



Abstract—This study aims to publish a novel similarity

metric to increase the speed of comparison operations. Also the

new metric is suitable for distance-based operations among

strings.

Most of the simple calculation methods, such as string length

are fast to calculate but doesn’t represent the string correctly.

On the other hand the methods like keeping the histogram over

all characters in the string are slower but good to represent the

string characteristics in some areas, like natural language.

We propose a new metric, easy to calculate and satisfactory

for string comparison.

Method is built on a hash function, which gets a string at any

size and outputs the most frequent K characters with their

frequencies.

The outputs are open for comparison and our studies showed

that the success rate is quite satisfactory for the text mining

operations.

Index Terms—String distance function, string similarity

metric.

I. INTRODUCTION

Most of the string distance functions are based on the

character sequence of the string. Besides the similarity of

characters, the order of characters is considered to be

important in most of the string similarity metrics. By the

impact of big data studies, the time and memory complexity

of the string similarity metrics are considered to be more

important.

We propose a new string similarity metric, which is built

over a hashing function.

In this paper, we will briefly introduce the idea behind

string similarity metrics and their applications. After the idea

of string similarity, we will introduce some of the advanced

hashing functions and their suitability on string metrics.

Finally we will introduce a novel string similarity metric

and we will discuss the success rate of novel method over the

current methods.

II. STRING DISTANCE FUNCTIONS

The string distance functions or string similarity metrics

 Manuscript received October 9, 2013; revised December 10, 2013.
Sadi Evren Seker is with the Department of Business, Istanbul

Medeniyet University, Istanbul, Turkey (e-mail:

academic@sadievrenseker.com).
Oguz Altan is with the Department of Computer Science, Epoka

University, 1039 Tirana Albania. (e-mail: oaltun@epoka.edu.al).

Uğur Ayan is with the Turkish National Science Foundation, Istanbul
Turkey (e-mail: ugur.ayan@tubitak.gov.tr)

Cihan Mert is with the Department of Informatics, International Black

Sea University, 0131 Tbilisi Georgia(e-mail: cmert@ibsu.edu.ge).

are defined between two strings, let’s say str1 and str2. The

function can be defined as a relation from a domain to range.

Fig. 1. Generic view of a SDF.

Most of the time, the function is with two parameters

where both of them are strings and the return value is an

integer.

The generic view of a String Distance Function (SDF) is

demonstrated in Fig. 1.

All the SDF implementations can be considered as a hash

function where the function is working in one direction and

the output is keeping less memory space.

For example levenshtein-distance [1] is a function which

gets two parameters and calculates the edit distance between

two strings. The three operations, delete, insert or update over

the characters of a string are considered as an edit and each

edit can be scored depending on the implementation.

 

   

 

 

 

,

,

,

,

max , min , 0,

1, 1
,

min , 1 1 .

1, 1

a b

a b

a b

a b i j

i j if i j

lev i j
lev i j

lev i j otherwise

lev i j a b




     
 


       

 (1)

Finally a score of integer is collected from the SDF and the

function is irreversible from the output integer to the initial

strings.

On the other hand the output is in integer form which keeps

less memory space than the input strings.

Some other methods like Tanimoto Distance [2] or Jaccard

Coefficient [3] is built on the bitwise operators. In these

methods the strings are considered in the bit level (not the

character level as in Levenshtein Distance) and the number of

equality in the bit level are considered as a score of similarity.

 
 

 
,

i i i

s

i i i

X Y
T X Y

X Y

 

 

 (2)

A Novel String Distance Function Based on Most Frequent

K Characters

Sadi Evren Seker, Oguz Altun, Uğur Ayan, and Cihan Mert

Str2

Str1

int

int SDF(str1,str2)

Domain Range

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

177DOI: 10.7763/IJMLC.2014.V4.408

Tanimoto Distance for example, sums the bit level ‘and’

and ‘or’ operations and divides these summations to get the

similarity.

The distance function is the logarithm of this similarity.

    2, log ,d sT X Y T X Y  (3)

Also Jaccard coefficient or Jaccard Index is based on the

similar methods where the ‘and’ and ‘or’ operations are

replaced with ‘set intersection’ and ‘set union’ operations.

 ,
A B

J A B
A B

 (4)

And the distance function can be calculated by subtracting

this value from 1.

   , 1 ,J

A B A B
d A B J A B

A B


   (5)

Another SDF called Hamming Distance [4] is based on the

matching and mismatching characters in the order of strings.

The bit level distance can be represented as a hypercube

for the Hamming Distance as in Fig. 2.

In the Hamming Distance, any letters, which do not match

each other, are considered as 1 and the summation of those

mismatches are considered as the distance between two

strings.

We can summarize the SDFs in two groups. First group is

really fast and good in memory but the outputs are

meaningless for the natural language string comparisons.

The second SDF group is quite satisfactory on the natural

language string comparisons but their time complexity is

high.

For example, Hamming Distance is in first SDF group with

really good, low time complexity but the strings are

considered far away even their meanings are close to each

other.

Consider the example of ‘revolution’ and ‘evolution’

where the first word is derived from the second word and the

distance between two words is 9, which means they are

completely unrelated words. The same problem occurs for

bitwise comparisons like Tanimoto or Jaccard SDFs.

On the other hand a good SDF like levenshtein distance

can find the similarity between words ‘revolution’ and

‘evolution’ as 1 since there is only 1 letter deleted from first

to second, but this operation will take much more time than

the previous functions.

Fig. 2. Generic view of hamming distance hypercube.

Although there are dynamic programming approaches to

reduce the time complexity of the functions like Levenshtein

Distance, those implementations increases the memory

complexity of the algorithm.

In this study we propose an alternative SDF for comparing

two strings with a better time complexity than Levenshtein

Distance and a higher satisfactory distance metric than

Hamming Distance.

III. STRING HASHING ALGORITHMS

In the essence the SDFs can be considered as a hash

function defined on two separate strings. The SDF function

can be considered as a trapdoor function, where there is no

turn back from output to input (irreversible). Also the SDF

output is a summary of the differences between two strings,

where it is most of the time symbolized as an integer.

The one of most widely used hashing function group is

substitution permutation network (SPN) [5]. In this hashing

method, the input is considered as a plain text and the plain

text is processed through the steps with ‘permutation’,

‘substitution’, ‘exclusive or’ or ‘splitting’ until reaching the

hashed text.

The generic view of the SPN hashing method is

demonstrated in Fig. 3.

Also another mostly implemented method is using

building networks on bitwise operations like message digest

5 (MD5) algorithm [6] does.

In Fig. 4, the generic view of MD5 hashing is

demonstrated. In each iteration the input text is divided into 4

parts and only one of the four parts (which is A in the

demonstration) is subjected to the bitwise operations with the

rest 3 parts of the input.

Fig. 3. Generic view of a SPN hashing.

Plain Text

S-Box S-Box S-Box

P-Box

Key 1

S-Box S-Box S-Box

P-Box

Key 2

Hashed Text

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

178

Fig. 4. Generic view of a MD5 hashing.

A similar approach is applied for most of the hashing

algorithms. For example SHA1 algorithm follows a similar

bitwise level operation in its implementation.

Besides the above bitwise hashing algorithms, there is

another group of hashing which is mostly accepted as

primitive hashing functions.

In this group of hashing, the strings are manipulated with

the primitive operations like truncating or getting character

frequency. These implementations can be considered as a

simpler way and the results can be predicted by human much

more easily.

For example, even getting the first letter of each string can

be considered as a hashing function. Some hashing functions

gets the certain letters like first, third and last to find out the

hashed version. Also transforming an input string while

keeping some part of its semantic is another important issue

in the natural language processing (NLP) studies [7].

For example part of speech taggers (POS-Tagger) or

stemmers can be considered in this group where they keep

some semantic information on the output [8].

IV. A NOVEL STRING SIMILARITY METRIC

This section describes the similarity metric proposed in

this study.

Any string is processed through the hash function which

outputs the most frequent two characters. Sorting and getting

the most frequent characters and the number of occurrences

can achieve this operation.

Our SDF study can be divided into two parts. In the first

part, the hashing function maximum frequent two is applied

over the both of the input strings.

Algorithm 1: MaxFreq2Hashing

1. X h(str)

2. for i0 to length(str1)

3. putHashMap(str_i , count(getHashMap(str_i)+1)

4. c1getChar(maxHashMap,1)

5. n1getCount(maxHashMap,1)

6. c2getChar(maxHashMap,2)

7. n2getCount(maxHashMap,2)

8. x1concat(c1, n1, c2, n2)

9. return x1

In the maximum frequency hashing algorithm, we output a

string of length 4 where the first and third elements keep the

characters and second and fourth elements keep the

frequency of these characters. If the frequency of two

characters in the string is equal, the first occurrence of the

character is returned.

In the case of all frequencies of a character in string is

equal to each other, than the hashing function works like

returning the first two characters.

On the second part of SDF, the hashed output of the strings

is compared with the algorithm 2.

Algorithm 2: Novel SDF

1. Let str1 and str2 be two strings to measeure the distance

between

2. X f(str1,str2,limit)

3. x1 := h(str1)

4. x2 := h(str2)

5. def similarity :=0

6. if x1[0]==x2[0] then

7. similarity := similarity + x1[1]+x2[1]

8. if x1[0]==x2[2] then

9. similarity := similarity + x1[1]+x2[3]

10. if x1[2]==x2[0] then

11. similarity := similarity + x1[3]+x2[1]

12. if x1[2]==x2[2] then

13. similarity := similarity + x1[3]+x2[3]

14. retun limit-similarity

Execution of SDF function will return a real number

between 0 and limit. By default in our studies we have taken

limit as 10 since we don’t want a minus distance value and

the possibility of 10 occurrence of the two maximum

frequency characters common between two strings is low. If

the output of the function is 10 we can interpret the case as

there is no common character and any value below 10 means

there are some common characters shared by the strings.

Sample Run

Let’s consider maximum 2 frequent hashing over two

strings ‘research’ and ‘seeking’.

h(‘research’) = r2e2

because we have 2 ‘r’ and 2 ‘e’ characters with the highest

frequency and we return in the order they appear in the string.

h(‘seeking’) = e2s1

Again we have character ‘e’ with highest frequency and

rest of the characters have same frequency of 1, so we return

the first character of equal frequencies, which is ‘s’.

Finally we make the comparison:

TABLE I: SAMPLE RUNS WITH HASHING STEPS

 Hashing

Outputs

SDF Output

‘night’

‘nacht’

n1i1

n1a1

9

‘my’

‘a’

m1y1

a1NULL0

10

‘research’

‘research’

r2e2

r2e2

6

‘aaaaabbbb’

‘ababababa’

a5b4

a5b4

1

‘significant’

‘capabilities’

i3n2

i3a2

5

f(‘seeking’,’research’,10) = 8.

We simply compared the outputs and only the number of 2

and result is 10-8 = 2.

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

179

Table I holds some sample runs between example inputs.

In all above cases, the limit value is assigned as 10. The

function can also be implemented for the any string like

binary numbers or nucleotide sequences.

In binary numbers case, the function works exactly same

as comparing the number of 1s and 0s in both string.

In genetic area, the function can work with the limit value

of maximum string length. For example two partial strings in

FASTA format can be compared as below:

Str1=

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAF

MGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV

Str2 =

EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLT

FLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG

h(str1) = L9T8

h(str2) = F9L8

f(str1,str2,100) = 83

Experiments holding.

V. EXPERIMENTS

This section explains the methodology of experiments run

over the IMDB62 data set and the classification methods

applied after the feature extraction methods. In this study two

different feature hashing method is directly applied over the

plain text.

1) Levenshtein Distance
2) Jaccard Index
3) MaxKFreqHashing

This study compares the success rate and running time of

the above methods.

Finally the evaluations of feature hashing methods are

applied on the author recognition via the classification

algorithms, k-nearest neighborhood (KNN) [9]. The results

are evaluated via the root mean square error (RMSE) [9] and

relative absolute error (RAE) [10].

TABLE II: SUMMARY OF DATASET

 IMDB62

Authors 62000

Texts per Author 1000

Average number of

words per entry

300

Std. Dev. of words per

author

198

Number of distinct

words in corpus

139.434

A. Dataset

We have implemented our approach onto IMDB62. Table

II demonstrates the features of the datasets. In the IMDB62

database, there are 62 authors with a thousand of comments

for each of the authors. The database is gathered from the

internet movie database
1
 which is available for the authors

1 IMDB, internet movie database is a web page holding the comments and

reviews of the users and freely accessible from www.imdb.com address.

upon request.

The dataset is quite well formed for the research purposes.

Unfortunately in a plain approach to text mining, like word

count, the hardwares in the study environment would not

qualify the requirements for the feature extraction of all the

terms in data source which is 139,434 for IMDB data set.

Memory Requirement = 139,434 words × 62,000 posts × 300

average word length × 2 bytes for each character = ~ 4830

GByte

The amount required to process the data set via the word

counts requires a feature vector, allocating memory for each

of the distinct words. After applying the feature hashing

methods, the number of bits required can be reduced to quite

processable amount. For example, in the novel hashing

method, we propose, the number of bits is reduced to 16.

B. Execution

In the execution phase, we have implemented a word

tokenizing over the data set. Each author has a feature vector

of words.

We have applied the ensemble classification [11] over the

classification algorithms KNN, SVM and ANN where they

run over the feature vectors to classify the texts between

authors.

The success rate is calculated by the percent of correctly

classified texts between authors during the test runs.

The training and test data sets division is done by the

10-fold cross validation method, where a never used 10% of

data set is spared for the testing and rest 90% is taken in the

trainin phase for 10 runs.

C. Results

During the execution some parameters effect the success

rate and running performance. We have specially

concentrated on the K parameter in MaxKFreqHashing

algorithm, which is in the core of novel distance metric.

Fig. 5. Effect of K parameter on the success rate for MaxKFreqHashing.

Fig. 6. Effect of K parameter on running time performance.

Increasing the K value effects the success rate. The

0

20

40

60

80

1 2 3 4 5 6 7

0

50

100

150

1 2 3 4 5 6 7

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

180

increase on the success rate is demonstrated in Fig. 5 and the

increase is meaningless after parameter 3, since the success

goes uf from 65% to 68% which is omittable in this study.

The effect of K parameter is demonstrated on Fig. 6. Please

note that, after K value 5, there is a slight decrease on the

success rate. Reason of this decrease is the increasing number

of nulls for the short length words. Increasing the K value

also effects the time performance of the algorithm.

The increase of K parameter increases the running time of

the algorithm. Also the size of feature vector, after the

execution of hashing algorithm increases if the K value

increases.

The distance metrics works after the execution of hashing

algorithm.

The low error rate on Table III indicates a higher success.

During the comparison of methods, in the Table III, k

parameter of novel SDF is 2.

Novel SDF proposed in this paper has a slightly worse

success rate than levenshtein distance but it is better in the

running time.

The performance of each distance function with the

parameters in Table III is given in Table IV.

The time complexities are calculated with keeping the

memory complexity O(n+m), where n is the string length of

first string and m is the length of second string. There are

better time complexity functions for Levenshtein Distance

and Novel SDF with dynamic memory implementation.

The calculation of time complexity of novel SDF is quite

simple. In order to get the maximum frequent K characters

from a string, the first step is sorting the string in a lexiconical

manner. After this sort, the input with highest occurance can

be achived with a simple pass in linear time complexity.

Since major classical sorting algorithms are working in

O(nlogn) complexity like merge sort or quick sort, we can

sort the first string in O(nlogn) and second string on O(mlogm)

times. The total complexity would be O(nlogn) + O (mlogm)

which is O(nlogn) as the upper bound worst case analysis.

VI. CONCLUSION

In this paper a novel string distance function has been

proposed. The function is built on two steps, in the first step

the maximum frequent K characters are gathered with their

frequencies from the string. In the second step, the hash

results from first step is calculated in a special way and the

distance between two strings are calculated.

TABLE III: ERROR RATES OF DISTANCE METHODS

 RMSE RAE

Levenshtein

Distance

29 0.47

Jaccard Index 45 0.68

Novel SDF 32 0.49

TABLE IV: CUMULATIVE RUNNING TIMES

 Running Time Time Complexity

Levenshtein Distance 3647286.54sec O(n×m) = O(n2)

Jaccard Index 228647.22sec O(n+m)= O(n)

Novel SDF 2712323.51sec O(nlog n+mlog m) =O(nlog n)

The novel string distance function has been tested on a real

world natural language data set for author recognition

problem and yielded a better result than Jaccard index and

run faster than levenshtein distance with k=2 parameter

setting.

By the success rate and time performance, we can claim

the novel string distance function is quite faster than full text

analysis functions like levenshtein distance, pos tagging or

tf-idf and much more successful than the bitwise operating

string distance functions like Jaccard index, Tanimoto

Distance or Hamming distance.

We believe this novel string distance function will be

useful in many areas like bioinformatics, natural language

processing or text mining.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” Soviet Physics Doklady, vol. 10, pp. 707–
710, 1966.

[2] J. D. Rogers and T. T. Tanimoto, “A Computer program for classifying

plants,” Science, vol. 132, no. 3434, pp. 1115–1118,
doi:10.1126/science.132.3434.1115, 1960.

[3] P. Jaccard, “The distribution of the flora in the alpine zone,” New

Phytologist, vol. 11, pp. 37–50, 1912.
[4] W. R. Hamming, “Error detecting and error correcting codes,” Bell

System Technical Journal, vol. 29, no. 2, pp. 147–160, MR 0035935,

1950.
[5] S. E. SEKER and C. Mert, “A novel feature hashing for text mining,”

Journal of Technical Science And Technologies, vol. 2, no. 1, pp 37-40,

2013.
[6] R. Rivest, “The MD5 message-digest algorithm,” Internet RFC 1321,

April 1992.

[7] S. E. Seker, B. Diri, “TimeML and Turkish temporal logic,” in Proc.
International Conference on Artificial Intelligence, 2010, IC-AI’10, pp.

881-887

[8] S. E. Seker, Z. Erdem, N. Ozalp, C. Mert, and K. Al-Naami,
“Correlation between Turkish stock market and economy news,” in

Proc. International Workshop on Relaibility Aware Data Fusion in
Participatory Networks, May 2013, Austin Texas.

[9] I. Ocak and S. E. Seker, “Estimation of elastic modulus of intact rocks

by artificial neural network,” Rock Mechanics and Rock Engineering,
Springer, 2012.

[10] I. Ocak and S. E. Seker, “Calculation of surface settlements caused by

EPBM tunneling using artificial neural network, SVM, and Gaussian
processes,” Environmental Earth Sciences, Springer-Verlag, 2013.

[11] S. E. Seker, C. Mert, K. Al-Naami, U. Ayan, and N. Ozalp, “Ensemble

classification over stock market time series and economy news,” in
Proc. 2013 IEEE International Conference on Intelligence and

Security Informatics (ISI), 2013, pp. 272-273.

Sadi Evren Seker was born in Istanbul in 1979. He
has completed his BSc., MSc. and PhD. degrees in

computer science major. He also holds an M.A.

degree in science technology and society. His main
research areas are business intelligence and data

mining. During his post-doc study, he has joined data

mining research projects in UTDallas. He is
currently an asst. prof. in Istanbul Medeniyet

University, Department of Business and studying on

data mining and business intelligence topics. He is an
IEEE member and senior member of IEDRC. He has more than 20

peer-reviewed papers published or accepted in last year.

Oguz Altun was born in Kahramanmaras, Turkey in

1974. He got his bachelor in physics from Middle
East Technical University, Ankara, Turkey in 1997,

master in computer science from University of

Chicago, Chicago, USA in 2001, and PhD in
computer engineering from Yildiz Technical

University in Istanbul, Turkey in 2010.
 He worked as a research assistant in Yildiz
Technical University between 2001 and 2010, and

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

181

started postdoc work in 2011 in Computer Engineering Department of Epoka

University, Albania, where he still works as a faculty member and

department head. His research interests include most artificial intelligence
subjects, especially computer vision (in which he did his PhD dissertation)

and metaheuristic optimization. He is co-author of numerous papers in

scientific journals and conferences in these fields.
Dr. Altun is the editor of the INISTA 2007 conference proceedings book

and chair of the ISCIM 2013 conference.

Ugur Ayan has worked as a director in Informatics

and Information Security Research Center
(BILGEM) of The Scientific and Technological

Research Council of Turkey (TUBITAK). He

obtain his B.S. Diploma in Engineering Faculty
(2001) from Bogazici University, Turkey; M.S.

degree in System and Control Engineering (2004)

from Bogazici University and his Ph.D. in Faculty
of Electrical & Electronics Engineering (2010)

from Yildiz Technical University, Istanbul,

Turkey. He worked as a researcher at Computational Physiology Lab,
University of Houston (under supervised of Eckhard Pfeiffer Professor

Ioannis Pavlidis).

 Dr. Ayan has worked as a director at TUBITAK BILGEM since October,
2012. He worked as a senior researcher at TUBITAK BILGEM from

September, 2010 to October, 2012. He is also an adjunct Assistant Professor

at Computer Science & Engineering Department of Vistula University,
Warsaw, Poland. Before joining BILGEM, he has worked as an lecturer,

instructor, teaching and research assistant at Computer Engineering

Department of the Turkish Air Force Academy, Istanbul Kultur University
and Halic University, Istanbul, Turkey, about 10 years. His research interests

are based on data mining in huge data, signal processing, bioinformatics and

machine learning algorithms. He has written several articles on

bioinformatics and data mining.

Cihan Mert joined the Computer Technologies

and Engineering Faculty (CTEF) of International
Black Sea University (IBSU) in 2011 after nearly

15 years of service to mathematical education. His

educational background is as follows: B.S., Middle
East Technical University, Education Faculty,

Teacher of Maths, Ankara/Turkey, 1997, M.Sc.,

Georgian Technical University, Faculty of
Informatics and Control Systems, Tbilisi/Georgia,

2000, and Ph.D., International Black Sea

University, the Faculty of Computer Technologies and Engineering,
Tbilisi/Georgia, 2011.

 Before joining to IBSU, he worked as a teacher of math from 1997 to

2011 at the same time he served as the head of Math Department. Then in
2011 He’s joined IBSU and became lecturer and the head of Master Studies

in CTEF, IBSU. Then he was visiting scholar at University of Texas at

Dallas from August, 2012 to August, 2013. Now he is the dean of CTEF,
IBSU. His research interests are time series analysis, signal processing, and

Data mining. He has several articles on time series analysis and data mining.

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

182

