are combined in a specific 

way, the secret image can be recovered. SIS scheme is usually 

implemented as a threshold (k, n)-SIS scheme, where kn, 

that divides a secret image into n shadows. By collecting any k 

shadows, we can reconstruct the secret image, but use of (k1) 

or fewer shadows will not gain any information about the 

secret image. 

There are two major types of SIS scheme: one is the visual 

cryptography (VC) and the other is the polynomial-based SIS 

scheme. VC has the novel stacking-to-see property where 

decoding requires neither knowledge of cryptography nor 

computer. Participants may photocopy their shared images 

onto transparencies and stack them to visually decode the 

secret through human visual system. Contrarily, the 

reconstructed image of polynomial-based SIS scheme is 

lossless, but it needs computation (Lagrange interpolation). 

More details of VC and polynomial-based SIS scheme, 

readers can refer to the book [1]. A new type of SIS scheme 

combining VC and polynomial-based SIS scheme with two 

 
 

Manuscript received  May 11, 2014; revised July 17, 2014. 

C. N. Yang, C. L. Hsieh, and S. R. Cai  are with the CSIE Dept., National 

Dong Hwa University, Hualien, Taiwan (corresponding author: C. N. Yang; 

e-mail: cnyang@ mail.ndhu.edu.tw).  

decoding options was introduced [2]-[4]. In such scheme, one 

can decode secret image for preview by stacking shadows like 

VC when a computer is temporarily unavailable. When the 

computer is available during the decoding scene, we can 

recover the high-quality image back by using 

polynomial-based SIS approach. 

Shamir [5] proposed a novel (k, n) secret sharing to hide a 

secret data in the constant term of a (k1)-degree polynomial. 

Through Shamir’s secret sharing, Thien and Lin [6] firstly 

proposed a polynomial-based (k, n)-SIS scheme by 

embedding secret pixels into all coefficients in polynomial to 

share the secret image and meantime reduced shadow size to 

1/k of secret image size. Shadows in [6] are noise-like and 

thus suspected to censorships. Therefore, some 

polynomial-based (k, n)-SIS schemes were proposed using 

steganography so that shadows reveal meaningful images. 

When adding the authentication ability to detect the 

manipulation of shadows, this scheme is called a (k, n) 

steganographic and authenticated image sharing (SAIS) 

scheme. Based on polynomial-based (k, n)-SIS scheme, some 

(k, n)-SAIS schemes were proposed accordingly [7]-[11]. 

These (k, n)-SAIS schemes can verify the correctness of 

shadows to prevent accidentally generating error shadows or 

intentionally presenting faked shadows. Some polynomial- 

based SIS schemes combined with progressive recovery 

ability were proposed [12]-[15] to provide wide applications.  

Also, in [16], the authors discussed a (k, n)-SIS scheme with 

different importance of shadows. 

From the above description, there are many researches on 

polynomial-based SIS scheme, and all these schemes are 

based on the first polynomial-based (k, n)-SIS scheme (Thien 

and Lin’s (k, n)-SIS scheme). However, this polynomial- 

based (k, n)-SIS scheme needs a key to permute the pixels of 

secret image. If we do not permute secret image first, there 

will be a problem of remanent secret image on shadows. 

In this paper, we adopt Reed Solomon (RS) code, a 

maximum distance separable (MDS) code, to propose a (k, 

n)-SIS scheme to solve the problem of remanent secret image 

on shadows. Polynomial-based SIS scheme needs a key to 

permute pixels in secret image before sharing, while our (k, 

n)-SIS scheme does not need such permutation. Meantime, 

our scheme can reduce the shadow size like polynomial-based 

(k, n)-SIS that reduces shadow size to 1/k of secret image size. 

The rest of this paper is organized as follows. In Section II, 

we introduce the polynomial-based (k, n)-SIS scheme and the 

notion of RS code. We introduce motivation and propose a 

RS code based (k, n)-SIS scheme in Section III. Experiment 

and discussion are given in Section IV. Conclusion is drawn 

out in Section V. 
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II. PRELIMINARIES 

A. Polynomial-Based (k, n)-SIS Scheme 

Shamir firstly proposed polynomial-based (k, n) secret 

sharing that hides one secret data in the constant term a0 of a 

(k1)-degree polynomial 1

0 1 1( ) ( ... )

    k

kf x a a x a x
 

mod p, where p is a prime number. By using i[1, n], a dealer 

can generate n shadows as  ,  ( )iS i f i , 1in. Any k 

shadows (say 
1S , 

2S  , …, 
kS ) can jointly reconstruct this 

(k1)-degree polynomial f(x) following Lagrange 

interpolation formula (see Eq. (1)), and the secret data can be 

derived from f(0) = a0. 

1 1 , 

( )
( ) ( )  mod  .

( )

k

i j k j i

x i
f x f i p

j i   





               (1) 

With this (k1)-degree polynomial, Thien and Lin [6] 

embedded secret pixels into all coefficients in f(x). This 

polynomial-based (k, n)-SIS scheme is briefly described 

below. We first divide a secret image into  non-overlapping 

k-pixel blocks, and every j-th (0 j1) block includes the 

secret pixels (sjk, sjk+1, ..., sjk+k-1). The (k1)-degree 

polynomial fj(x)= 2 1

1 2 1( ... ) mod 

       k

jk jk jk jk ks s x s x s x p  

represents a shadow pixel associated with this j-th block, 

where x is an image ID. By choosing n shadow IDs, i[1, n], 

we then obtain n shadow pixels fj(i). We repeat this process 

for all  blocks and generate n shadows. Obviously, the 

shadow size will be reduced to 1/k of the size of the secret 

image since we embed k secret pixels to one shadow pixel 

each time. 

For reconstruction, the polynomial fj(x) can be 

reconstructed from any k shadow pixels so that we can 

recover the secret image. Here, we use the Galois Field GF(2
8
) 

to embed 256 grayscales in a secret image without distortion. 

Some polynomial-based SIS schemes adopt an ordinary 

arithmetic operation (i.e., mod p, where p is 251) for simple 

calculation. However, under mod 251, the gray-scale values 

more than 250 should be truncated to 250 and this causes 

distortion. In this paper, we use finite field GF(2
8
) for this 

polynomial-based (k, n)-SIS scheme. Also, our RS code based 

(k, n)-SIS scheme is deigned over GF(2
8
). Finally, both 

schemes can recover the lossless secret image. 

B. Reed-Solomon Code 

RS code is a special subclass of nonbinary BCH code. 

Codes of q-ary BCH codes for which m=1 are called RS codes 

[17]. RS codes have been widely applied on digital 

communication and storage systems for error control. Let  

be a primitive element in GF(q). The generator polynomial 

g(x) of a t-error-correcting RS code has 
2 2,  ,... ,     t

 as all 

its roots, as shown in Eq. (2), where all elements ( )ig GF q . 

 
2 2

2 2 1 2
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t

t t

t t t

g x x x x

g g x g x g x g x g
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Same as BCH codes, from g(x), we have minimum 

Hamming distance dmin=(2t1). Since RS code is q-ary BCH 

codes with m=1. So its code length is n=(q1), information 

length k=(n2t), and dmin=(2t1). Notice that since 

dmin=(2t1)=(nk+1), the value of dmin is one greater than the 

number of parity-check symbols. Therefore, RS codes are 

also called MDS codes. Another important feature of RS code 

is n=(q1) that the length of the code is one less than the size 

of the code alphabet. 

The proposed (k, n)-SIS scheme is based on systematic RS 

code. A systematic structure of code is that a codeword is 

divided into two parts, the message part and the redundant 

checking part. For example, for a systematic (n, k)-RS code, 

the message part has k unaltered symbols, and the redundant 

checking part consists of (nk) symbols, which are the linear 

sums of k information symbols. The following shows how to 

transform g(x) to a systematic generator (kn) matrix G. By 

Eq. (2), we have 
0 1 2 2( ,  ,  ,  ,  )tg g g g , and then put them 

into a rectangular array with k rows and n columns, as shown 

in Eq. (3). 

 

0 1 2 2

0 1 2 2

0 1 2 2

0 1 2 2

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0

       
       
       
    
  
  
         

t

t

t

t

g g g g
g g g g

g g g g
G

g g g g

   (3) 

 

In general, G is not a systematic form. We can transfer it 

into a systematic form with some matrix operations. Finally, 

we have a matrix in systematic form G=IkP, where Ik is a 

kk unit matrix, and P is knk parity matrix. Let k-tuple 

0 1 1( ,  ,  ...,  ) ku u u u  be the message to be encoded, and the 

(nk)-tuple v = (v0, v1,...., vnk1) be parity digits. Then, the 

output codeword (u||v)=uG. 

In the proposed SIS scheme, we need RS code with some 

specific information length and code length. Therefore, if a 

code of suitable code length and suitable number of 

information digits cannot be found, it may be desirable to 

shorten a code to meet the requirements. A so-called 

shortened (nl, kl)-RS code has at least the same 

error-correcting capability as the (n, k)-RS code. In shortened 

(nl, kl)-RS code, information symbols are deleted to obtain 

a desired code length and information length smaller than the 

design lengths.  

 

III. THE PROPOSED SIS SCHEMES 

A. Motivation 

In the following example, we will show the shadows 

without permuting pixels for the polynomial-based (k, n)-SIS 

scheme.  

Example 1: Construct the polynomial-based (2, 4)-SIS 

scheme without permuting pixels in secret image. 

Suppose that we take 1, 2, 3 and 4 as the image IDs for four 

shadows S1S4, and that we use the finite field GF(2
8
). Four 

secret images (512512-pixel Lena, Baboon, Pepper, and 

Boat, as shown in Fig. 1) are used for testing the randomness 

of shadows. After applying polynomial-based (2, 4)-SIS 
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scheme, we have four 512256-pixel shadows, for each secret 

image (see Fig. 2).  In Fig. 2, it is observed that the secret 

image still remains on shadows, and this compromises the 

security. Actually, this appearance of shadow comes from the 

reason that  small IDs used in x
0
, x

1
, x

2
, …, and x

k1
 do not 

differ greatly. Even though some shadows using other IDs do 

not reveal the secret, many shadows are not completely 

noise-like. Some visible edges are revealed, and this is more 

serious (the secret image still remains on shadows) for small 

IDs. Finally, this causes that only some specific image IDs can 

be used.        

       
(a)                        (b)                          (c)                       (d) 

Fig. 1. Four secret images used in (2, 4)-SIS scheme: (a) Lena (b) Baboon (c) 

Pepper (d) Boat. 

 

        
(a-1)        (a-2)       (a-3)        (a-4)        (b-1)       (b-2)        (b-3)       (b-4) 

        
(c-1)       (c-2)       (c-3)        (c-4)        (d-1)       (d-2)        (d-3)       (d-4) 

Fig. 2. Four shadows of (2, 4)-SIS scheme without permuting pixels in secret 

images: (a) Lena (b) Baboon (c) Pepper  (d) Boat. 

 

Therefore, in polynomial-based (k, n)-SIS scheme, a key is 

required to permute pixels in secret image, so that we can 

assure shadows of complete randomness and no secret 

revealed. In [6], the authors claimed that the key can be kept 

by system owner or shared among the owners of shadow 

images. In this paper, by using (n+k, k)-RS code over finite 

field GF(2
8
) instead of polynomial, we propose a (k, n)-SIS 

scheme without secret image remained on shadows. 

B. The Proposed (k, n)-SIS Scheme Using RS code 

The proposed (k, n)-SIS scheme is based on systematic RS 

code. A systematic RS cod consists of two parts, the message 

part and the redundant checking part. Since the message part 

in a systematic code is unaltered information, we embed the 

secret pixels in this message part. On the other hand, the 

redundant checking part is the linear sums of the message part, 

and thus we use them for shadows. Details of shadow 

generation and secret reconstruction for our (k, n)-SIS scheme 

are outlined in Algorithm 1 and Algorithm 2, respectively. 

Algorithm 1: Shadow generation of the proposed (k, n)-SIS 

scheme. 

Input: A secret image I, a (n+k, k)-RS code over finite field 

GF(2
8
), and the systematic generator matrix G of RS code. 

Output: n shadows S1  Sn.  

(1) The secret image I is divided into  non-overlapping 

k-pixel blocks, and every i-th (0i1) block is a k-tuple 

(pik, pik+1, ..., pik+k-1), where every pixel is the element in 

GF(2
8
). 

(2) Let G=[IkP be the systematic generator matrix 

generated from g(x), where Ik is a kk unit matrix and P is 

a kn parity matrix. 

/* G is publicly announce */ 

(3) For i = 0 to 1 do { 
1 1( , ,   || , , )   ik ik k in in np p s s = 

1( , ,  )  [ | ]  ik ik k kp p I P }. 

/* we process every k-pixel block at each iteration, so that 

our shadow is the same to polynomial-based (k, n)-SIS 

scheme, and can reduce shadow size to 1/k of secret image 

size */ 

(4) For j = 1 to n do 1 1 2 1 ( 1) 1{ || || || || ;}j j n j n j n jS s s s s          . 

/* the operation || is to concatenate the shared pixels in 

one shadow for constructing n shadows */ 

 

Algorithm 2: Secret reconstruction of the proposed (k, 

n)-SIS scheme. 

Input: Input any k shadows out of n shadows. 

Output: the secret image I.  

(1) Input any k shadows (say S1, …, Sk) for reconstruction. 

/* for simplicity, say using k shadows S1, S2, …, Sk */ 

(2) Find the sub kk matrix G from public matrix G. 

/note: select the corresponding columns for these k 

shadows; for this case, we select (k+1)-th, (k+2)-th, …, 

2k-th columns from G since we use S1Sk for 

reconstruction. */ 

(3) Obtain all pixels 1( , ,  ) in in ks s  from k shadows 

involved in reconstruction. 

(4) Determine the inverse matrix 1[ ]  of  G G . 

(5)  For i = 0 to 1 do {
1( , ,  ) ik ik kp p = 

1

1( , ,  )  [ ] 
in in ks s G }. 

(6) Reconstruct the secret image I by restoring  non- 

overlapping blocks. 

    

Theorem 1: The proposed scheme is a (k, n)-SIS scheme. 

Proof: To prove our scheme is a (k, n)-SIS scheme, we 

need to prove the proposed scheme satisfying two conditions: 

(i) the security condition that any less than k shadows cannot 

recover any secret information (ii) the threshold property that 

any k or more shadows can recover the secret image. We first 

prove the security condition. 

Let a k-tuple in  non-overlapping secret blocks be u=(u0, 

u1, …, uk1), and its corresponding shared n-tuple in n 

shadows be v=(v0, v1, …, vn1), respectively, where (u||v) 

=uG. If we can prove that any (k1) elements 

1 2 1
( ,  , ,  )

ki i iv v v  from v cannot be used to recover the secret 

u=(u0, u1, …, uk1), then the security condition is satisfied. 

The generator G=[IkP is a k(k+n) matrix with the parity 

matrix P as shown below 

 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

  





   

 
 

  
 
 

n

n

k k k n

p p p
p p p

P

p p p

.                    (4) 

 

Then, from (u||v)=uG, we have 
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1 1 1 1

2 2 2 2

1 1 1 1

0 0, 1 1, 1 1,

0 0, 1 1, 1 1,

0 0, 1 1, 1 1,   

 

 

 

      
       



       k k k k

i i i k k i

i i i k k i

i i i k k i

v u p u p u p

v u p u p u p

v u p u p u p

         (5) 

 

From Eq. (5), we have (k1) linear equations with k 

unknowns. Thus, we cannot determine the secret (u0, u1, …, 

uk1).  

Next, we prove that the threshold property. By the same 

argument, if we have k or more elements 
1 2

( ,  , ,  )
ji i iv v v , 

where jk, we will have k or more linear equations to correctly 

determine the secret (u0, u1, …, uk1).    

Lemma 1: Suppose using (n, k)-RS code to construct the 

proposed (k, n)-SIS scheme, and we should have min{k, 

(nk)}k and (nk)n. 

Proof: As shown in Algorithm 1, we can use (n+k, k)-RS 

code to construct our (k, n)-SIS scheme. When applying a (n, 

k)-RS code in our scheme, we need to shorten the (n, k)-RS 

code to (nl, kl)-RS code with (kl)=k, so that the 

threshold property is satisfied. Therefore, we have kk. For 

this shortened (nl, kl)-RS code, we can create at most 

(nk) shadows. Obviously, we may choose any n shadows 

out of (nk) shadows to construct a (k, n)-SIS scheme. Thus, 

we have (nk)n. Since nk in the (k, n)-SIS scheme, so 

min{k, (nk)}k.         

Example 2: Apply the four-error-correcting (255, 247)-RS 

code over GF(2
8
) with the primitive polynomial 2 31 x x  

4 8 x x  to implement the proposed (k, n)-SIS scheme. 

From Lemma 1, this (255, 247)-RS code can be used to 

construct (k, n)-SIS scheme, where kmin{247, 8}=8 and n8. 

So, we can use (255, 247)-RS code to construct the (k, 8)-SIS 

scheme, where 2k8. By deleting 243 symbols from (255, 

247)-RS code, we have a shortened (12, 4)-RS code. Let  be 

a primitive element in GF(2
8
). Then, the generator 

polynomial g(x) of (12, 4)-RS code has , 2
, 3

, 4
, 5

, 6
, 

7
, 8

 as all its roots; hence we have 

 
2 3 4 5

6 7 8 36 203 3 2

220 3 253 4 211 5 240 6 176 7 8

( ) ( )( )( )( )( )

( )( )( )

.

    

     

    

      


      


    

g x x x x x x

x x x x x

x x x x x x

    (6) 

 

The systematic generator matrix G is derived in Eq. (7). 

 
36 203 3 220 253 211 240 176

36 203 3 220 253 211 240 176

36 203 3 220 253 211 240 176

36 203 3 220 253 211 240 176

156 198 25 14 177 84 40 238

19 222 64 176 251

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 000
01 00

       
       

       
       

       
     

 
 

  
 
 



G

245 182 193

229 136 139 11 209 115 139 131

167 222 184 217 175 204 140 219

001 0
0001

1 000 228 7 3 19 21910710611
01 00 90 138 95 227 216 233 98 25
001 0122 79 66 232162124 66 92
0001126138149155 255 22113286

 
       
       

 
 
 
 
 

 
 


 
  

 (decimal format).


















 (7)         

The proposed (4, 8)-SIS scheme can be constructed from 

the shortened (12, 4)-RS code. Suppose one 4-pixel secret 

block is u = (5, 2, 7, 10), and then we have (u||v) = uG. The 

values of v = (183, 207, 137, 161, 60, 125, 137, 186). Repeat 

processing all non-overlapping 4-pixel blocks. Finally, we 

can generate 8 shadows. In Polynomial-based SIS scheme, 

every shadow has its own image ID. The proposed scheme 

also needs an image ID for each shadow, i.e., we deliver the 

i-th shadow value in v to the shadow Si, 1i8. For example, 

we may deliver the third shared value “137” in v to the shadow 

S3. For reconstruction, suppose that 4 shadows {S1, S4, S5, S8} 

are involved in recovering the secret. Here, we show how to 

recover a 4-pixel secret block. From shadows, we have 4 

shadow values (183, 161, 60, 186). We first find the inverse 

matrix 

1
228 19 219 11
90 227 216 25

122 232 162 92
126 155 255 86


  
  
  
    

= 

239 50 24 99
35 94 53 220
222 173 225 173
143 226 126 141

 
 
 
  

. By Eq. 

(8), we can determine the secret u = (u1, u2, u3, u4) = (5, 2, 7, 

10).       

239 50 24 99
35 94 53 220

(183,161, 60,186) (5,  2,  7,  10).
222 173 225 173
143 226 126 141

 
 

 
 
  

   (8) 

In Table I, we show g(x) and G for four shortened (n, 

k)-RS codes, on which four (k, n)-SIS schemes (2, 6)-SIS 

scheme, (3, 8)-SIS scheme, (4, 10)-SIS scheme, and (5, 

12)-SIS scheme) are constructed. 

 
TABLE I: (k, n)-SIS SCHEMES BASED ON (k, n) SHORTENED CODES 

n k n k g(x) G 

8 2 6 2 
2 3

4 5 6

( )( )( )
( )( )( )

  
  
  
  

x x x
x x x

 1 0 195 170 190 143 241 66
0 1 230 125 248 203 154 251
 
  

 

11 3 8 3 

2 3

4 5 6

7 8

( )( )( )
( )( )( )
( )( )

  
  
 

  
  
 

x x x
x x x
x x

 
1 0 0 90 138 95 227 216 233 98 25
0 1 0 122 79 66 232 162 124 66 92
0 0 1 126 138 149 155 255 221 132 86

 
 
  

 

14 4 10 4 

2 3

4 5 6

7 8 9

10

( )( )( )
( )( )( )
( )( )( )
( )

  
  
  


  
  
  


x x x
x x x
x x x
x

 
1 0 0 0 80 68 65 73 164 18 61 129 120 116
0 1 0 0 190 90 197 166 248 201 29 239 113 248
0 0 1 0 179 107 113 25 36 238 248 140 216 110
0 0 0 1 88 35 76 117 153 116 54 19 141 28

 
 
 
  

 

17 5 12 5 

2 3

4 5 6

7 8 9

10 11 12

(x+α)(x+α )(x+α )
(x+α )(x+α )(x+α )
(x+α )(x+α )(x+α )
(x+α )(x+α )(x+α )

 

1 0 0 0 0 157 165 61 24 28 232 37 255 134 137 74 249
0 1 0 0 0 74 81 248 187 127 218 144 143 148 63 153 148
0 0 1 0 0 248 25 248 83 236 2 15 100 236 214 132 140
0 0 0 1 0 204 99 131 175 79 98 254 87 149 185 167 205
0 0 0 0 1 223 90 222 202 204 212 62 35 201 138 3 219

 
 
 
 
  

 

 

IV. EXPERIMENT AND DISCUSSION 

A. Experimental Results 

We conduct an experiment to test the randomness of 

shadows. The proposed (2, 4)-SIS scheme based on shortened 

(8, 2)-RS code with the systematic generator matrix G in Eq. 

(8) (from Table I). This (8, 2)-RS code can be used to 

construct (2, n), where 2n6. To compare polynomial-based 

(2, 4)-SIS scheme in Example 1, we construct (2, 4)-SIS 

scheme using the first four columns in parity matrix P of the 

following G matrix. 

1 0 195 170 190 143 241 66
0 1 230 125 248 203 154 251
 
  

G                 (8) 

Suppose that Lena in Fig. 1(a) is used as the secret image, 

Fig. 3 shows four shadows (S1S4) with the size 512256 
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pixels. The shadow size is half reduced. When compared with 

the shadows of polynomial-based (2, 4)-SIS scheme (see Fig. 

2(a)), the shadows in Fig. 3 are completely noise-like. 

However, Lena can be revealed from shadows in Fig. 2(a). 

 

             
(a) S1          (b) S2           (c) S3          (d) S4  

Fig. 3. Four shadows of the proposed (2, 4)-SIS scheme using (8, 2)-RS code. 

B. Discussion 

In polynomial-based (k, n)-SIS scheme, if we do not 

permute the pixels in secret image, many shadows are not 

completely noise-like. Some visible edges on shadow images 

are revealed, and this causes that only some specific image 

IDs can be used. For small image IDs, the secret even will be 

revealed. Therefore, using a permutation key is necessarily 

required in polynomial-based SIS scheme. In [6], the authors 

propose two possible approaches for delivering this key. One 

is that the key can be kept by the system owner. For this case, 

the system owner should be involved in reconstruction phase. 

This is, strictly speaking, not a secret sharing scheme. A (k, n) 

secret sharing scheme should provide the threshold property, 

i.e., only k shadows are required for reconstructing the secret. 

The second approach is that the key is shared among the 

owners of shadows. Thus, the key is either delivered to each 

participant or shared among all participants by using secret 

sharing again. If the dealer delivers this key to all participants, 

then an extra key distribution protocol is needed. Certainly, 

the dealer can share the permutation key by secret sharing 

again. Then, each shadow contains not only the shared 

information of secret but also the information of key. 

In polynomial based (k, n)-SIS scheme, in fact, the problem 

of remanent secret images on shadows comes from small IDs 

used in x
0
, x

1
, x

2
, …, and x

k1
 (note: we embed secret pixels in 

coefficients of (k1)-degree polynomial) do not differ greatly. 

In this paper, our (k, n)-SIS scheme uses RS code and does not 

use the polynomial. Although our scheme also needs the 

image IDs, i.e., which column we use for shadow, this image 

ID is not involved in calculating the shadow values. Thus, we 

do not need permuting secret image to prevent the problem of 

remanent secrete image. 

 

V. CONCLUSION 

We consider how to solve the problem of remanent secret 

image on shadows. Polynomial-based SIS scheme adopts a 

trivial solution that permutes pixels in secret image before 

sharing procedure. In this paper, we solve this problem and 

propose a (k, n)-SIS scheme by using (n+k, k)-RS code. Our (k, 

n)-SIS scheme can achieve the threshold property, and 

meantime reduces the shadow size like polynomial-based (k, 

n)-SIS that reduces shadow size to 1/k of secret image size. 
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