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Abstract—Grouping items facilitates ideation. Although 

Cluster Analysis has become a classical technique for grouping 

in science and engineering, to the best of our knowledge it's use 

remains limited in business. In this application paper we use 

cluster ensembles to address three barriers to wide scale 

adoption in the banking industry. The aforementioned 

challenges are: consistency of results, knowledge beyond the 

data and grouping with multiple objectives. Contributions of 

this study include guidance on dealing with the lack of 

meaningful cluster labels (in the case of ensembles), bimodal 

cluster distributions and incorporating expert intuition into the 

clustering process. This application has delivered unobvious 

insight into a high-dimensional dataset to audiences with diverse 

backgrounds. 

 
Index Terms—Clustering, cluster ensembles, majority vote. 

 

I. INTRODUCTION 

 "Facts come from negotiation between different parties."  

—  Paul Feyerabend 

Retail banks manage three forms of physical assets; bank 

branches, Automated Banking Machines (ABMs) and mobile 

advice centers. Large amounts of data are accumulated from 

the sensors and systems attached to these assets. Furthermore, 

the geospatial qualities of these assets make public 

geographical data sources applicable. The result is a 

high-dimensional dataset of items. Grouping the assets based 

on similar attributes facilitates innovative strategies for 

placement and investment optimization. The traditional 

approach to grouping these assets is a hierarchical 

partitioning based on univariate distributions of key attributes. 

For example, grouping based on the population of the Census 

Metropolitan Area (CMA) that the asset resides in and the 

revenue generating ability of the asset. These approaches are 

extremely sensitive to the sequence of items chosen for 

partitioning. Cluster analysis is becoming more mainstream in 

the financial services industry for segmenting customers; yet 

barriers remain to wide scale adoption. The randomness 

embedded in cluster analysis assigns items to different groups 

when slight modifications are made to the cluster generating 

algorithm or data transformation process. This is more 

concerning when clustering procedures are placed in 

sequence. By this we mean the output of one process is the 
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input to the next. In addition, grouping at various discrete time 

intervals is often insightful; this involves running the 

clustering algorithm multiple times, often with slight 

modifications [1].  

We empathize with practitioners that are uncomfortable 

with the level of automation of clustering algorithms. Intuitive 

outliers and deterministic partitions are often ignored in blind 

applications. There is a need to incorporate expert intuition 

that resides outside of the dataset or learning algorithm. 

Grouping is rarely without an objective [2]. As asset 

management involves continuously changing objectives, data 

must be grouped in different ways. Often this is done in 

sequence where the output of a clustering procedure is the 

input to another. In the case of sequential clustering, errors 

may accumulate uncontrollably. The three described 

challenges; consistency of results, knowledge beyond the data 

and grouping with multiple objectives can be addressed with 

cluster ensembles. We defer the discussion of general 

challenges in clustering to [3]. 

Cluster ensemble methods consist of two stages: generating 

clusters and calibrating the results to arrive at a consensus [4]. 

The calibration greatly stabilizes the process and hence 

addresses the challenge of consistency in results. Cluster 

ensembles used in sequence tend to relax concerns of 

accumulating error since the individual steps are calibrated to 

reduce error. And knowledge beyond the data is incorporated 

by interfering in the consensus stage.  

Establishing an analog is useful in explaining how expert 

intuition is injected into the process. Assume an election 

process where the output of each cluster algorithm (in an 

ensemble of clustering runs) serves as a vote. A domain expert 

can define a set of eligible voters before the consensus process 

(in the ensemble case) and hence, incorporate the desired bias. 

In certain cases, the eligible voter strategy is not strict enough 

and unquestionable knowledge beyond the data has to be 

inserted. In this case, the domain expert intervenes as a 

privileged voter and overrides all other votes. "Voter 

Eligibility" and "Privileged Voters" allow the control that is 

demanded for comfortable wide-scale adoption. Voters from 

the algorithm and the domain expert often have competing 

opinions. Our experiment shows that the calibration of 

opinion has advantages over any single opinion. We also 

expose weaknesses in predecessor stages of clustering (in the 

ensemble case) as well as undesired expert bias. 

Contributions of this study are the findings that come from 

the application of the cluster ensemble method to address the 

three described challenges. Three main findings have 

transpired. The first stems from the fact that the output labels 

generated by various cluster runs are difficult to compare. 

This challenge is irrelevant in supervised learning where 
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successful ensemble methods motivated the use of ensembles 

in clustering [5]-[7]. The second finding is that the ensemble 

process exposes weakness in preceding assumptions. Details 

are discussed in Section II-B. The third finding is that the 

practice of establishing eligible voters and privileged voters 

improves the quality and the interpretation of clusters. Thus, 

using cluster ensembles addresses the three main barriers to 

wide scale adoption. Aligned with these areas of concern are 

the three core findings and experimental results in support of 

them. 

 

II. EXPERIMENT 

 The objective of this exercise was to facilitate idea 

generation by discovering natural groups in the dataset of 

assets. The cluster ensemble method is used to address 

challenges of consistency in results, knowledge beyond the 

data and multi-objective grouping. In this section, 

experiments are described that evaluate the success of the 

ensemble method in addressing these challenges. The focus is 

on the consensus stage of the ensemble process. Three stages 

of clustering are performed on a dataset of bank physical 

assets. The underlying data can be described as 

high-dimensional with diverse attributes (nominal, 

categorical, binary and intervals scaled). The details of the 

data are proprietary and present little value to the paper. 

A. Data Preparation 

Some level of manual partitioning of attributes and 

observations is required as a pre-processing step. In some 

ways, this initial treatment incorporates knowledge beyond 

the data and facilitates multi-objective clustering. The 

trade-off is that bias is introduced. Standardization and 

imputation are necessary tasks in real world data mining 

applications. Their importance in cluster analysis is 

highlighted in [3]. These tasks play a more strategic role in 

partitioning when using cluster ensemble methods. This is 

similar to the role that these two data preparation steps play in 

supervised learning in that they are key tuning parameters for 

improvement. Imputation is regarded as craftsman's work that 

should be approached with caution [8]. We observed that a 

consequence of imputation in clustering is that clusters with 

better statistics are created artificially. This is due to the 

objective of imputation which is to replace the unknown with 

similar values from the dataset. In some ways, the process 

creates copies of data and hence better natural clusters. 

Without imputation, significant data can be sacrificed and the 

interpretation of the results becomes difficult. 

B. Cluster Generation 

We assume the number of clusters has been determined a 

priori. Various clusters are generated by varying the random 

seed and clustering algorithm. In this experiment, two 

clustering algorithms are used: k-means and kernel k-means 

clustering. Kernel k-means clustering is a generalized form of 

standard k-means clustering algorithm, proposed to identify 

non-linearly separable clusters by implicitly mapping inputs 

to a higher dimensional space which can be scaled to large 

data sets [9]. 

K-means and kernel k-means clustering algorithms are run 

with 100 different random seeds each. The result is a dataset 

with 200 cluster labels for each observation. Evaluation of the 

cluster validity indexes [10], [11] (Cubic Clustering Criterion, 

F-statistic, within cluster standard deviation and R-squared) 

show that many of the generated clusters are poor performers 

(see Fig. 1). The quality of clusters will suffer if all 

generations are passed to the consensus stage. A cut-off for 

performance is established that limits the generations to 100. 

This filter is statistically motivated and not based on 

knowledge beyond the data. Fig. 1 shows the 100 alternatives 

created and their corresponding cluster validity indexes. The 

concentration of cluster validity indexes in the three areas of 

the graph highlights the value of generating many alternatives. 

 

 

Fig. 1. Cluster validity indexes for 100 alternative cluster procedures. CCC 

on the x-axis, pseudo F-statistic on the y-axis, Within Cluster Standard 

Deviation (WCSTD) as the red-to-green increasing gradient and R-squared 

as the bubble size. 

 

 

 

 

 

 

Fig. 2. Program used to build comparable cluster labels using an iterative 

nearest neighbor approach without replacement where C is the number of 

clusters and A is a random cluster generation. 

C. Establishing Consensus 

We refer back to the analog described in the introduction. 

Consistency in results is measured by comparing the 

distribution of the majority vote (from the ensemble) to a 

random individual vote (from one clustering procedure). Two 

challenges prevent a straight forward comparison between 

voters. The first is the fact that labels from clustering 

algorithms are meaningless in isolation. The comparison 

between labels must leverage the description of the cluster. 

This description is captured through the cluster mean 

attributes. The approach used in this study was to compare the 

cluster mean attributes from various cluster generations to 

land at a nearest neighbor cluster. The program is described in 

Fig. 2 where C is the number of clusters and A is a random 

cluster generation. The process must avoid random selection 

with substitution, to ensure that the total number of clusters 

Generate many cluster labels 

Select a random generation A 

        Repeat (for 1 to C): 

            Locate nearest neighbor cluster in A 

to all generations 

         Label the nearest neighbor 

            Remove the nearest neighbor from 

the pool 

Repeat 
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remains stable. The program is similar to a hierarchical 

clustering process but customized to this application. The 

conclusion is that cluster labels in different generations are 

now consistent and comparable. 

The second challenge arises in the consensus stage. When 

the distribution of votes is near uniform, the consensus is 

merely a coin tossing exercise. This phenomenon is measured 

through the level of cardinality in the distribution of clusters, 

the frequency of the mode and the count of known anomalies. 

Purity, inverse purity and the F-statistic are measures that are 

commonly used to capture the quality of ensembles [12]. 

These metrics capture essentially the same information as the 

ones we used. The performance that is desired is low 

cardinality, high frequency of mode and low count of 

anomalies. Intuitively, the baseline for the initial run is 

randomness. Once more experience is gained, the ensembles 

can be compared. Table I shows the performance of the first 

three ensemble methods with non-trivial gains above 

randomness. The second and third ensembles incorporate 

more experience by generating more clusters which improves 

the performance slightly. With many generations, the exact 

statistic used becomes less important [11]. These statistics are 

appropriate to measure consistency advantages of the 

ensemble method. 

 
TABLE I: ENSEMBLE CONSISTENCY 

Scenario 

Ensemble Performance Indexes 

Average 

Cardinality 

Average 

Mode 

Frequency 

Anomalies 

Ensemble 1 12.87 7.14 1.3% 

Ensemble 2 12.11 7.46 1.3% 

Ensemble 3 11.49 7.95 1.4% 

 

D. Incorporating Domain Expertise 

The degree to which knowledge beyond the data has been 

incorporated into the process is qualitative. What can be 

observed is the comfort level of the user, and the transparency 

in which bias is injected. The user base of this study is too 

small at this stage to conduct a meaningful survey. The 

transparency of the approach used in this study is worth 

describing.  

Domain experts offer an opinion. Between the extreme of 

full reliance on this opinion and blind acceptance of a 

statistical learning algorithm lies a spectrum of alternatives. 

The ensemble approach, combined with the strategy of voter 

eligibility and privileged voters presents a wide range of 

options across this spectrum. In Section II-B we described the 

process of building a dataset of alternative cluster labels for 

each observation, creating comparable labels and limiting 

cluster outcomes with cluster validity indexes. We capture the 

opinion of the domain expert in two stages. In the first stage, 

alternatives are limited to eligible voters. The domain expert 

evaluates random clusters and observations from each 

generation and decides which generations should proceed as 

eligible voters. In the second stage, observations of particular 

interest are evaluated where overwhelming evidence suggests 

a manual over-ride. This decision creates the "privileged 

voter" (the voter that heavily influences the outcome for 

reasons beyond the data). The expert injects a high-frequency 

of votes for these "privileged voters" to reflect this strong 

opinion. The mode of all eligible and privileged voters 

becomes the final label. 

Fig. 3 shows the distribution of alternatives for four 

observations. The bottom two distributions are examples of 

multi-modal scenarios and the top two distributions are 

examples of good consensus. The privileged voter override is 

very useful in scenarios where the mode is unconvincing. In 

Fig. 4, the domain expert has highlighted eligible voters in 

blue. 

 

 
Fig. 3. Distribution of cluster labels for four observations. The bottom two 

distributions are examples of multi-modal scenarios and the top two 

distributions are examples of good consensus (at the peaks). 

. 

 
Fig. 4. Eligible voters are highlighted by the domain expert. CCC on the 

x-axis, pseudo F-statistic on the y-axis, Within Cluster Standard Deviation 

(WCSTD) as the red to green increasing gradient and R-squared as the 

bubble size. 

 

III. RELATED AND FUTURE WORK 

Ref. [11] presents a modern and comprehensive survey of 

cluster ensemble methods and [5] shares experiences from 

simulation studies. General discussions on challenges in 

cluster analysis are reviewed in [13]. It is useful to learn from 

ensemble methods in supervised learning, specifically on 

nearest neighbor classifiers due to their similarity to 

clustering [14], [15]. The calibration of expert opinion and 

clustering algorithms is similar to the concept of integrating 

explicit and implicit feedback. The work of the authors of [7] 

inspired this approach. Clustering with bias is not only 

acceptable but necessary in many applications [9].  
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Future work will focus on more rigorous evaluation 

measures for ensemble evaluation and an optimization 

function for the final consensus. In this phase of the study, 

control and clarity of objects co-occurrence was preferred 

over the theoretical soundness of median partition [11]. We 

felt good practice would be to lead with a controlled and 

transparent approach and iteratively increase rigor and 

automation. 

 

IV. DISCUSSION AND CONCLUSIONS 

Three challenges to the wide-scale application of cluster 

analysis were highlighted: inconsistent cluster results, the 

importance of knowledge beyond the data and clustering with 

many objectives. The advantages of cluster ensemble 

methods were described as intuitive solutions to these 

concerns. The experiment described in this study provides 

support for this intuition. Improvements over 

single-generation clustering are evident in cardinality related 

measures and visualizations. Three challenges are faced when 

applying cluster ensembles: lack of labels, the need for 

involving expert intuition and concerns of amplifying error in 

sequential multi-clustering. A distance program creates 

comparable labels. Filtering eligible voters and defining 

privileged voters incorporates expert opinion in a transparent 

fashion. In a real world application, this serves as a healthy 

dose of bias in the initial setup, to increase user comfort. The 

intent is to gradually relax bias. Multiple objectives can be 

achieved by partitioning the data selectively prior to 

clustering (selecting different observations and variables from 

a larger comprehensive dataset). The calibration feature of 

ensemble methods reduces the concern that the error will 

become uncontrollable. Consistency is the main issue in 

multi-layer clustering. Calibrating across cluster generations 

and domain experts can be seen as a form of human-computer 

cooperation—advantages of which are prevalent in data 

mining studies [7]. 
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