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Abstract—Cox Proportional Hazard model and the associated 

Partial Likelihood criterion have been the main tool of inference 

for data of survival studies. There are many powerful techniques 

in modern machine learning which could be applied on the 

survival studies and increase the performance. This paper 

consider the problem of comparing different techniques for 

inference with large dimensional data of breast cancer. Besides 

an overview of the different techniques, numerical experiments 

are presented. Liu Yang managed to implement the algorithms 

and the experiments. Kristiaan Pelckmans managed to complete 

the theoretical part. 

 

Index Terms—Machine learning, survival analysis, boost-ing, 

SVM. 

 

I. INTRODUCTION 

The analysis of data observed in survival studies has been 

an important topic in applied sciences, as well in theoretical 

work on probabilistics and stochastics. The work of B. Cox 

and co-workers in the 70s has been instrumental [1], [2]. A 

useful survey of work in that general area has been the topic of 

numerous textbooks, amongst which [3] relative to the work 

in statistical inference, methods of Machine Learning (ML) 

have been studied rather scarcely in this setting. However, 

ideas as regularisation, boosting and sparsity promoting 

priors have found its way into this field. Historically seen, 

developments can be divided into three loosely related 

directions:  

 (Penalized Likelihood) The most prevalent approach takes 

the traditional method of choice for semiparametric 

inference of survival analysis, and endows this approach 

with a mechanism penalising unlikely deemed solutions.  

 (Boosting) Boosting approaches have found their way from 

purely machine learning algorithms into the realm of 

statistical inference [4]. It comes hence as no surprise that 

such approaches have been examined in the context of 

survival analysis. Broadly speaking, a boosting approach 

mixes simple solutions ('weak learners') into one global, 

strong model. This mixing is regulated by an iterative 

approach, zooming in on the more intricate parts of the 

model whenever needed. 

 (SVMs) A third line of research is based on using the 

techniques behind Support Vector Machines (SVMs) to 
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tackle inference in survival models. This line of research 

was investigated in some details in [5], [6]. The former 

approach relates the task to ranking approaches, via the 

so-called model of transformation models. The three corner 

stones of SVMs are (i) the use of techniques of convex 

optimisation and duality; (ii) the use of an objective 

function which approaches the risk of prediction (prognosis) 

directly; (iii) the use of nonlinear kernels for reduction to a 

linear, high-dimensional problem. 

This paper aims to identify the more powerful approaches 

when confronted with (i) high-dimensional data (covariates), 

(ii) survival data originating from breast cancer studies. 

Hereto, we present mostly empirical results obtained on a 

number of publicly available datasets. One crucial element of 

our study is how we score a certain method. That is, which 

criterion for selecting an appropriate method is used? Broadly 

speaking, there are two goals one can aim for:  

1) Prognosis: Predict the distribution of events of a fresh 

subject. 

2) Recovery: Which are the factors regulating the risk of the 

observed phenomenon.  

ML approaches do basically aim for prognosis, while 

classical approaches typically aim for the latter.  

In this paper, the following notational conventions are used: 

random variables are denoted as capital letters , , ,...X Y Z . 

Vectors are denoted in boldface , ,...x y . Deterministic 

quantities are represented as lowercase letters , , ,...i n f . 

A. Basic Setup 

The data is represented as a set of size n  of tuples. 

 

1{( , , )} ,n

i i i iY  x                              (1) 

where 

 The i th subject is represented by a vector of 

covariates p

i x , where 1p  is its dimension. In the 

studied cases, p  is typically larger than n . 

 The i th subject experienced an event at a time 0iT  . 

However, this time is only observed if the subject stayed in 

the study for long enough. Otherwise it is censored.  

 The time of censoring is 0iC  . 

 One observes only 
iT  if its uncensored, or min( , )i i iY T C . 

 The variable {0,1}i   indicates if the observation is 

censored ( 0i  ) or not ( 1i  ). That is ( )i i iI T C    

where I  denotes the identicator function, that is ( ) 1I z   

if z  holds true, and equals zero otherwise. 

In this paper, only right censoring is dealt with. Moreover, 

the presented ML techniques assume independence of the n  
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observations, which means that censoring is either 

deterministic or independent of the other 1n subjects. 

The rest of this paper is organized as follows. Section II 

introduces the Cox Proportional Hazard Model and its basic 

properties. Three penalized approaches are surveyed in this 

section. Section III reviews a number boosting methods for 

survival analysis. Section IV briefly describes the 

transformation-model based MINLIP algorithms, extending 

the Support Vector Machine (SVM) to the analysis of survival 

data. Section V introduces a screening method called Sure 

Independence Screening (SIS). Section VI gives details of our 

experiments as well as the empirical results. 

 

II. INFERENCE IN THE PROPORTIONAL HAZARD MODEL 

The basic model of interest in the analysis of survival data 

is the Proportional Hazard (PH) model [2]. Let 

( ) ( )S t P T t   be the survival function [2]. It is defined as a 

probability on the domain [0, )t  , it has range ( ) [0,1]S t  . 

The hazard function [2] ( )h t  is then defined as: 

0

( | )
( ) lim .

t

P t T t t T t
h t

t 

   



              (2) 

Then ( )S t  as a function of ( )h t  is: 

 0
( ) ( ) exp ( ) ,0 .

t
S t P T t h d t              (3) 

When T is continuous and the derivative S  exists, we have 

a density function
( )

( )
dS t

f t
dt

  and hence ( ) ( )
t

S t f x dx


  . 

The cumulative hazard function [2] is 
0

( ) ( )
t

t h d    . A PH 

model has the form [2]: 

 0( , ) ( )exp ,Th t h tx β x                         (4) 

where 
0 ( )h t  is the baseline hazard function which depends on 

time but not on the covariates. The exponential term depends 

on the covariates but not on time. In this model, when we are 

interested in the effects of the covariates on survival, we do 

not need to specify the form of the baseline function. The Cox 

PH model is called a semi-parametric model, as some 

assumptions are made on the parametric influence of the 

covariates, but as no form is pre-specified for the baseline 

hazard. Taking logs, an additive form is obtained [2]: 

0log ( , ) log ( ) Th t h t x β x . This shows that one unit's change 

of a covariate will have equal effect independent of the values 

of the other covariates. If a model does not satisfy this 

assumption, there may be interaction effects in the covariates. 

Checking for interaction terms becomes cry cumbersome 

when confronted with high-dimensional data. 

Parameter estimates in the PH model are obtained by 

maximizing Cox's Partial Likelihood (PL) [1]: 

 
: 0

( ) .

T
i

T
j

i

j i

n
i

Y Y

e
L

e






 


β x

β x
                             (5) 

Note that this function is convex in  . 

A. L1 Penalised Partial Likelihood 

The L1 penalized method, (also referred to as LASSO [7] 

[8], can also be added to the PL function of Cox PH model [9], 

giving 

1 1 1( ) log ( ) .nL L  β β β‖‖                       (6) 

So that estimates  are given by maximising this function. 

For the study on Cox PH model, we will use 10-fold 

cross-validated partial likelihood [10] to tune this 
1 .After 

fitting the model, the non-zero regression coefficients are 

retained. In a second step, only those covariates are used to fit 

the final model.  

B. L2 Penalised Partial Likelihood 

Instead of adding a L1 penalized term, ridge regression uses 

a L2 term. 

2 2 2( ) log ( ) .nL L  β β β‖‖                      (7) 

The penalized L2 method will generally not perform as well 

as LASSO [8] when only a few of the presented 

high-dimensional covariates are significantly non-zero [9]. 

The method used for tuning 
2  is similar to L1 section. 

C. Other Penalisation Schemes 

There are three requirements for an ideal penalty function: 

unbiasedness, sparsity and continuity [11]. 

The smoothly clipped absolute deviation (SCAD) penalty 

can satisfy all of them. It is defined by its derivative by [12]: 

   
 
 

  , 2.
1

i

i i i

a
p I I a

a


 
    



 
      

  

 (8) 

An explicit form of the SCAD penalty is given by [13]: 

 
 

 

2

if ,

/ 2
if ,.

1

if ,
1 2

i i

i

i i

i

i

a
p a

a

a
a

a



   

 
    


  




 



  







      (9) 

In this equation, both   and a  need to be tuned. However, 

a good default value 3.7a   is given by [11]. The penalised 

PL will then be: 

  
1

( ) log ( ) .
d

SCAD n i
i

L L p 


 β β              (10) 

Maximizing this function the results in our third estimator. 

 

III. BOOSTING FOR SURVIVAL ANALYSIS 

Boosting is a technique of Machine Learning (ML). There 

are two basic elements: 

Weak Learner. 

Mixing and Reweighting. 

The surprising feat is that such approach might avoid 

overfitting altogether.  
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A. Weak Learners 

Weak learners have the form : d

if  . The utility 

function :n df   is often used in boosting algorithms. 

The utility function is a weighted sum of the weak 

rankings
1

n
n

i i
i

f f


  , where 
i  are the parameters for the 

corresponding weak learners. By using the utility function we 

can define different kinds of error. Boosting algorithms try to 

find the weak learners which lead to smallest error. The weak 

learners are not always a high accuracy learner, but must be 

simple and better than a completely random method. Some 

examples are given as following: 

Simple 0-1 weak learner: ( ) ( ),if I S x x  where S  is a 

set which satisfies some conditions. 

Logistic regression: 
 
1

( ) ,
1 exp

i T
f




 
x

x
 where   is 

found by logistic regression of the weak learning problem. 

Regression trees:  ( ) .
ii i k if sign  x x A decision tree 

is composed of a stump function ( )if x  at every non-leaf 

node i . For each stump i , it is parametrized with a 

parameter
i , and a threshold 

i  and a feature index
ik . 

Each stump will output a decision and move to the next 

stump, until the leaf nodes. 

B. Boosting as Functional Gradient Decent 

Gradient boosting techniques [14] are usually used for 

fitting high-dimensional models. The intuition is to see 

boosting as a form of steepest descent for minimizing a loss 

function. The predictor function is found by minimizing the 

value of a specified loss function $L$ over the training set. 

The ( )f [14] indicates the error by the predictor f . The 

negative partial log-likelihood is normally chosen as the loss 

function for Cox PH model. Instead of starting with a 

weighted sum of weak learners, this approach models the 

boosting process by the following recursion. Define mg  as 

the negative gradient of $f^{m-1}$ for the m th  step, 

 1m mg f   , then 1m m m

mf f g  , where 

1argmin ( )m m

m f g   . And 
0 0f  . In each step, 

mf  is constructed by following the negative gradient 

negative gradient and with optimal step size
m . Since one 

does not have a closed form solution of mg , we train a learner 

mh  which approximates the negative gradient mg . Define 

m  as 1argmin ( )m m mf h   , and update 

1m m m mf f h  , where 0 0.f  In general, this method 

will use all covariates.  

An alternative approach of gradient boosting is 

componentwise boosting [14]. It uses a linear 

predictor ( , ) Tf  x x . 

In each boosting step, only one element of $\beta$ is 

updated. The one to be updated is chosen by evaluating fits to 

the gradient, the resulting fits will indicate an element which 

improves the overall fit the most. And this also lead to the 

sparseness of the solutions [15], since many coefficients will 

be estimated to zeros. 

C. CoxBoosting 

The aim of the CoxBoost [16] is to estimate the parameter 

vector β  for the linear predictor ( , ) $.TF x β β x  In the 

boosting step k, there are 
kq  predetermined candidates sets of 

covariates with indices {1,..., }, 1,...,kl kI p l q  . For each of 

the 
kq sets there will be an update of the parameters for the 

corresponding covariates. The one set which improves the fit 

the most will be chosen as the final update. Let 

11
ˆ ˆ( ,..., )k kpk
 


β be the actual estimate of the overall 

parameter vector   after step k-1 of boosting, and 

, 1 1î k i k
  

 x β be the corresponding linear predictors. The 

potential updates 
klγ  for the elements of 

1kβ  are obtained by 

maximizing the penalized log-partial-likelihood ( )pen kll   

[17]. The penalty matrices 
klP  [16] can be specified 

separately for each boosting step and each candidate set. The 

formulas of this method are given in [16], [17]. 

D. RankBoost 

RankBoost is an algorithm which combines weak rankings 

of the instances into a single highly accurate ranking [18]. On 

each interation a procedure named weak learn is called in 

order to produce a weak ranking
if . 

The number of instances is denoted as n. We assume that d 

ranking features are given, each feature defines a linear 

ordering of the patients. RankBoost computes in each 

iteration t a set of weight , ,{ }i j i jb which describes the 

importance of the comparable pairs for 1... ; 1...i n j n  . A 

comparable pair means that we can measure the order 

between these two instances in the pair. The weight of a 

non-comparable pair will be set to zero. For survival analysis, 

if a patient 1... ; 1...i n j n   has event before
jx , we call 

( , )i jx x  a comparable pair. The utility function is used to 

order the survival time. 
0 1( ) ( )f fx x means that 

0x  is 

expected to have longer survival time than 
1x .The utility 

function f  is a weighted sum of the weak rankings as we 

defined in the weak learner section. The algorithm attempt to 

find the weights with a small quantity of wrongly ordered 

pairs, called the ranking loss and denotes ( )rloss f . The 

sample ranking loss is defined formally in [18]: And we 

choose the weak rankings ( )( ) ( ( ) )t k th I f  x x . Here ( )k t  

indicates the feature which would lead to the smallest loss. 

 

IV. INFERENCE FOR TRANSFORMATION MODELS 

A transformation model relates a function of the covariates 

to the response variable through a monotone increasing 

mapping. Inference then concerns recovery of both this 

function, as well as this mapping. This makes this setting 

different tom methods of GLM, where the monotone mapping 

(or the so called link function) is given in advance. 
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Let :l   be a strictly increasing function with 

Lipschitz constant   , and let d:u  be a function 

of the covariates dx . Let be a random variable noise. A 

noisy transformation model has the form: 

( ( ) ).Y l u x                              (11) 

The problem is to estimate a utility function u  and a 

transformation function l  from a set of observations 

  
1

,
n

i i i
Y


x . To solve this problem, we can learn a 

transformation model with minimal Lipschitz constant of $l$. 

When we define ( ) Tu x w x , this takes equivalently forms. 

See Formula (12) in section 3.3 of [5]. We will refer to this 

model as MINLIP. Then we also can have some extensions to 

MINLIP. To obtain the sparseness of representations in the 

coefficients, an extension called MINLIP 1L
 is to use 

1L penalty [Tibshirani1996], see Formula (33) in section 3.5 

of [6]. An alternative to it, is incorporating positivity 

constraints of the parameters, see Formula (34) in section 3.5 

of [6]. We call this one MINLIP
p

. Then we consider to relate 

the MINLIP model to the SVM method [19]. Based on the 

rankSVM model for ranking or preference learning [20], and 

a similar ranking SVM model for survival problem [21], we 

can have a MINLIP&SVM mixed model, we note it as 

MODEL 1, see Formula (20) in section 3.1 of [22]. By 

including regression constraints as in [23] and [24], MODEL 

1 can be modified as MODEL 2, see Formula (23) in section 

3.2 of [22]. Now considering high dimensional data, to avoid 

overfitting the model, feature selection is included in 

MODEL 2 by constraining the weights w to positive weights 

and will be denoted as MODEL 2P. See Formula (20) in 

section 3.1 of [22]. 

 

V. SURE INDEPENDENCE SCREENING 

A. SIS 

A nature idea is for high-dimensional modeling is 

dimensionality reduction, or feature selection. Let 

1( ,... )T

pm m m  be a p-vector obtained by the 

componentwise regression
1

n
T

i i
i

Y


 m x . For any 

given (0,1)  , [ ]d n , where [ ]n  denotes the integer 

part of n . We define a submodel [25]: 

 1 : is among the first [ n]largest .iM i p    m    (12) 

This method can shrink the full model with size p n  

down to a submodel M   with size d n . We call it Sure 

Independence Screening (SIS) [25]. In practice we may 

choose d  to be conservative like 1n  or / logn n . 

Sometimes we could also break the limit, set 1   and d n  

to drive the model work better. There are two steps, first we 

use SIS method to reduce dimensionality from p  to d , 

which is usually below the sample size n . Then we use the 

methods such as LASSO and SCAD to train a Cox model. 

B. ISIS 

An extension of SIS is an iterative SIS (ISIS) [25]. It is 

designed to overcome some weak points of SIS, such as 

missing some important features. The ISIS work as the 

following steps: In the first step, we select a subset
1A of 

1k features, using SIS-SCAD or SIS-LASSO methods. By 

using the regression coefficients on
1A , we can calculate a 

new response
1Y .  

In the next step, we apply the methods again as in the first 

step, to
1Y  and the remaining 

1p k  features. And this result 

in a subset 
2A  and a new

2Y . 

We can keep doing this until we get L  disjoint subsets. 

And we compute
1

L

i
i

A A


 . In practice we can choose the 

largest L  such as | |A n . 

 

VI. EMPIRICAL VALIDATION 

A. Performance Measures 

A Concordance Index is the numerical measure used to 

score the fitted model. It is the probability of concordance 

between the predicted and the observed survival. It is defined 

as: 

: 0

( ( ) ( ))

( ) .
i j i

i j
i Y Y

n

I f f

C f




 

 



x x

              (13) 

Here  denotes the number of the pairs which have 

i jY Y  when 
iY  is not censored. The indicator 

function ( ) 1I    if   holds, and 0 otherwise. ( )if x  is the 

predicted survival time for patient i. The concordance 

probability (CP) [26], [27] for the Cox PH model is defined 

as: 

exp( )
( ) log .

exp( ) exp( )j i

T

i

n T T
T T

i j

CP 


 


β x

β x β x
         (14) 

The log-rank statistic tests for equality of survival of two 

groups 
1G  and 

2G . It can be also used to score how good the 

unity function f  can separate the high risk from the low risk 

subjects as follows. Let f  be the median value of the 

vector 1{ ( )}n

i if x . Suppose that we consider the following two 

groups: 1, { : ( ) }f iG i f f x  and 2, { : ( ) }f iG i f f x . 

Let 1,...j J  be the index of the distinct survival times of 

events in either group. For each time point j , define: 

1,

2,

1,

2,

1,
: , 0

2,
: , 0

1,
: , 0

2,
: , 0

( ) ( )

( ) ( )

( ) ( )

( ) ( ).

f i

f i

f i

f i

j i j
i i G

j i j
i i G

j i j
i i G

j i j
i i G

N f I Y Y

N f I Y Y

O f I Y Y

O f I Y Y









 

 

 

 

 

  



 


  


                (15) 
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Let 
1, 2,( ) ( ) ( )j j jN f N f N f   and 

1, 2,( ) ( ) ( )j j jO f O f O f  .Then the log-rank statistic is 

given as: 

   

2

1, 1,
1

1, 2,

2
1

( )
( )

1

J
j

j j
j

j

J
j j j j j

j
j j

O
O N

N
logrank f

O N N N O

N N





  
     

  







               (16) 

And this statistic follows a 2  distribution 

B. Tuning 

Tuning is an important concern in the application of this 

technique. But it also introduces a problem: if a method has 

many variables to tune, the result might hinge on the method 

used for tuning rather than on the technique used for inference. 

In order to circumvent this issue, we allow such method to be 

tuned to a single tuning parameter. In case of penalised 

Proportion Hazard Methods and SVM-based methods, a 

natural choice concerns the choice of the regularization 

parameter 0   [28]. In case of boosting, one optimises for 

the number of iterations. The remaining tuning parameters (if 

any) are set to a reasonable default value. Assessment of the 

performance follows the following strategy. The data is 

repeatedly and randomly split in training and test data. The 

training data is used for training the model, as well for tuning 

the appropriate parameter using cross-validation. The final 

model is then computed on this training set, making use of this 

optimally tuned hyper-parameters. Once the final model is 

obtained, its accuracy is scored based on the corresponding 

test-set. This procedure is randomised m times (where we set 

20m  ), and the median and variance of the m  scores is 

given in the table. 

C. Artificial Data 

We generate some artificial survival data with specified 

proportion of the informative covariates. The data includes a 

training set of 100 patients and a test set of another 100 

patients. We set the number of covariates to 100, and assign 

different specified number k of the informative covariates. 

We generate the covariates from the standard normal 

distribution, (0,1)i Nx ∽ . 

And we can calculate the real time 
iT  for patient i  by: 

 1 2

log

10exp ...,
i k

i i i

T
x x x




 
                    (17) 

where   is a random value generated from 0-1 uniform 

distribution, b

ax  is the b th  covariate for patient a . k  is the 

specified number of the informative covariates. The censoring 

time is randomly generated from the exponential distribution 

with rate 1/10 .Then we use the right censoring rule, 

comparing the real times and censoring times, to calculate the 

final survival times and the censoring indicators. By applying 

the methods on the artificial data, we study how the 

performances change as the proportion of the informative 

covariates increases. Table I shows the procedure. 

TABLE I: TEST ON PROPORTION OF THE INFORMATIVE COVARIATES 

Tests by 5 methods (CoxBoost, mboost, gbm, Pen-L1 and Pen-L2) 

Given n the size of data set, R range to search  

Set the maximum repeat times m (by default m=50) 

Set the number of covariates 100p   

FOR ( )i R   

FOR 1,2, ,k m    

(1) Generate the artificial training set and test set by n , p , i  

(2) Apply the 5 methods on the training set  

(3) Calculate the predictions on the test set  

(4) Compute the measures CI and CP 

(5) Find the top i  predictors returned by the methods 

(6) Compare them with the real i informative covariates to get 

the accuracy 

END  

Compute the median of the measures 

END 

Plot the Figures 

 

See the result in Fig. 1. There are three figures show how 

the medians of C
n

, CP
n

 and the recovery percentage change 

as the proportion of the informative covariates increases. And 

the last figure shows the error bar of the "best" method Pen-L1 

(LASSO). Based on the figures, LASSO shows good 

performance on sparse data, while L2 performs better as the 

sparseness decreases [10], [9]. And the three boosting 

methods performs better on the recovery ability. 
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Fig. 1. Experiments on proportion of informative features. 

 

D. Studies of Breast Cancer 

Results are computed for the following publicly accessible 

datasets:  

 NSBCD: The Norway/Stanford Breast Cancer Data set is 

given in [29]. In this database there are survival data of 115 

women who have breast cancer, and 549 intrinsic genes 

introduced in [29] were measured. In the 115 patients, 33% 

(38) have experienced an event during the study. Missing 

values were imputed by 10-nearest neighbor method. 

 DBCD: The Dutch Breast Cancer Data set is given in [30], 

and is a subset of the data from [31]. There are survival data 

of 295 women who have breast cancer. The measures of 

4919 gene expression were taken from the 

fresh-frozen-tissue bank of the Netherlands Cancer Institute. 

All the ages of the patients are smaller than or equal to 52 

years. The diagnosis was made between 1984 and 1995 

without previous history of cancer.  The median of 

follow-up time was 6.7 years (range 0.05-18.3). In the 295 

patients, 26.78% (79) have experienced an event during the 

study. 

 DLBCL: The diffuse large-B-cell lymphoma data set is 

from [32]. There are survival data of 240 patients who have 

diffuse large-B-cell lymphoma. 7399 different gene 

expression measurements are given. The median of 

follow-up time was 2.8 years. In the 240 patients, 58\% 

have experienced an event during the study. 

 Veer: The survival data of sporadic lymph-node-negative 

patients with their gene expression profiles is given in [31]. 

There are 78 patients with 4751 gene expressions selected 

from the 25,000 genes on the microarray. 44 patients 

remained free of disease after their diagnosis for an interval 

of at least 5 years. The mean of follow-up time for these 

patients was 8.7 years. 34 patients had developed distant 

metastases within 5 years, mean time to metastases 2.5 

years. 

 Vijver: The data set of 295 consecutive patients with 

primary breast carcinomas is from [31]. All patients had 

stage I or II breast cancer and were younger than 53 years 

old. They gave the previously determined 70 marker genes 

that are associated with the risk of early distant metastases 

in young patients with lymph-node-negative breast cancer. 

The median follow-up among all 295 patients was 6.7 years 

(range, 0.05 to 18.3). There were no missing data. 88 

patients have experienced an event during the study. 

 Beer: The survival data of 86 patients with primary lung 

adenocarcinomas is from [33]. There are 7129 expressed 

genes selected from Affymetrix hu6800 microarrays. 76 

patients have experienced an event during the study. 

 AML: The survival data of acute myeloid leukemia patients 

is from [34]. It contains 116 patients with acute myeloid 

leukemia and 6283 genes. 71 patients have experienced an 

event during the study. 

We use 50 random permutations. For every data set, there 

are tuples 
1{( , , )}n

i i i iY  x .
ix  are the covariates, 

iY  contains 

the survival time, 
i  is the censoring indicator. The 

procedure is described in Table II: 

 
TABLE II: EXPERIMENTS FOR ARTIFICIAL DATA 

Procedure of the experiments 

Given the dataset include 
1{( , , )}n

i i i iY  x  

FOR 1,2, ,50i     

(1) Partition the set into 1/3 as test set and 2/3 as training set 

(2) Tune the models on training set only, get the optimal parameters 

(3) Apply the methods with the optimal parameters on the training set 

(4) Get the predictions on the test set based on the learnt model 

(5) Calculate the performance measures (C
n

,CP
n

,logrank)   

END  

Compute the median values and the standard deviations of the measures 

 
TABLE III: EXPERIMENTS ON THE 7 DATA SETS BY DIFFERENT METHODS 

Dataset Method Cn Logrank CPn 

 

 

 

 

 

 

NSBCD 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR PLS 

0.7248±0.0231  5.0796 

0.7390±0.0325  5.3807 

0.7466±0.0113  6.1193 

0.7351±0.0105  4.9463 

0.7739±0.0234  7.3779 0.7687±0.0098 

0.7687±0.0298  7.1358 0.7603±0.0104 

0.7823±0.0312  7.5111 0.7698±0.0187 

RankBoost 

CoxBoost 

mboost 

GBM 

0.7528±0.0299  6.789 

0.7242±0.0233  6.0133 0.7087±0.0045 

0.7045±0.0132  3.4523 0.6456±0.0076 

0.7381±0.0541  5.3698 0.6483±0.0215 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

SCAD 

ISIS-SCAD 

0.5910±0.0135  NaN 

0.6932±0.0569  3.0452 0.6610±0.0481 

0.6957±0.0423  2.5224 0.7011±0.0194 

0.6897±0.0465  2.3352 0.5194±0.0034 

0.6874±0.0257  3.164 0.6587±0.0133 

0.6913±0.0387  3.4523 0.6631±0.0125 

 

 

 

 

 

 

DBCD 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.6823±0.0245  5.4396 

0.7124±0.0243  8.4900 

0.7293±0.0342  10.2383 

0.6274±0.0287  2.5367 

0.7277±0.0192  10.5851 0.7138±0.0183 

0.7278±0.0105  11.1827 0.7142±0.0123 

0.7379±0.0178  13.6349 0.7197±0.0204 
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RankBoost 

CoxBoost 

mboost 

GBM 

0.7225±0.0267  9.4563 

0.7297±0.0323  11.0423 0.7129±0.0154 

0.7145±0.0187  8.4564 0.6632±0.0203 

0.7032±0.0453  8.7558 0.6653±0.0224 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCAD 

SCAD 

0.5573±0.0223  1.6569 

0.7351±0.0359  12.046 0.7640±0.0168 

0.7275±0.0532  10.6103 0.7133±0.0329 

0.7233±0.0145  10.9763 0.7034±0.0196 

0.7173±0.0423  9.2341 0.6932±0.0287 

0.7114±0.0543  8.3452 0.6894±0.0154 

 

 

 

 

 

 

DLBCL 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.5577±0.0102  0.9393 

0.5945±0.0079  3.9829 

0.6168±0.0143  4.4273 

0.6016±0.0165  2.5715 

0.5934±0.0098  NaN 0.5901±0.0105 

0.5950±0.0108  NaN 0.5923±0.0056 

0.5000±0.0000  NaN 0.5000±0.0000 

RankBoost 

CoxBoost 

mboost 

GBM 

0.6213±0.0178  3.2576 

0.6023±0.0169  3.7532 0.5603±0.0174 

0.5874±0.0091  3.3453 0.5443±0.0083 

0.5932±0.0227  3.2764 0.6033±0.0142 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCA

D SCAD 

0.5531±0.0087  1.1712 

0.6034±0.0382  4.2352 0.7203±0.0144 

0.6506±0.0225  8.6053 0.6347±0.0127 

0.6397±0.0211  4.5767 0.6118±0.0175 

0.6467±0.0714  7.4322 0.7043±0.0459 

0.6133±0.0576  6.4761 0.7016±0.0745 

 

 

 

 

 

 

Veer 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.5640±0.0187  1.0345 

0.6675±0.0264  2.0579 

0.6673±0.0312  2.5740 

0.6577±0.0365  1.4140 

0.6800±0.0542  NaN 0.6698±0.0353 

0.6863±0.0478  NaN 0.6734±0.0403 

0.5000±0.0000  NaN 0.5000±0.0000 

RankBoost 

CoxBoost 

mboost 

GBM 

0.6211±0.0214  2.0194 

0.6290±0.0187  1.5732 0.5811±0.0248 

0.6324±0.0164  2.0432 0.5546±0.0239 

0.6697±0.0623  2.4387 0.6629±0.0378 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCA

D SCAD 

0.5897±0.0213  0.9409 

0.6032±0.0661  2.4523 0.6325±0.1356 

0.6399±0.0346  1.8182 0.6175±0.0254 

0.6273±0.0239  2.1498 0.6147±0.0678 

0.6794±0.0423  2.1237 0.6529±0.0781 

0.6312±0.0231  1.7684 0.6349±0.0651 

 

 

 

 

 

 

Vijver 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.5929±0.0192  1.7353 

0.6074±0.0275  2.8562 

0.6185±0.0203  2.1863 

0.5894±0.0174  1.8480 

0.6247±0.0387  NaN 0.6094±0.0277 

0.6260±0.0473  NaN 0.6116±0.0225 

0.6272±0.0410  NaN 0.6188±0.0364 

RankBoost 

CoxBoost 

mboost 

GBM 

0.6097±0.0229  1.9372 

0.6125±0.0178  2.1235 0.5874±0.0106 

0.5874±0.0238  1.8632 0.5423±0.0254 

0.6314 ± 0.0579 3.3732 0.6113±0.0463 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCA

D SCAD 

0.6286±0.0248  3.1272 

0.6466±0.0594  3.4623 0.6562±0.0626 

0.6300±0.0260  NaN 0.6203±0.0195 

0.6277±0.0357  1.2453 0.6158±0.0123 

0.6232±0.0212  1.1987 0.6066±0.0276 

0.6251±0.0336  1.3764 0.6107±0.0379 

 

 

 

 

 

 

Beer 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.6572±0.0254  1.5439 

0.6790±0.0237  1.4854 

0.7282±0.0229  1.6670 

0.6860±0.0217  1.0582 

0.6771±0.0196  NaN 0.6601±0.0165 

0.6644±0.0287  NaN 0.6319±0.0229 

0.6883±0.0274  NaN 0.6801±0.0253 

RankBoost 

CoxBoost 

mboost 

GBM 

0.7135±0.0204  1.5743 

0.7214±0.0149  1.8923 0.6985±0.0204 

0.6823±0.0174  1.7982 0.6415±0.0237 

0.06931±0.0354  1.9712 0.6832±0.0557 

MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCA

D SCAD 

0.5643±0.0276  0.6902 

0.6911±0.1776  1.9432 0.6201±0.0743 

0.7313±0.0296  2.3047 0.7132±0.0218 

0.7197±0.0876  2.0345 0.6433±0.0521 

0.7233±0.0423  2.2166 0.6953±0.0276 

0.7114±0.0257  1.9875 0.6770±0.0319 

 

 

 

 

 

 

AML 

Minlip 

MinlipP 

Model2 

Model2P 

PCR 

SPCR 

PLS 

0.5496±0.0106  0.5175 

0.5533±0.0103  0.4698 

0.5649±0.0159  1.6522 

0.5385±0.0065  1.5904 

0.5501±0.0154  NaN 0.5413±0.0104 

0.5609±0.0203  NaN 0.5577±0.0196 

0.5669±0.0164  NaN 0.5595±0.0109 

RankBoost 

CoxBoost 

mboost 

GBM 

0.5265±0.0073  0.6234 

0.5387±0.0094  0.9842 0.5412±0.0048 

0.5514±0.0128  0.4562 0.5232±0.0078 

0.6353±0.0533  2.5674 0.6497±0.0693 
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MinlipL 1 

Lasso 

PHL2 

(Matlab) 

PHL2 (R) 

ISIS-SCA

D SCAD 

0.5053±0.0074  0.4544 

0.6109±0.0577  1.9764 0.6308±0.0230 

0.5374±0.0177  0.8904 0.5211±0.0098 

0.5397±0.0046  1.3248 0.5190±0.0105 

0.6311±0.0198  2.3354 0.5797±0.0432 

0.6215±0.0314  1.9869 0.5991±0.0335 

 

All the results are put in Table III. Based on this table we 

can compare the performance of these methods for each data 

set. If we focus on the c-index, LASSO and ISIS-SCAD work 

best in average. For extremely high dimensional data like 

DLBCL, Lung, etc. the 
2L  penalized Cox PH model often 

performs better than the others. The transformation model 

based methods performs better than many classical methods 

in average. The Boosting algorithms perform between the 

classical group and the penalized group. For some data sets 

like AML they can reach outstanding scores. The other two 

measures (CP
n

 and Logrank) also support the result by 

c-index. Note that for some methods the CP
n

 cannot be 

calculated. 
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