

Abstract—In a Directed Acyclic Graph (DAG), vertex A and

vertex B are connected by a directed edge AB which shows that

A comes before B in the ordering. In this way, we can find a

sorting algorithm totally different from Kahn or DFS

algorithms, the directed edge already tells us the order of the

nodes, so that it can simply be sorted by re-ordering the nodes

according to the edges from a Direction Matrix. No vertex is

specifically chosen, which makes the complexity to be O*E.

Then we can get an algorithm that has much lower complexity

than Kahn and DFS. At last, the implement of the algorithm by

matlab script will be shown in the appendix part.

Index Terms—DAG, algorithm, complexity, matlab.

I. INTRODUCTION

In computer science, a topological sort (sometimes

abbreviated topsort or toposort) or topological ordering of a

directed graph is a linear ordering of its vertices such that for

every directed edge uv from vertex u to vertex v, u comes

before v in the ordering. For instance, the vertices of the graph

may represent tasks to be performed, and the edges may

represent constraints that one task must be performed before

another; in this application, a topological ordering is just a

valid sequence for the tasks. A topological ordering is

possible if and only if the graph has no directed cycles, that is,

if it is a directed acyclic graph (DAG). Any DAG has at least

one topological ordering, and algorithms are known for

constructing a topological ordering of any DAG in linear

time.

Kahn Algorithm works by choosing vertices in the same

order as the eventual topological sort [1]. First, find a list of

"start nodes" which have no incoming edges and insert them

into a set S; at least one such node must exist in an acyclic

graph. Then:

L ← Empty list that will contain the sorted

elements

S ← Set of all nodes with no incoming edges

while S is non-empty

 do remove a node n from S

 insert n into L

 for each node m with an edge e from n to

m

 do remove edge e from the graph

 if m has no other incoming edges

 then insert m into S

 if graph has edges

Manuscript received October 30, 2013; revised December 27, 2013.

Renkun Liu is with Beijing R&D Center, Beijing, China (e-mail:

liurenkun1985@163.com).

 then return error (graph has at

least one cycle)

 else return L (a topologically

sorted order)

Because we need to check every vertex and every edge for

the “start nodes”, then sorting will check everything over

again, so the complexity is O(E+V).

An alternative algorithm for topological sorting is based on

Depth-First Search (DFS) [2]. For this algorithm, edges point

in the opposite direction as the previous algorithm. The

algorithm loops through each node of the graph, in an

arbitrary order, initiating a depth-first search that terminates

when it hits any node that has already been visited since the

beginning of the topological sort:

L ← Empty list that will contain the sorted

nodes

while there are unmarked nodes

 do select an unmarked node n

 visit(n)

 function visit(node n)

if n has a temporary mark

then stop (not a DAG)

if n is not marked (i.e. has not been

visited yet)

then mark n temporarily

for each node m with an edge from n to

m

do visit(m)

 mark n permanently

add n to head of L

In theoretical computer science, DFS is typical used to

traverse an entire graph, and takes time O(|E|), linear in the

size of the graph. In these applications it also uses space O(|V|)

in the worst case to store the stack of vertices on the current

search path as well as the set of already-visited vertices. Thus

the complexity of DFS is also O(E+V) [3]-[5].

II. HOW THE NEW ALGORITHM WORKS

In the new algorithm, we don’t have to list any vertex, or try

to go through the loop. We just need to list all the edges and

choose which meet the condition.

First we place the vertexes in order from A, B, C, D … to

XX. We assume it is in this order.

Then we make a matrix like (Fig. 1):

We can say A results to B.

This matrix describes a directed edge B to A with array: (2,

1). (We put the column first, row second and assume ‘1’

A Low Complexity Topological Sorting Algorithm for

Directed Acyclic Graph

Renkun Liu

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

194DOI: 10.7763/IJMLC.2014.V4.411

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Directed_graph
http://en.wikipedia.org/wiki/Vertex_%28graph_theory%29
http://en.wikipedia.org/wiki/Directed_cycle
http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Linear_time
http://en.wikipedia.org/wiki/Linear_time
http://en.wikipedia.org/wiki/Depth-first_search

stands for ‘A’ and ‘2’ stands for ‘B’.)

So if we firstly place vertexes A, B, C, D (1, 2, 3, 4 in the

matrix) in order, and I want the final topology is in the order

of ‘right’ results from ‘left’. I will read the position of the

array, ‘left’=2, ‘right’=1, if vertex (find(left)) > vertex

(find(right)) (‘>’ means on the right, since we place the

elements in the order of 1, 2, 3, 4) then we change the position

of the vertexes, so that we can make sure in the new order, the

left always results to the right. In this example, ‘A, B, C, D’ is

changed to ‘B, A, C, D’.

Fig. 1. Matrix example.

If vertex (position on the left) < vertex (position on the

right), then leave it and jump to the next array.

Then orderly do the same thing with other edges in the

matrix, we ensure the new order of the sorted vertexes match

the ‘left to right’ matrix.

So for a topology that has E edges, what we do is just

re-arranging the orders based on the matrix, the calculation

times we do for sorting is less than E times. And the

complexity for this algorithm is O1*E which is far less than

O2*(E+V).

We can simply describe this algorithm as:

M ← Matrix that contains all the directed

edges’ information

E ← directed arrays of the element ‘1’s in

the Matrix

k=1; %loop continue indicator

while k==1

 k=0;

for every directed edge

 x=E(i,1);

 y=E(i,2);

 if x’s positon is on the right of y’s

position, then exchange the nodes on these

two positions.

 k is set to 1 again, because sort is not

done, reset the indicator for one more loop

III. TOPOLOGY SORTING RESULT OF THE 3

There is an example (Fig. 2):

Fig. 2. A topology example.

This topology result is

2->8->0->3->7->1->5->6->9->4->11->10->12 by Kahn

algorithm, and

8->7->2->3->0->6->9->10->11->12->1->5->4 by DFS.

In the new algorithm, we first change the graph into matrix

(Fig. 3):

Fig. 3. Matrix that describes the topology praph.

Then we know the edge arrays that listed in the Matrix (Fig.

4):

Fig. 4. Directed edges described by arrays.

This new matrix tells us: for each raw, the left results to the

right.

The starting sequence is 1,2,3,4,5,6,7,8,9,10,11,12,13

With the first array (‘3’,’1’), we find ‘3’ is on position (3)

and ‘1’ is on position (1), and (3) is on the right of (1), so we

change the position of ‘1’ and ‘3’, then we get a new sequence

of 3,2,1,4,5,6,7,8,9,10,11,12,13.

With the second array (‘1’,’2’), we find ‘1’ is on position(3),

and ‘2’ is on position (2), but (3) is on the right of (2), so we

change the position of ‘1’ and ‘2’, then we get a new sequence

of 3,1,2,4,5,6,7,8,9,10,11,12,13.

With the third array (‘3’,’4’), we find ‘3’ is on position(1), ,

and ‘4’ is on position (4), we can see (1) is on the left of (4), so

the sequence will not be changed, and it’s still

3,2,1,4,5,6,7,8,9,10,11,12,13.

We keep doing the same thing. When we have searched

from the first raw of the arrays until the last raw, we still need

to repeat from the beginning of the array and check again, in

order to make sure that if the last exchange has impacted the

first exchange, this situation will be fixed.

At last, according to the sorting with the arrays in the new

matrix, starting with the order: A, B, C, D, E ….M (stands for

0, 1, 2, 3, 4…12), in the new order of ‘left’ results to ‘right’.

We get the final sequence of 3, 1, 2, 4, 6, 9, 8, 7, 5, 10, 11, 12,

13.

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

195

THE ALGORITHMS

The sequence stands for the topology in the graph:

2->0->1->3->5->8->7->6 ->4 ->9->10->11->12 (for each

sequence element, minus 1, to align with the graph) which

stands for 3->1->2->4->6->9->8->7->5->10->11->12->13 of

the graph.

The Most important is that in this example, the position

only changes 9 times before we get the result (Fig. 5). It is

even less than the edge number of 15. It is far less complex

than Kahn and DFS algorithms.

But we need to notice that it takes 3 loops to finish the

sequencing. Because the earlier position changes may be

overlapped by the later changes, and makes the sequence out

of the designed order, we need to check the loop again if

changes were detected in the previous loop.

Fig. 5. The sorting process of the example.

IV. CONCLUSION

For a large system which has many vertexes, complexity is

very important. This new low complexity algorithm can

greatly decrease the computing time and increase the

efficiency.

It needs to traverse the entire graph, and takes time O(|E|),

linear with the size of the graph. However, there is no search

path to store, what exists is a sequence with a stable size. It

makes the new algorithm more efficient and use less storage

than DFS in DAG sorting.

But there is a defect in the new algorithm that may increase

the complexity. If the system is large, and complex, where are

many triangles like the 5, 7, 8 structure in the previous graph,

even triangles in the triangle, how many computing times is

for the new algorithm and for DFS? It is sure the new

algorithm must have less complexity than DFS in large

systems, but the advantages would be smaller perhaps.

There also could be a tricky process to detect and simplify

the triangle system, modify the triangle in a proper way before

the formal sequencing, which would optimize the algorithm

and make the complexity much lower.

The computing times and efficiency comparison in large

systems, as well as the tricky process, should be studied in the

next steps.

APPENDIX

%

=THE IMPLEMENT OF THE ALGORITHM BY MATLAB SCRIPT=

%==================START===================

% load the matrix.
[num,txt,raw] = xlsread(‘file path’);

% calculate the sequence length:
p=size(raw(1,:));

sequence_length=p(2)-1;

% create the initial sequence: 1,2,3,4……
node=(1:1: sequence_length);

% calculate the matrix(a) of arrays from the loaded matrix.

% record the number of the raws in ‘a’ with index ‘t’.
t=1;

% search the raw.
for j=1:1:size(num,1)

 % search the column.
for i=1:1:size(num,2)

% find ‘1’ in the original matrix, and record its

position in ‘a’.
 if num(j,i)==1

 a(t,:)=[node(i),node(j)];

 t=t+1;

 end
end

end

% start sorting

% set the indicator to 1
k=1;

% if the indicator is 1, go on sorting
while k==1

 % first set the indicator to 0
k=0;

% sort by each raw of matrix a
for i=1:1:size(a,1)

 % x is the first element of the raw
x=a(i,1);

 % y is the second element of the raw
y=a(i,2);

 % if x’s position is on the right of y’s position, then

exchange the two nodes in the sequence
if find(node==x)>find(node==y)

 m=find(node==x);

 n=find(node==y);

 node(m)=y;

 node(n)=x;

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

196

 % if sort is done, reset the indicator to 1, need to

start the ‘a’ loop and check again
 k=1;

 end

end
end

%’ node’ is the final modified sequence, corresponding to the

DAG by the algorithm

%==================THE END=================

REFERENCES

[1] A. B. Kahn, “Topological sorting of large networks,” Communications

of the ACM, vol. 5, no. 11, pp. 558–562, 1962, doi:

10.1145/368996.369025.

[2] C. P. Trémaux, “École Polytechnique of Paris (X:1876),” in Proc.

French Engineer of the Telegraph in Public Conference, December 2,

2010, Annals academic , pp. 1859–1882.

[3] S. A. Cook, “A Taxonomy of Problems with Fast Parallel Algorithms,”

Information and Control, vol. 64, no. 1–3, pp. 2–22, 1985, doi:

10.1016/S0019-9958(85)80041-3.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Section

22.4: Topological sort,” Introduction to Algorithms, 2nd ed., MIT

Press and McGraw-Hill, pp. 549–552, ISBN 0-262-03293-7, 2001.

[5] R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,”

Acta Informatica, vol. 6, no. 2, pp. 171–185, 1976, doi:

10.1007/BF00268499.

Renkun Liu was born in Dalian, May 12, 1985. He

obtained his BS in communication engineering,

Beijing Jiaotong University, Beijing, China, in 2008,

and MS in optical communication, politecnico di

Torino, Turin, Italy, in 2010. Renkun works for

Fairchild Semiconductor since 2010, he is working in

Beijing R&D as a Characterization and Device

Modeling Engineer. He is currently majored in the

field of semiconductor area.

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

197

