
  

 

Abstract—This paper presents an efficient approach for 

classification of the gender of a common fruit fly, Drosophila 

melanogaster, based on their wing’s texture. The novelty of this 

research effort is that a Modified Local Binary Pattern (MLBP), 

which combines both the sign and magnitude features for the 

improvement of fly wing’s texture classification performance, is 

applied. The extracted features are then used to classify the 

gender of the fruit fly by using the Support Vector Machines 

(SVMs) and Random Forest (RF). We validate the performance 

of the proposed scheme on two fly wing datasets. The highest 

accuracy achieved by the proposed approach is 94%. In this 

paper, we limit our approach to gender classification; however, 

this effort can be extended to explore important characteristics 

of a fly using wing’s texture analysis. 

 

Index Terms—Biometrics, fly wing, modified local binary 

pattern, random forest, and support vector machine.  

 

I. INTRODUCTION 

Biometrics refers to the science of recognizing humans by 

utilizing the physical (e.g., fingerprint, face, iris) and/or 

behavioral (e.g., gait, signature) traits of an individual. 

Although biometrics processes are generally applied on 

human subjects, in this research effort, we examine the 

wing’s texture of a common fruit fly, Drosophila 

melanogaster, to classify its gender and this classification 

process can be referred as fly wing biometrics. Fig. 1 shows 

samples of female and male wings of Drosophila. Research 

during the past decades has demonstrated that humans and 

flies are similar on the cellular and molecular level [1]-[3]. 

Human being is different from flies; however, some of the 

proteins and genes that are required to shape a fly wing are 

similar to those in humans. Moreover, research works on flies 

as a model system are explored to better understand the 

human diseases [1]-[3]. Although we analyze the texture of a 

wing to ramify Drosophila gender only, our research on fly 

wing texture can help biologist and entomologist to explore 

the genetic evaluation and development of different insects 

and their effects on nature.  

Texture analysis aiming to interpret and understand 

real-world visual patterns is an active and challenging 

research field. Local binary pattern (LBP) proposed by Ojala 

et al. [4] has been considered as an effective descriptor for 
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texture classification. It has many attractive properties such 

as rotation invariance, low computational burden, and 

robustness against monotonic gray level transformation. The 

LBP-based feature extractor has proven to be highly 

distinctive and its key advantages, including the robustness 

against illumination and pose variations, and the 

computational efficiency, make it suitable for high level 

image analysis tasks. Despite the great success of LBP in 

computer vision and pattern recognition, the various 

extensions and modifications of this texture extraction 

approach have been proposed [5]-[7]. 

 
           (a) 

 

 
 

(b) 

Fig. 1. Wing of a (a) female and (b) male Drosophila. 

 

The first approach on classification of gender of 

Drosophila using their wing’s texture was proposed in [8]. 

Shelton et al. [8] applied the genetic and evolutionary feature 

extraction with machine learning (GEFEML) in an effort to 

elicit the wing’s textural features. GEFEML technique evolved 

the LBP based feature extractors and consisted of a set of 

patches in various positions. These patches were overlapped 

with    each    other    and     concentrated     on    smaller  and 

discriminating areas of an image while standard LBP 

considered the entire image for texture analysis. To the best 

of our knowledge, this is the second work on fly wing 

biometrics. In this research effort, instead of using the 

traditional LBP, we use modified LBP (MLBP) [5] in an 

effort to increase the gender classification accuracy. The 

MLBP technique fuses both the sign and magnitude feature 

components to improve the feature extraction performance; 

whereas the traditional LBP utilizes only the sign information. 

Even though the sign component of LBP operator preserves 
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most of the information of local differences, the magnitude 

component provides additional discerning features that can 

improve the overall classification accuracy. The extracted 

MLBP features are then trained and validated by Support 

Vector Machines (SVMs) and Random Forest (RM) 

techniques to identify the gender of Drosophila by exploring 

the texture of their wings. 

The rest of this paper is organized as follows. Section II 

briefly describes the modified LBP. Sections III and IV 

present feature classification techniques using SVMs and RF. 

Section V reports the extensive experimental results and 

Section VI provides our conclusions. 

 

II. FEATURE EXTRACTION USING MODIFIED LBP 

The LBP method was first proposed by Ojala et al. [4] to 

encode the pixel-wise information in images. Images are 

probed locally by sampling grayscale values at a central point 

gc and P points at g1, g2…..gp-1 spaced equidistantly around a 

circle of radius R. 

 

LBPP, R = ∑  (      ) 
           {

        
        

   
          (1) 

 

Given an I*J image, let LBPP, R (i, j) be the identified LBP 

pattern of each pixel (i, j), then the whole texture image is 

represented by a histogram vector Hist of length K 
 

Hist(k) = ∑ ∑  (      (   )  )        [   ]     
 
   

 
   (2) 

  

f(x, y) = {
         

         
 

 

where K = 2
P 

is the number of all the LBP codes. Feature 

histogram Hist contains properties of gray-scale invariance, 

low complexity, few parameters, and satisfactory 

discriminating power. With the P neighbors around a pixel, 

the basic LBP operator produces 2
P 

distinct features and it 

becomes a complex problem to analyze feature vector due to 

overwhelming dimensionality of Hist with large P. To reduce 

the number of binary patterns, Ojala et al. [4] suggested an 

improvement with uniform patterns and merged all 

non-uniform patterns into one pattern. In uniform pattern, 

there is zero or only 2 transitions of bits in the circular binary 

presentation. In the uniform patterns of P neighbors, the 

feature vectors are reduced to P×(P-1)+3 instead of 2
P
. These 

uniform patterns provide a vast majority, sometime over 90 

percent, of a 3×3 texture pattern of the entire fly wing image. 

These patterns, moreover, correspond to the primitive micro 

features, such as edges, corners, and spots [4].  

For MLBP, we calculate the difference of a pixel gc with its 

circularly and evenly spaced P neighbors gp, P=0, 1… P-1 as 

Dp = gp - gc. The difference vector Dp contains both the sign 

and magnitude information of the local differences: 

 

   =   ×    and  {
       (  )
       

                  (3) 

 

where Sp = {
       
       

 and Mp  are the sign and magnitude 

components of DP, respectively. Due to sign and magnitude 

information, the Dp is more robust against the illumination 

changes. Fig. 2 shows an example of MLBP feature 

extraction technique. Fig. 2(a) is the original 3×3 structure 

with central pixel being 34. The difference vector, shown in 

Fig. 2(b), is [-13, -21, 19, -28, -6, -10, 31, 12]. After the sign 

and magnitude components are extracted, the sign (see Fig. 

2(c)) and magnitude vectors [see Fig. 2(d)] are represented as 

[-1, -1, 1, -1, -1, -1, 1, 1] and [13, 21, 19, 28, 6, 10, 31, 12], 

respectively. The original LBP exploits only the sign vector 

to code the local pattern as an 8-bit string “00100011” (-1 is 

coded as 0 for LBP). In the following sections, we provide an 

overview of SVMs and RF approaches.  
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Fig. 2. Feature extraction process using MLBP (a) 3×3 sample block, (b) 

local difference, (c) sign components, and (d) magnitude components. 

 

III. SUPPORT VECTOR MACHINES (SVMS) 

The Support Vector Machine (SVM) is a state-of-the-art 

classification method introduced in 1992 by Cortes and 

Vapnik [10]. The SVM classifier is widely used in 

bioinformatics due to its high accuracy and ability to deal 

with high-dimensional data such as gene expression, and 

flexibility in modeling diverse source of data [11]. SVM 

performs classification tasks by constructing hyperplanes in a 

multidimensional space that separates cases of different class 

labels. SVM supports both the regression and classification 

tasks and can handle multiple continuous and categorical 

variables. To construct an optimal hyperplane, SVM employs 

an iterative training algorithm, which is used to minimize an 

error function. Given a training set of instance-label pairs (xi, 

yi), i = 1…. N where xi ϵ R
n
 and y ϵ {1, -1}

N
, the SVMs require 

the solution of the following optimization problem: 

 
 

 
     ∑  

 
 
                        (4) 

 

Subject to the constraints: 

 

 
 
(   ( )   )     

 
     

 
            

 

where C is the penalty parameter, w is the vector of 

coefficients, b is a constant, and  
 
 represents parameters for 

handling non-separable data (inputs). The index i  labels the 
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N  training cases,      represents the corresponding class 

labels, and xi represents the independent variables. Training 

vectors, xi are mapped into a higher dimensional space by the 

function  . The larger the C, more the error is penalized. 

Thus, C is chosen with care to avoid over fitting. In addition 

to performing linear classification, SVMs can efficiently 

perform a non-linear classification using kernel trick, 

implicitly mapping their inputs into high-dimensional feature 

spaces. 

 

 (     )   (  )
  (  )                 (5) 

 

Equation (5), the kernel function, represents a dot product 

of input data points mapped into the higher dimensional 

feature space by the transformation,  . The four basic kernel 

functions used in SVM are: 

 Linear:  

K(xi, xj) = xi
T
 xj 

 Polynomial: 

 

K(xi, xj) = (ϒxi
T 

xj + r)
d
, ϒ >0 

 

 Radial Basis Function (RBF):  

 

K(xI, xj) = exp(-ϒ||xi - xj||
2
), ϒ > 0 

 

 Sigmoid:  

K(xi, xj) = tanh( ϒxi
T
 xj + r) 

where ϒ, r and d are the kernel parameters.  

 

IV. RANDOM FOREST (RF) 

Random Forest is an ensemble of unpruned classification 

or regression trees created by using bootstrap samples of the 

training data and random feature selection in tree induction. 

Prediction is made by aggregating (majority vote or 

averaging) the predictions of the ensemble [12]. Boosting and 

bootstrapping or bagging are two well known methods for 

ensemble learning of classification tree. The sample subsets 

creation for a tree is dependent on previous classification 

results and addition weights are given to the samples that are 

incorrectly predicted previously. In bagging method, the trees 

are developed randomly using a bootstrap sample of the data 

set in the bagging method and these tree construction do not 

depend on earlier trees [13], [14]. In RFs, an additional layer 

of randomness is included to the bagging process. RF   

constructs each tree using a different bootstrap sample of the 

data and change the method of the classification or regression 

trees creation. When developing individual trees, an arbitrary 

subset of attributes is drawn from the best attributes for the 

split is selected. In standard trees, each node is created using 

the best split among all the variables. The classification is 

based on the majority vote from individually developed tree 

classifiers in the forest. The specific size of the subset is a 

parameter of the forest. RFs are fast and easy to implement, 

produce highly accurate predictions and can handle a very 

large number of input variables without overfitting [13].  

In Ref. [12], the largest possible trees are grown without 

pruning. Since the unpruned trees are low-bias and high 

variance models, averaging over an ensemble of trees reduce 

variance while keeping low bias. The root node of each tree 

contains a different bootstrap sample which is randomly 

selected from the original training data. The leaves of a tree 

provide the feature elements of the same class label. The class 

label of a new data is predicted based on the leaf in which that 

data lands. The RF algorithm can be summarized as follows 

[13]: 

1) Extract    bootstrap samples from the original data.  

2) For each   , develop an unpruned classification or 

regression tree. At each node, randomly sample    of 

the predictors and select the best split among those 

variables. 

3) Predict new data by aggregating the predictions of the 

   The majority votes and average are used for 

classification and regression, respectively. 

In RF, an estimate of the error rate can be measured, based 

on the training data, according to following [13]: 

1) At each iteration of bootstrap process, predict the data 

which is not in the bootstrap sample, denoted as 

Out-Of-Bag (OOB) data, using the tree grown with the 

bootstrap sample. 

2) Aggregate the OOB predictions. Measure the error rate, 

and define it as the OOB estimate of error rate. 

  For classification problems, given a set of simple trees 

and a set of random predictor variables, the RF method 

defines a margin function that measures the extent to which 

the average number of votes for the correct class exceeds the 

average vote for any other class presents in the dependent 

variable. This measure provides a convenient way of making 

predictions and associating a confidence measure with those 

predictions. For regression problems, RFs are formed by 

growing simple trees and each capable of producing a 

numerical response value. Here, the predictor set is randomly 

selected from the same distribution and for all trees. Given 

the above, the mean-square error for a Random Forest is 

given by [12]: 

 

Mean Error = (observed - tree response)
2 

 

The predictions of the RF are taken to be the average of the 

predictions of the trees: 

 

                           
 

 
∑   
 

   

              

 

where the index k  runs over the individual trees in the forest.  

Random forests are a truly ‘random’ statistical method in 

which the model results can vary from one run to another run. 

Furthermore, as random forest builds independently, this 

makes their construction inherently parallel, allowing us the 

flexibility to exploit parallel computer architectures. 

 

V. EXPERIMENTS AND RESULTS 

In this research, we conduct our experiments on two fly 

wing image datasets and these datasets are consisted of equal 

number of the male and female fly wing images. The first 
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dataset, Dataset-1, contains 300 images and this dataset has 

150 male and 150 female fly wing images. The second 

dataset, Dataset-2, contains 200 images and this dataset also 

has equal number of male and female fly wing images. These 

image datasets, supplied by Ian Dworkin (Dworkin Lab) at 

Michigan State University, are collected during a large scale 

experiment to examine how mutations of two biological 

signaling pathways influenced the wing shape [15], [16]. For 

each dataset, the wing images of the male and female flies are 

equally distributed into gallery and probe set. The gallery set 

is used to train SVM and RM classifiers and probe set is used 

for validation purpose. Each Image in the dataset is 

normalized to grey scale with a resolution of 614×266 pixels 

and a horizontal orientation.  

 

       
     (a)                    (b) 
 

         
     (c)                  (d) 

Fig.  3. Wings of male flies with different patches (a) 20 patches (4× 5), (b) 6 
patches (6 × 1), (c) 24 patches (8 × 3), (d) 64 patches (8 × 8). 

 

   
      
                    (a)                   (b) 

 

   
      

                         (c)                     (d) 

            

Fig. 4. Wings of female flies with different patches (a) 20 patches (4 × 5), (b) 

6 patches (6 × 1), (c) 24 patches (8 × 3),  (d) 64 patches (8 × 8). 
 

In our research effort, we extract the fly wing texture 

features by using both the MLBP and LBP techniques. To 

extract more subtle and discriminating features, we have 

divided each image into different combinations of patches. 

Fig. 3 and Fig. 4 show some male and female sample images 

containing the different combination of patches. In feature 

extraction process, we employ only  the  uniform  pattern  as 

these uniform patterns correspond to important micro 

features such as  edges, corners, spots as mentioned 

previously and these patterns cover the major proportion of 

the total number of patterns [4]. Each fly wing image patch is 

represented by 59 sign and 59 magnitude components since 

eight (P = 8) circularly surrounded neighbors are used. We 

then concatenate the sign and magnitude components and 

present a single patch by 59 × 2=118 components. For 

example, with an image divided into 4× 5 patches (see Fig. 

3(a)),  we  have  4 × 5 × 118 = 2360   features   with  MLBP  

approach which divides the images evenly in sign and 

magnitude vectors, while 20 × 59 = 1180 sign features are 

obtained with the traditional LBP approach. 

 
TABLE I: BEST MLBP PATCHES ON DATASET-1 USING SVM. 

Patches 

 (row × column) 

Number of features Accuracy 

% 

6 × 1 708 94 

8 × 3 2832 92.67 

2 × 4 944 91.33 

3 × 4 1416 91.33 

6 × 4 2832 91.33 

7 × 3 2478 91.33 

9 × 7 7434 91.33 

10 × 1 1180 91.33 

4 × 7 3304 90.67 

6 × 3 2124 90.67 

7 × 1 826 90.67 

 
TABLE II: BEST LBP PATCHES ON DATASET-1 USING SVM. 

Patches 

 (row × column) 

Number of features Accuracy 

% 

4 × 5 1180 92.67 

8 × 8 3776 92.67 

9 × 10 5310 92.67 

2 × 1 118 92 

4 × 7 1652 92 

6 × 4 1416 92 

7 × 8 3304 92 

4 × 4 944 91.33 

5 × 6 1770 91.33 

6 × 7 2478 91.33 

4 × 3 708 90.67 

 

Table I and II report the top eleven recognition accuracies 

for the MLBP and LBP methods, respectively on the 

Dataset-1 using the SVM. Similarly, Table III and Table IV 

include the results of top eleven best patch combinations for 

Dataset-2. We can see from Table I that MLBP achieves the 

best accuracy of 94%, with the 6×1 patch combination, while 

the traditional LBP obtains the highest accuracy of 92.67% 

with the 4×5, 8×8 and 9×10 patch combinations as reported 

in Table II on the Dataset-1 with SVM. Similarly, from Table 

III, we can see that for the 4×4 patch arrangement, MLBP 

achieves the highest accuracy of 88% using the SVM on the 

Dataset-2. Table IV shows that 4×3, 4×4, 7×3 and 8×3 patch 
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combinations reveal the best accuracy of 86% with the 

traditional LBP on the Dataset-2 using the SVM. Therefore, it 

is found that MLBP outperforms the traditional LBP on both 

of the datasets. Table V shows the SVM classification 

accuracies obtained by using the four kernels and it can be 

seen clearly that the linear kernel archives the best accuracy 

of 94%. The reason seems to be that the size of the feature 

vector, used in this research, is huge as compared to number 

of samples per class.  

For this experimental work, we consider different patches 

of every combination of 10 rows and 10 columns and 

calculate the average classification accuracy over all the 

observation outputs (see Table VI and Table VII). Table VI 

shows that average classification rates of different 

combination of patches for Dataset-1 are 89% and 89.50% 

for MLBP and LBP, respectively using SVM. However, for 

Dataset-1 with different patches, the best accuracy, we obtain 

is 94% using the MLBP and SVM. With the traditional LBP 

and SVM, the highest achieved accuracy is 92.67% on 

Dataset-1 as reported in Table VI. When the entire fly wing 

image is used for experiments, with SVM, the obtained 

recognition rates are 88% and 86.67% for MLBP and LBP, 

respectively. For the different combinations of patches on 

Dataset-2, the average SVM classification accuracies 

obtained using MLBP and LBP are 80.23% and 78%, 

respectively (see Table VII). On the Dataset-2, the best 

classification accuracies obtained with SVM are 88% and 86% 

for MLBP and LBP, respectively. We gain 76% and 74% 

accuracies for MLBP and LBP, respectively on the Dataset-2 

when we consider the entire image for feature extraction 

using SVM. Best accuracy of 88% and average is 80.23% for 

MLBP feature extractor with SVM and with the LBP 

extractor, the highest recognition rate is 86% and average 

precision is 78%. From Table VI and Table VII, we obtain 

that MLBP with SVM outperforms the LBP in most of the 

cases when the patches are considered 

To compare the classification results obtained using SVM 

with the RF, we use the different combination of patches and 

provide the wing features to RF in an effort to get the 

classification accuracies as shown in Table VI and Table VII. 

As the process is purely random, the accuracy rate varies in 

every run. We calculate the average rate over different 

patches and also on the entire image for different number   of    

trees. For Dataset-1 with MLBP and RF scheme, we obtain 

90% mean accuracy while the highest accuracy is 92% using 

different arrangement of patches and the average accuracy is 

87% when the entire image is considered. For the traditional 

LBP with RF, the average and highest recognition rates are 

88% and 91%, respectively on the Dataset-1 for different 

patch combinations. Without any patch combination, 

considering the complete image for feature extraction, we 

obtain a RF accuracy of 87% with both LBP and MLBP on 

the Dataset-1. On the Dataset-2, the highest accuracy with 

various patches is 87% and average accuracy is 84% for 

MLBP with RF algorithm. For original LBP and RF scheme, 

the average classification rate is 83% and highest rate is 87% 

for different patches. For Dataset-2, the RF accuracy with 

LBP is 83% when no patch is used. From Table VI and Table 

VII, we find that MLBP with RF outperforms the LBP in 

most of the cases when the patches are considered as similar 

with MLBP and SVM scheme. It should be noted that in the 

first fly wing biometrics experiments, Shelton et al. [8] 

achieved an average recognition accuracy of 73.16% using 

GEFEML feature extractors on a different dataset of 

Drosophila. 

 
TABLE  III: BEST MLBP PATCHES ON DATASET-2 USING SVM 

Patches 

(row × column) 

Number of features Accuracy 

% 

4 × 4 1888 88 

2 × 9 2124 86 

5 × 10 5900 86 

8 × 3 2832 86 

4 × 5 2360 85 

7 × 4 3304 85 

10 × 3 3540 85 

3 × 8 2832 84 

7 × 1 826 84 

4 × 1 472 84 

6 × 7 4956 83 

 
TABLE  IV: BEST MLBP PATCHES ON DATASET-2 USING SVM 

Patches 

 (row × column) 

Number of features Accuracy 

% 

4 × 3 708 86 

4 × 4 944 86 

7 × 3 1239 86 

8 × 3 1416 86 

2 × 3 354 84 

2 × 8 944 84 

7 × 4 1652 84 

8 × 4 1888 84 

5 × 3 885 83 

1 × 3 177 82 

10 × 1 590 82 

  
TABLE V: CLASSIFICATION ACCURACY (%) OF DIFFERENT SVM KERNELS 

SVM Kernel Patch Combination Accuracy (%) 

Linear 6 × 1 94 

RBF 3 × 3 64 

Polynomial 2 × 1 86 

Quadratic 2 × 4 59 

 
TABLE VI: CLASSIFICATION ACCURACY (%) ON DATASET-1 USING 

DIFFERENT SCHEMES 

 Dataset-1 

With patches Without 
patches 

(Entire 

image) 

Avg. 
Accuracy 

Highest 
Accuracy 

Accuracy 

SVM MLBP 89% 94% 88% 

LBP 89.50% 92.67% 86.67% 

Random 

Forest 

MLBP  90%  92%  87% 

LBP  88%  91%  87% 
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TABLE VII: CLASSIFICATION ACCURACY (%) ON DATASET-2 USING 

DIFFERENT SCHEMES 

 Dataset-2 

With patches Without 

patches 
(Entire 

Image) 

Avg. 

Accuracy 

Highest 

Accuracy 

Accuracy 

SVM MLBP 80.23% 88% 76% 

LBP 78% 86% 74% 

Random 

Forest 

MLBP 84% 87% 84% 

LBP 83% 87% 83% 

 

VI. CONCLUSION  

In this research approach, to classify the Drosophila 

melanogaster as either female or male using their wing’s 

texture analysis, we explore the application of MLBP as a fly 

wing feature extractor. The MLBP extractor includes both the 

sign and magnitude components for robust feature elicitation. 

We also examine the performance of LBP and MLBP for 

multiple patch variations. Although the approach using LBP 

can provide accurate results, the proposed scheme with 

MLBP has proven to be consistently more precise than the 

traditional LBP. The SVM and RF algorithms are utilized to 

classify the gender of the fly wing. The performance of the 

proposed approach is validated on two datasets with an 

encouraging performance. 
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