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Abstract—In the research of spatial data mining, 

gridding/tessellation mapping is a common technique to 

aggregate the locational data points in smaller regions (namely 

grids or tiles) so that properties of those data points can be 

observed. It is a natural way to study spatial related information 

because such information is dependent to the locational 

proximity in most of the cases, and it significantly reduces the 

effort needed to learn useful insights from the data of the entire 

area. In this work, we propose an adaptive tessellation mapping 

(ATM) method to decompose the entire area of interest to tiles 

with variable sizes so that spatial data mining can be carried out 

more efficiently, purposefully and dynamically. In particular, 

we show that human behavior can be understood better with 

ATM with some examples. 

 

Index Terms—Spatial data mining, data structure, adaptive 

tessellation mapping, behavioral analysis. 

 

I. INTRODUCTION 

Over the last few decades, with the increasingly accurate 

positioning services (e.g. GPS, AIS, Mobile Phone 

Triangulation, RFID/Wi-Fi tracking etc.) and the decreasing 

price of their deployment, data that identifies the geographic 

locations of objects (namely spatial data) are becoming 

pervasive in our daily lives and scientific researches. Either 

indoor or outdoor, it is not difficult to obtain the trace, the 

velocity, and even the acceleration of any moving entity of 

our interest, providing proper equipment and infrastructure. 

As part of the “big data regime”, interests in spatial data have 

recently grown even more rapidly thanks to the new database 

technology and data mining techniques.  

In general, spatial data mining, or knowledge discovery in 

spatial databases, is the extraction of implicit knowledge, 

spatial relations and discovery of interesting characteristics 

and patterns that are not explicitly represented in the 

databases. These techniques can play an important role in 

understanding spatial data and in capturing intrinsic 

relationships between spatial and non-spatial data. Moreover, 

such discovered relationships can be used to present data in a 

concise manner and to reorganize spatial databases to 

accommodate data semantics and achieve high performance.  

Spatial data are widely used in a variety of applications, 

such as traffic modeling, supply chain management and 

human behavior analytics. These efforts are being hampered 

by the sparse nature of data collection strategies, the sheer 
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volume of the data, and technical issues associated with the 

use of the data. The enormous volume of data can easily 

overwhelm analysis. This motivates the need for automated 

methods to split them to smaller pieces so that it becomes 

feasible to design and apply algorithms to the data. 

One of the most common practice is to define geographical 

boundaries and divide the entire area of interest to smaller 

regions, so that data points inside the same region can be 

aggregated to one group, and treated by some algorithm. 

Statistical properties or similarities could then observed from 

each single region, and compare to others. Moreover, usually 

the same algorithm would be applied to each of the regions till 

all data points in the entire area are covered. This is 

particularly important when the algorithm is less scalable and 

it is impractical to apply it directly to all the data points at 

once.  

Mathematically, this process could be understood as a 

tessellation process [1], which is defined in Section II. For the 

sake of simplicity, most of the existing works in spatial data 

mining use fixed tessellation, in which the area is divided to 

uniform regions with the same shape and size. However, in 

Section III this work we argue that an Adaptive Tessellation 

Mapping (ATM) scheme, which splits the area to regions of 

different sizes with a hierarchical structure, could be more 

efficient and offer us more and better insights. We present 

some use cases of ATM in behavioral analytic in Section IV. 

Section V concludes the paper with our findings and future 

works. 

 

II. BACKGROUND 

In this section, some preliminary concepts and 

requirements will be discussed, before we go into the detail 

mechanism of ATM. 

A. Tessellation Mapping 

A tessellation of a flat surface is the tiling of a plane using 

one or more geometric shapes, called tiles, with no overlaps 

and no gaps. In the spatial data mining, tessellation mapping 

is used to overlay the tiles on top of existing spatial data, so 

that the locational data points could be identified by the tiles 

they belong to. Moreover, data points mapped in the same tile 

could be considered as one cluster, which forms the basic unit 

of algorithms or visualization techniques. Tessellation is also 

studied as a way to define coordinates in a Geospatial 

Information System (GIS), so that the spatial data could be 

systematically addressed. In this way, tessellation is directly 

related to the data structure that host spatial data so that they 

can be grouped or aggregated. 

In some works, tessellation is also referred to as gridding 
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[2], sectioning [3], partitioning [4], or meshing [5]. In fact, 

they are all special cases of tessellation: 

 Gridding and sectioning are tessellation with only 

square tiles. 

 Partitioning is mostly used in aggregation of wireless 

sensors. Even in [4], main focus of the paper was on 

the addressing issue, instead of making the partitions 

adaptive. 

 Meshing is tessellation with tiles of uniform size. 

In our work, we use the more general term tessellation, 

because the tile size may vary in our scheme, and we will also 

discuss the use of tiles with different shapes.  

Moreover, tessellation is the precise term we should use 

when we want to cover the area with no gaps nor overlaps, i.e. 

to not miss out any spatial data point in the area.   

B. Spatial Data Mining 

Spatial data mining is the application of data mining 

methods to spatial data. The end objective of spatial data 

mining is to find patterns in data with respect to geography.  

One of the major challenges in spatial data mining is that 

geospatial data repositories tend to be very large, due to the 

overwhelming amount of features and attributes. Algorithmic 

analysis is needed to obtain insights from such data. However, 

due to the random way of how nature crafts the geospatial 

landscapes, and stochastic human behavior, spatial data could 

never be uniformly distributed across any given area. Thus, if 

we aggregate spatial data to uniform tiles with same size and 

shape, it usually reduces the efficiency of the algorithms, and 

could waste large amount of computational power and 

resources. 

 

(a) (b) (c)

 
Fig. 1. Fixed gridding vs. adaptive tessellation. 

 

If we use only large fixed grids, as in Fig. 1(a), details in the 

city region cannot be observed closely. In contrast, if we use 

small fixed grids as in Fig. 1(b), although we have more 

details in the city region, effort will be wasted when we study 

those grids with only road or empty lands. Therefore, the ideal 

case is to use adaptive tessellation, as in Fig. 1(c), where the 

tiles can be adaptive to the geospatial features, meaning 

smaller for places with more details, larger when there are less 

interesting information.  

It is clear that uniform or fixed tessellation mapping is not 

suitable for spatial data mining, and it calls for the need of an 

adaptive solution. This motivates us to invent the Adaptive 

Tessellation Mapping (ATM) scheme.  

 

III. ADAPTIVE TESSELLATION METHOD (ATM) 

The basic idea of ATM is to split the area into tiles with 

same shape but variable sizes. In particular, we start by 

splitting the area into base tiles, which are the tiles with the 

maximum size, defined as base size. Base tiles are further split 

into sub-tiles, which are smaller in size, but the same shape as 

base tiles.  A sub-tiles can be further divided into smaller 

sub-tiles, until certain requirement is satisfied.  

To present the ATM scheme clearly, we will start with the 

basic geometric requirements and properties, to the algorithm 

that constructs the adaptive tiles, and then move on to some 

challenging issues with ATM in this section. 

A. Basic Geometry Requirement 

Being adaptive is different from being random. In fact, split 

the area into random regions could be even more costly than 

uniform tessellation. There need to be some basic principles 

that guide the design of ATM — in particular, the tile shape. 

1) Simplicity  

The purpose of ATM is to simplify the spatial data mining 

process and make the knowledge extraction more efficient. 

Therefore the tessellation process itself must be simple. 

Moreover, the outcome tiles needs to be simple, too, so that 

the boundaries and regions of the tiles could be easily defined 

in computer programs.  

Thus we restrict our discussion of tile shapes to regular 

polygons, which is defined as a polygon that is equiangular 

(all angles are equal in measure) and equilateral (all sides 

have the same length).  

2) Similarity  

In order to apply same algorithm to different tiles, we need 

the tiles to be similar. In geometry, similarity is defined when 

Two geometrical objects both have the same shape, or one has 

the same shape as the mirror image of the other. More 

precisely, one can be obtained from the other by uniformly 

scaling (enlarging or shrinking), possibly with additional 

translation, rotation and reflection. This means that either 

object can be rescaled, repositioned, and reflected, so as to 

coincide precisely with the other object.  

As a result, the base tile needs to be of the same shape, and 

the tessellation must be a regular tessellation: a highly 

symmetric, edge-to-edge tiling made up of regular polygons, 

all of the same shape. There are only three regular 

tessellations: those made up of equilateral triangles, squares, 

or regular hexagons. In another word, the base tiles (as well 

as all the sub-tiles) must be of one of these three shapes. 

 

(a) (b) (c)  
Fig. 2. Triangle, square and hexagon tessellation. 

 

Fig. 2 shows the three types of regular tessellation. 

3) Hierarchy and inheritance 

We design ATM in a way that the smaller tiles inherit shape 

from the bigger ones, and a hierarchical structure is preserved 

when we zoom in or zoom out. 

In Fig. 2(c), we can see that a hexagon tile cannot be split 

into a group of hexagons, meaning that it is not possible to 

maintain a hierarchical structure with hexagonal tessellation. 

Therefore we will only discuss about triangular and square 
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tessellation in this paper. 

The main reason we use a hierarchical structure is to enable 

the use of recursive algorithm. When tiles are of the same 

shape but different size, the same algorithm can be applied to 

all the tiles. When we split the area into tiles, recursive 

algorithm can be used to further split big tile to smaller once 

till certain criteria is met. We will demonstrate the algorithm 

itself in next Section. 

Also, we found that when tiles of the same shape is used in 

the tessellation, it is visually clear and pleasant. Consistency 

can be maintained when we focus on different part of the area. 

In this paper, we only discuss the case where each tile is 

split into 4 sub-tiles. It is possible to split a square tile for 

more sub-tiles, such as 9, 16 or any square number. The same 

principle discussed in this papers can be extended to those 

scenarios easily.  

B. Algorithm 

The algorithmic challenges in ATM include three parts: 

how to address the tiles, how to create them, and how to split 

them into sub-tiles. 

1) Data model and structure 

To efficiently represent the hierarchical structure between a 

base tile and its sub-tiles, a tree data structure is the most 

suitable. Each sub-tile will be represented as a child of its 

parent, as shown in Fig. 3. Each base tile can be represented as 

the root (level 1) of a tree, and the tessellation of the entire 

area can be seen as a forest of such trees, as in Fig. 3(a).  

 

(a)

(b)

1

2

 
Fig. 3. Representing tiles as tree structure. 

 

In most existing spatial data schema, there are at least two 

parts: the locations of data points, and the properties of the 

data points. Usually, the locations are addressed by the 

longitude (x coordinate) and the latitude (y coordinate). In 

some modern data base with spatial API, such location can be 

stored as a Point data type in one column. In this paper, 

without losing generality, we use two columns to store the (x, 

y) tuple.  The properties of the data points, such as 

temperature, building type, population etc. are depicted by 

additional columns. When they are aggregated to tiles, extra 

columns need to be created to address which tile they belong 

to. We refer to such columns as tile info columns.  

For square tiles, three additional columns will be needed: 

the centroid coordinate (two columns), and the level of the tile 

in the tree. Given the size of base tile, it is relatively easy to 

directly calculate the boundaries of the tile. 

For triangular tiles, one more column will be needed to 

denote the orientation: whether the triangle is point upwards 

(as triangle 1 in Fig. 3(a)) or downwards (as triangle 2 in Fig. 

3(a)).  

2) Base tile creation  

Creating base tiles, is actually equivalent to dividing the 

given area into regions of same size and shape (square or 

triangle). In the sense of data manipulation, it is to define the 

tile info columns based on the tile location columns, i.e. to 

define centroid coordinates, denoted as (xc, yc) and orientation 

(for triangular tiles only) of the tiles. The level of a base tile 

will always be 1, as they are always the root of a tree; and the 

size will always be base size, denoted as Sb. We need to design 

algorithm to solve the following problem: 

Base Tile Creation Problem: Given coordinates of a 

given data point (x, y) and base size Sb, find the centroid 

coordinate (xc, yc) and orientation z (for triangular tiles) of the 

tile that his data point belongs to. 

Due to the page limit constraint, the derivation of following 

results are omitted. 

a) Square tiles 

It is relatively easy to obtain the centroid of the square tile. 

2

2

c b b b

c b b b

x x S S S

y y S S S

  
 

  
 

 

b) Triangular tile 

For triangular tiles we use a to represent the edge length of 

the tile. We have 

3 3 3b bS a a S    

It is easier to calculate the centroid of the tile if we do a 

coordinate transformation first, as shown in Fig. 4: 

3 3

2 3 3

x x y

y y





 


 

x

y

a a
 

Fig. 4. Coordination transformation for triangular tessellation. 

 

We calculate z, the orientation of the tile first 

   
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z
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The centroid of the tile in the transformed coordinate could 

then be obtained 
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Finally we transform the coordinate back to the normal: 

3 3 2

3 2

c c c c c

c c

x x y x y

y y

  



   


 

3) Sub-tile split 

The decision of whether or not to split a tile to sub-tiles 

depends on certain property that we could observe from the 

tile, referred to as the feature. For example, if we want to 

restrict that there should be less than or equal to 100 buildings 

in a single tile, the building count will be the feature, and any 

tile covering area with more than 100 buildings, being lack of 

feature, will be split into sub-tiles. This split process can be 

recursive, as depicted in Algorithm 1 with pseudo code. 

 

Algorithm 1. Create Adaptive Tessellation 

procedure CREATE_AT(area A) 

split A into base tiles 

for each base tile T 

if T is lack of feature  

CREATE_SUBTILE(T) 

end if 

end for 

end procedure 

 

procedure CREATE_SUBTILE(tile T) \\a recursive procedure 

if T is lack of feature  

split T into sub-tiles sT[1…n] 

for each sub-tile sT[i] 

CREATE_SUBTILE(sT[i]) \\recursion 

end for 

end if 

end procedure 

 

To split a tile of size S to sub-tiles of size S’, we always 

have  
1' 4= 4l

bS S S   

where l is the level of the parent tile. The level of sub-tile will 

be l+1. 

a) Square tile 

1

2 3
4

1 2

3 4

(a) (b)
 

Fig. 5. Sub-tiles. 

 

As shown in Fig. 5(a) the centroid (x’c , y’c) of the sub-tiles 

i (where i=1, 2, 3, 4) can be derived: 
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If a point falls on the boundary, we randomly assign it to 

either tile, for simplicity. 

b) Triangular tile 

Again we use a to represent the length of the tile edge 

3 3a S  

To determine which sub-tile each data point (x, y) falls into, 

we calculate i, as shown in Fig. 5(b). 
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The centroid (x’c , y’c) of the sub-tiles i (where i=1, 2, 3, 4) 

can be derived 
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The orientation z is straight forward as shown in Fig. 5(b). 

1 1,2,3

1 4
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z
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C. Challenges 

There are several challenges in ATM we want to present 

here as some future work direction. 

1) Base size 

Base size determines the “worst” resolution of ATM. 

Smaller base size offers more details to the entire area, but if 

they are too small to be further split down, it becomes 

equivalent to fixed size gridding or meshing.  

Big base size can always be split to small ones depends on 

the desired features. Therefore, the most adaptive way is to 

have a base tile cover the entire area, and split it down to 

sub-tiles. However, this could also produce too many levels in 

the tree structure, and make the ATM algorithm less efficient. 

Therefore it is challenge to determine just the optimal size 

of the base tile, especially when we start without any 

knowledge about the data set. 

2) Query  

We have adopted the tree structure from [4] to address the 

tiles. However, given any random location. It is 

computationally costly to find out which tile it belongs to.  

It will need either go through the entire tiles list to find the 
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tile covering this location, or go through the tree structure to 

identify the corresponding tile. The complexities of these two 

solutions depend on the number of tiles and the levels of the 

trees.  

 

IV. USE CASES 

As we have discussed before, ATM is a new and useful way 

to aggregate spatial data for mining purpose. In this Section, 

we present two very simple use of ATM, for visualization and 

behavior classification.  

Both examples have been implemented as working 

solutions. However, due to the page limit, we could not go 

into the details of these case studies. We will try to publish 

them as stand-alone papers. 

A. Visualization 

Display two features on the same heat map. Using ATM to 

show density, and another feature as an overlay top of the 

tiles. 

k<3

3<k<5

5<k<8

8<k  
Fig. 6. Density of kids vs. children facilities. 

 

Fig. 6 shows a map with number of kids and number of 

children facilities (including kindergarten, playgrounds and 

kids’ clinics). 

The feature of ATM in Fig. 6 is the number of kids. We 

split the sub-tiles in a way that each triangular tile will have 

maximum 10 children younger than 10 years old registered as 

residents. The smaller the tile is, the higher the density of kids 

is.  

The color (heat) of the map indicates the number (k) of 

children facilities. By right, the higher the children density, 

the more number of facilities should be in the tile and vice 

versa. However, we can see there is one small tile on the upper 

left (circled out) with green color, which could indicate in 

sufficient facilities for children. Other than this part, we 

should say this area is planned quite well because most of the 

places have facilities that proportional to the density of 

children.  

Using traditional heat maps, it will be more difficult to 

compare these two features in parallel. Especially when the 

tile with issue is so small compare to the entire map. With 

ATM, it adds one more dimension to the heat map so that two 

features can be displayed simultaneously and the problematic 

place just pops out. 

B. Behavior Classification 

We can also use ATM to differentiate the places where 

people move similarly (like on a long straight pedestrian way) 

and a places where people move differently (like a crossroad). 

As shown in Fig. 7.  

 
Fig. 7. Using ATM to classify pedestrian behavior. 

 

The feature in this ATM map is the variance of people’s 

behavior (walking straight or making turns). Tiles are split to 

sub-tiles until people behave similarly in one tile (i.e. various 

is lower than a threshold).  

With ATM we can ignore those large tiles when we want to 

classify people. Because in those tiles people all behave 

similarly and could not differentiate themselves. One the 

other hand, we should focus on those smaller tiles (marked 

with yellow in Fig. 7). We can identify different people (or 

groups of people) by the sequence that they visit the yellow 

tiles, which forms their distinct movement patter that different 

with others. 

 

V. CONCLUSION 

In this paper, we propose the Adaptive Tessellation 

Mapping (ATM) method, which allow us to aggregate the 

spatial data into adaptive tiles and enable more straight 

forward visualization and flexible data mining. We have 

derived coordinates of tile given any data point, and designed 

a recursive algorithm to split tile to sub-tiles based on certain 

desired feature. Two use cases are also briefly discussed to 

show that ATM works effectively with real life data.  
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