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Abstract—Cat swarm optimization (CSO), a relatively new 

swarm intelligence algorithm, exhibits better performance on 

optimization problems than particle swarm optimization (PSO) 

and weighted-PSO. This paper presents a variation on the 

standard CSO algorithm called a vibrational mutation cat 

swarm optimization, or VMCSO in order to efficiently increase 

diversity of the swarm in the global searches. Comparing the 

new algorithm with CSO and several CSO main variants 

demonstrates the superiority of the VMCSO for the 

benchmark functions. 

 

Index Terms—Cat Swarm Optimization, Vibrational 

mutation, Diversity, Swarm intelligence.  

 

I. INTRODUCTION 

A new swarm intelligence algorithm called cat swarm 

optimization which imitates the natural behavior of cats was 

proposed by Chu and Tsai [1]. It is one of the swarm 

intelligence algorithms which is the collective behavior of 

decentralized, self-organized system, natural or artificial [2]. 

The number of its successful applications is growing in 

clustering [3], networks [4], [5], solving multi-objective 

problems [6], image edge enhancement [7].  

The CSO method has two modes, i.e., the tracing mode 

and the seeking mode, for simulating the behaviors of cats to 

move the individuals in the solution space. A mixture ratio 

MR is used to set the cats into tracing mode and seeking 

mode. If MR is equal to 0, all the cats will move into the 

seeking mode; If MR is equal to 1, all the cats will move into 

the tracing mode. In most cases, MR is set a small value so 

that most cats are in the seeking mode. In the seeking mode, 

the cats spend most of time resting but being alert looking 

around their environment for the next move.  

The seeking mode represents the local searching and the 

mutation operator in this mode provides the necessary local 

variety within the cats. In the tracing mode, the cats exhibit 

similar behaviors with the particle swarm Optimization 

(PSO) [8]. The particles in PSO update their positions 

according to the value of the global best and the local best 

but the cats in tracing mode update their positions only 

according to the value of the global best because the local 

mutation is utilized in the seeking mode.  
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The tracing mode represents the global searching and it 

provides attractive features such as the higher convergence 

speed. Most of the modifications of CSO have been proposed 

so far focusing on the tracing mode to overcome the issues 

related to convergence speed, prematurely converged 

solutions, deficient accuracy and so on [9], [10]. 

 

II.  DEFINITION AND MATHEMATICAL ANALYSIS OF BASIC 

CSO ALGORITHMS INTRODUCTION 

We apply the cats into the CSO to solve problem, the 

number of the cats used in the iteration is the swarm size. Each 

cat of the swarm has a current position composed of M 

dimensions, a current velocity, a fitness value that represents 

the accommodation of it to the fitness function, and a flag 

called MR(mixture ratio) to identify whether the cat is in 

seeking mode or tracing mode.  

The frame of CSO algorithm [1] can be described as the 

following steps: 

Step 1: Create N cats as the swarm. 

Step 2: Randomly assign the position in the M-dimension- 

al solution space to the cats and randomly select velocity of 

each cat. The position and the velocity are in-range of the 

maximum value. Haphazardly pick numbers of cats according 

to MR. 

Step 3: Evaluate the cats according to the fitness function 

and keep position of the best cat into memory.  

Step 4: Apply the cat into the seeking mode process when 

its MR is 1 and apply the cat into the tracing mode process 

when its MR is 0.   

Step 5: Randomly re-pick number of cats and set them into 

seeking mode and the others into tracing mode.  

Step 6: Check the stop condition, if met, stop the program, 

and otherwise repeat the Step 3 to Step 5. 

A. Seeking Mode 

The seeking mode corresponds to a local search process of 

the optimization problem. The seeking mode has four 

essential factors: seeking memory pool (SMP) which is the 

copies of a cat produced in the seeking mode, seeking range of 

the selected dimension (SRD) which is the mutative ration for 

the selected dimensions, counts of dimension to change (CDC) 

and self position consideration (SPC) [11] .The action of the 

seeking mode is described as follows: 

Step 1: Create SMP copies of catk. 

Step 2: According to CDC, apply the mutation operator to 

the T copies. Randomly minus or plus SRD percents the 

present values, replace the old values. 

Step 3: Evaluate the fitness of the mutated copies, if all FS 

are not exactly equal, use equation (1) to calculate the 

selecting probability of each candidate, otherwise set all be 1. 
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FS is for the fitness value. 

max min

| |
,i b

i

FS FS
P

FS FS





    where  0 i j                   (1) 

Step 4: Pick the point to move to from the candidate 

points randomly, and replace the position of catk. 

Submit your manuscript electronically for review.  

B. Tracing Mode 

The tracing mode corresponds to a global search process 

of the optimization problem. The action of the tracing mode 

is described as follows: 

Step 1: Update the velocities of each dimension of a cat 

using the equations (2). 

Step 2: Check if the velocities are in the range of 

maximum and minimum velocities, if it is over-range, set it 

be equal to the limit. 

Step 3: Update the positions using the equations (3). 

 , , , , 1 1 1 , , 1 , , 1 ,k d t k d t best d t k d tv v r c x x              (2) 

where 1,2, ,d M   

, , , , 1 , ,k d t k d t k d tx x v                              (3) 

where , ,best d tx is the position of the catk who has the best 

fitness value at iteration t , , ,k d tx is the position of the catk at 

iteration t , every cat has its own  velocity and position 

composed of M  dimensions. 1c is a constant and 1r is a 

random value in the range of [0, 1]. 

   Let us analyze the equation (1) and (2) in an analytical 

way. For the sake of the simple analysis, assume that 1 1c r is 

constant that is equal to 
1

 and , , 1best d tx  is also constant, 

such as bx . Then, (2) becomes 

 , , , , 1 1 , , 1k d t k d t b k d tv v x x                            (4) 

By getting , ,k d tv  and , , 1k d tv  using (3), and substituting 

them into (4), the following position equation is obtained: 

 , , , , 1 , , 1 , , 2 1 , , 1k d t k d t k d t k d t b k d tx x x x x x                 (5) 

Eq. (5) can be recast as 

 , , 1 , , 1 , , 2 12k d t k d t k d t bx x x x                       (6) 

Eq. (6) is a linear nonhomogeneous second-order 

difference equation. The general solution of (6) can be 

derived by getting complementary and particular solutions. 

It has a corresponding homogeneous equation: 

 , , 1 , , 1 , , 22 0k d t k d t k d tx x x                       (7) 

The general solution can be expressed in the form 

 
*

, , , , , ,k d t k d t k d tx X X                               (8) 

where , ,k d tX  is the complementary solution and 
*

, ,k d tX  is 

the particular solution. The auxiliary equation is:  

 2

12 1 0                                   (9) 

with roots: 

 
2 2

1 1 1 1 1
2 2 4 2 4

2 2

    


      
          (10) 

This result may expose three different cases depending on 

the value of 2

1 14  . Generally, the value of 1c is 2, 

and
12 0  , so 2

1 14 0   , the roots is: 

2

1 1 12 4

2

i
i

  
  

  
                    (11) 

 The solution of the complementary equation is: 

 , , 1 2 1 2cos sin cos sint

k d tX r A t A t A t A t        

where  

2 2
1r     , tan   .                  (12) 

For a particular solution we try
*

, ,k d tX K . Then 

*

, , 1k d tX K   and
*

, , 2k d tX K   . Substituting into the 

difference equation (5), we have 

 1 12 bK K K x                             (13) 

So 1 1 bK x  , bK x , thus, the particular solution is 

*

, ,k d t bX x . 

And the general solution is 

, , 1 2cos sink d t bx A t A t x                       (14) 

Some assumptions are made such that there is one 

dimension, 
 0

0x x ,
 0

0v v . Substituting them into (14), 

then 

0 1 bx A x  , 1 0 bA x x   

   1

0 1 0bv v x x    

     

 

1 1

0 0 0 1 0

0 2cos sin

b

b b

x x v x v x x

x x A x



 

      

  
 

where  1cos 2 / 2   , 
2

1 1sin 4 / 2     

Then   2

2 0 1 0 1 1 12 / 4bA v x x       . 

 

From (14), we can conclude that the path of catk can be 

considered as an oscillation phenomenon around the point bx . 

They surf on an underlying foundation of sine waves, so the 

drawback of the tracing mode is due to the lack of diversity in 

the global searching. This similar phenomenon in PSO was 

discussed in [12]. 

If an optimization algorithm is no longer able to explore 

sections of the search space other than the examined area, it 

converges prematurely to a local optimum because another 

region may exists a solution superior to the currently 

discovered one. So the diversity is an essential factor for a 

good search. At this point, we could design a new mutation 

operator called a global vibrational mutation strategy for the 

positions updating equation (3) in the tracing mode. The 
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details of the algorithm will be described in subsequent 

sections. 

C. VMCSO 

Let us proceed with (14) and add some changes as 

follows: 

, ,

, ,, ,

, ,

1 , 1,

0 , 0,

, 1,2,3

k d t n

k d t nk d t

k d t

x A if t nT m

x A if t nT mx

x t nT n

 

 

   


    
  

            (15) 

Here,  is the delta function, T is the period of the sine 

waves and nA is the amplitude factor that defined by user, it 

is computed during the generations and defined as the first 

amplitude of the current period. m is the parity flag, when 

the number of the period is odd, it is set 0, otherwise it is set 

1. Fig. 1 shows the resulting graphs for (14) and (15) and 

T is 30. 

Ultimately equation (15) replaces equation (3) in the 

tracing mode. 

 

Fig. 1. Trajectory of a cat in CSO with (14) (left) and (15) (right). 

 

III. EXPERIMENTAL VERIFICATION AND COMPARISONS 

A. Functions Tested and CSOs Compared 

Six benchmark functions including unimodal and 

multimodal which listed in Table I are used in the 

experimental tests. These benchmark functions are widely 

used in benchmarking global optimization algorithms [13], 

[14].  

 
TABLE I: SIX TEST FUNCTIONS USED IN THE COMPARISONS 

Function Formula Opt.position Opt.value Trait Search Range 

Sphere    2

1

1

n

j

j

f x x


   0,0  0 U [-5.12,5.12]D 

Rosenbrock       
2 2

2

2 1

1

100 1
n

j j j

j

f x x x x



    
     1,1, ,1  0 U [-10,10]D 

'Rastrigrin s     2

3

1

10cos 2 10
n

j j

j

f x x x


   
    0,0, ,0  0 M [-5.12,5.12]D 

'Schwefel s     4

1

418.9829 sin
n

i i

i

f x n x x


   
     0,0, ,0  0 M [-500,500]D 

'Griewangk s    2

5

1 1

1
cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
    0,0, ,0  0 M [-600,600]D 

'Ackley s  

 

 

2

6

1

1

1
20 exp 0.2

1
exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
     

 
 

 
   

 





  0,0, ,0  0 M [-32.768,32.768]D 

U: unimodal.   M: multimodal.  D: dimensions. 

 

In literature, some algorithms were proposed to improve 

the performance of the CSO since 2006. The standard CSO 

and two CSOs are selected as comparative algorithms to 

make a comparison, they are parallel cat swarm optimization 

(PCSO) [9] and average-inertia weighted CSO (AICSO) 

[10].  

In PCSO, a parallel structure in the tracing mode that 

changed the cats’ behavior is used. The individuals are 

separated into two or four sub-populations. They move 

forward to the local best solution of its own group in general 

instead that move forward to the global best solution directly. 

If the programmed iteration achieved, the local best 

solutions at present are stopped and a sub-population is 

randomly picked to replace the worst individual in the 

selected sub-population, the information is exchanged once 

per ECH iteration [9].  

In AICSO, a parameter called inertia weight in the 

velocity update equation is used and a new form of the 

position update equation is proposed. The cat’s velocity and 

its position are updated by the following equations: 

 , , 1 , , 1 1 , , , ,k d t k d t best d t k d tv wv r c x x                 (16) 

   1 1

1
2 2

t t t t

t

x x v v
x

 



 
                          (17)  

The inertia weight w is decreased from 0.9 to 0.4 during the 

iterations [5]. 

B. Performance Evaluation 

Table II gives the parameter settings for all the algorithms, 

for a fair comparison, most parameters are set same according 

to the settings in references. The test procedure includes two 

bundles. In the first bundle, the algorithms are tested using the 

same population size of 50 with different dimensions as D is 

equal to 10, 20 and 30.  The max iteration is fixed as 10000. 

The algorithm sensitivity to different dimensions is tested.  In 

the second bundle, the algorithms are tested using the different 
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population size such as 10, 20 and 30 with fixed dimensions 

as D is 30.  The max iteration is fixed as 10000.  The 

algorithm sensitivity to different population size is tested. 

 
TABLE II: PARAMETERS SETTING IN THE COMPARISONS 

Algorithm num SMP CDC SRD 1c  MR ECH w  T  

CSO 50 5 1 0.2 2 20% × × × 

PCSO(2 group) 50 5 1 0.2 2 20% 20 × × 

PCSO(4 group) 50 5 1 0.2 2 20% 20 × × 

AICSO 50 5 1 0.2 2.05 20% × 0.9 to 0.4 × 

VMCSO 50 5 1 0.2 2 20% × × 50 

 

In Table III, the numerical results for six test functions of 

the first bundle are shown. A total of 100 runs for each 

experiment are conducted. Mean fitness and standard 

deviation of the final solutions are used to represent the 

quality of the results. The best results among all the 

algorithms are shown in bold. For all the functions, the 

results show that VMCSO outperforms the classical CSO. 

For Rastrigrin , 'Schwefel s , 'Griewangk s  and 'Ackley s  

functions, VMCSO outperforms other CSO variants, its 

mean  best values and standard deviation of the final solutions 

are less.  It can be seen that VMCSO is considerably superior 

to other CSO variants for Sphere  function, but PCSO(4 group) 

gets better results, however, VMCSO’s result is also 

satisfying. As the problem becomes more complex and 

become multimodal in high dimension, the performance of 

VMCSO is much better in CSOs because the cats could search 

for a new region to find a better solution and escape from the 

local optima. 

 
TABLE III: RESULTS FOR 6 TEST FUNCTIONS IN 10, 20, 30 DIMENSIONS 

Method CSO PCSO(2 group) PCSO(4 group) AICSO VMCSO 

f  D Mean(std.dev) Mean(std.dev) Mean(std.dev) Mean(std.dev) Mean(std.dev) 

 1f x

 

10 

20 
30 

7.68E-83±(1.52E-82) 

1.64E-30±(6.97E-30) 
5.35E-23±(1.09E-23) 

1.45E-84±(1.78E-84) 

2.99E-79±(5.97E-79) 
2.90E-83±(5.79E-83) 

7.38E-98±(1.48E-97) 

3.52E-107±(4.44E-107) 

2.58E-89±(5.15E-89) 

7.48E-84±(1.31E-83) 

1.28E-34±(1.92E-34) 
8.38E-25±(1.61E-24) 

4.81E-101±(6.30E-101) 

6.29E-85±(1.26E-84) 
8.13E-82±(1.51E-81) 

 2f x

 

10 
20 

30 

2.91E+00±(3.17E+00) 
5.88E+00±(3.87E+00) 

2.91E+01±(9.86E+00) 

4.88E+00±(2.15E+00) 
9.63E+00±(9.57E+00) 

1.49E+01±(1.63E+01) 

2.36E+00±(1.08E+00) 

4.67E+00±(3.35E+00) 

1.43E+01±(1.32E+01) 

4.42E+00±(4.32E+00) 
1.49E+01±(1.01E+01) 

1.64E+01±(1.19E+01) 

3.76E+00±(3.07E+00) 

4.13E+00±(6.57E+00) 

8.05E+00±(1.12E+01) 

 3f x

 

10 
20 

30 

0.00E+00±(0.00E+00) 

5.71E+00±(7.83E+00) 

8.59E+00±(1.15E+01) 

1.33E-10±(8.56E-11) 
3.88E-01±(3.64E-01) 

1.55E+00±(1.54E+00) 

3.70E-08±(5.77E-08) 
4.38E+00±(7.85E+00) 

3.57E+00±(2.73E+00) 

0.00E+00±(0.00E+00) 

4.20E+00±(8.41E+00) 

6.71E+00±(1.32E+01) 

0.00E+00±(0.00E+00) 

2.48E-01±(3.98E+00) 

7.71E-01±(5.42E+00) 

 4f x

 

10 

20 

30 

3.14E-01±(3.68E-01) 

2.93E+00±(3.74E+00) 

2.65E+00±(1.56E+00) 

8.56E-01±(5.21E-01) 

7.30E-01±(4.33E-01) 

3.09E+00±(2.99E+00) 

5.70E-01±(2.35E-01) 

2.35E+00±(1.19E+00) 

7.16E+02±(1.42E+03) 

2.16E-01±(4.60E-01) 

3.48E-01±(2.16E-01) 

3.06E+00±(2.93E+00) 

1.55E-01±(1.83E-01) 

2.51E-01±(2.30E-01) 

2.05E+00±(9.03E-01) 

 5f x

 

10 

20 
30 

1.00E+00±(0.00E+00) 

1.00E+00±(3.92E-05) 
1.00E+00±(1.67E-04) 

1.00E+00±(0.00E+00) 

1.00E+00±(3.29E-04) 
1.00E+00±(1.90E-03) 

1.00E+00±(0.00E+00) 

1.00E+00±(3.29E-04) 
1.00E+00±(1.90E-03) 

1.00E+00±(0.00E+00) 

1.00E+00±(2.47E-04) 
1.00E+00±(1.20E-03) 

1.00E+00±(0.00E+00) 

1.00E+00±(0.00E+00) 

1.00E+00±(0.00E+00) 

 6f x

 

10 

20 
30 

1.05E-14±(3.48E-15) 

6.84E-01±(4.92E-01) 
1.73E+00±(9.12E-01) 

1.77E-04±(2.90E-04) 

1.38E+00±(2.01E-01) 
1.27E+00±(9.74E-01) 

8.60E-03±(6.60E-03) 

1.13E+00±(5.80E-01) 
1.65E+00±(8.69E-01) 

3.37E-15±(1.42E-15) 

4.56E-01±(9.12E-01) 
3.18E-01±(6.14E-01) 

7.70E-16±(7.45E-15) 

7.01E-12±(6.63E-12) 

4.48E-10±(3.29E-10) 

 
TABLE IV: RESULTS FOR 6 TEST FUNCTIONS WITH 10, 20, 30 SWARM SIZE 

Method CSO PCSO(2 group) PCSO(4 group) AICSO VMCSO 

f  P Mean(std.dev) Mean(std.dev) Mean(std.dev) Mean(std.dev) Mean(std.dev) 

 1f x

 

10 

20 
30 

5.18E-50±(6.96E-50) 

3.46E-47±(7.69E-47) 
4.27E-45±(6.00E-45) 

1.17E-59±(2.36E-59) 

3.71E-70±(7.27E-70) 
3.25E-69±(6.50E-69) 

7.10E-70±(6.67E-70) 

3.18E-68±(6.35E-68) 
1.50E-67±(2.99E-67) 

2.11E-20±(4.21E-20) 

1.53E-25±(2.94E-25) 
1.53E-24±(3.06E-24) 

3.98E-83±(7.96E-83) 

7.55E-80±(1.51E-79) 

1.36E-79±(2.73E-79) 

 2f x

 

10 

20 
30 

4.65E+01±(3.22E+01) 

4.08E+01±(5.32E+01) 
3.46E+01±(1.41E+01) 

3.68E+01±(7.51E+00) 

2.86E+01±(2.22E+01) 
2.51E+01±(3.22E+01) 

3.84E+01±(1.28E+00) 

4.40E+01±(1.51E+01) 
3.19E+01±(1.70E+01) 

4.94E+01±(3.44E+00) 

2.61E+01±(2.52E+00) 
1.56E+01±(1.09E+01) 

3.36E+01±(1.49E+00) 

1.39E+01±(1.31E+00) 

1.28E+01±(1.14E+01) 

 3f x

 

10 
20 

30 

3.78E+01±(4.60E+01) 
3.37E+01±(2.33E+01) 

1.77E+01±(8.81E+00) 

6.38E+00±(3.12E+00) 
3.04E+01±(2.05E+01) 

2.70E+00±(1.51E+00) 

5.38E+00±(4.19E+00) 

7.03E+01±(6.65E+01) 

4.66E+00±(1.23E+00) 

6.79E+01±(4.81E+00) 
5.26E+01±(1.94E+01) 

1.03E+01±(2.05E+01) 

6.13E+01±(5.40E+01) 

2.13E+01±(1.92E+01) 

3.14E+01±(2.58E+01) 

 4f x

 

10 
20 

30 

8.95E+00±(1.78E+00) 

1.23E+00±(2.45E+00) 

8.83E+00±(1.81E+00)  

6.31E+00±(2.61E+00) 
2.64E+00±(1.51E+00) 

1.12E+00±(1.42E+00) 

4.56E+00±(7.01E+00) 
2.60E+00±(1.76E+00) 

1.09E+00±(1.45E+00) 

7.68E+00±(5.68E+00) 
5.64E+00±(1.01E+00) 

3.12E+00±(7.49E+00) 

4.31E+00±(2.88E+00) 

1.64E+00±(2.43E+00) 

1.09E+00±(1.06E+00) 

 5f x

 

10 

20 

30 

1.21E+00±(5.64E-04) 

1.11E+00±(3.62E-05) 

1.08E+00±(1.47E-06) 

1.01E+00±(4.60E-06) 

1.00E+00±(3.79E-07) 

1.00E+00±(1.66E-07) 

1.00E+00±(5.64E-08) 

1.00E+00±(3.62E-08) 

1.00E+00±(1.47E-09) 

1.01E+00±(5.67E-04) 

1.00E+00±(3.62E-05) 

1.00E+00±(1.47E-06) 

1.01E+00±(6.60E-09) 

1.00E+00±(2.85E-09) 

1.00E+00±(1.67E-09) 

 6f x

 

10 

20 
30 

3.45E+00±(1.23E+00) 

3.32E+00±(1.03E+00) 
3.08E+00±(4.63E+00) 

1.76E+00±(1.18E+00) 

3.20E+00±(2.20E+00) 
3.11E+00±(6.73E+00) 

3.33E+00±(1.53E-01) 

2.45E+00±(1.08E+00) 
2.15E+00±(1.66E+00) 

2.56E+00±(1.58E+00) 

2.47E+00±(1.26E+00) 
1.45E+00±(1.88E+00) 

1.08E+00±(2.30E-01) 

1.42E+00±(1.35E-01) 

1.25E+00±(1.23E-01) 

 

The plots in Fig.2. shows the convergence progress of the 

global best values of the 'Ackley s functions.  It can be 

observed from the figures that VMCSO preserves the 

fast-converging feature of the original CSO and accuracy and 

efficiency superiority. In fact, the VMCSO represents higher 

accelerations and higher volatility.  

In Table IV, the numerical results for six test functions of 

the second bundle are shown. The best results among all the 
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algorithms are shown in bold. For all the functions, the results 

show that VMCSO provides a better efficiency in lower 

swarm size while the other CSOs’ performance depend on the 

swarm size significantly. The results are better with larger 

swarm size. It can be seen that VMCSO provides a better 

diversity with low swarm size, so it need less population size 

to get acceptable global best values and save the calculation 

time. 

Fig. 3 shows the relationship between the global best 

values versus swarm sizes. Generally, VMCSO has the 

similar values for all the swarm sizes and provide a better 

efficiency in low swarm sizes.  
Fig. 2. Convergence graph on Ackley’s function in 30 dimensions. 

 

      

      

      
Fig. 3. Average best values versus swarm sizes for six functions in 30 dimensions. 

 

IV. CONCLUSIONS 

In this paper, we present a new VMCSO algorithm by 

adding a vibrational mutation operator in tracing mode to 

improve the performance of CSO in the tracing mode. 

VMCSO provide the cat swarm diversity during the 

optimization process. 

It’s easy to understand, implement and convenient to use. 

Experimental results show that VMCSO achieves better 

performance and more efficient and faster than other CSO 

variants methods investigated in this paper.  
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