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Abstract—The paper addresses the problem of transferring 

new skills to robots from observation of human demonstrated 

skill examples. An approach is presented for retrieving 

trajectories of an object, being manipulated during the 

demonstrations, from Kinect-provided measurements. The 

problem of object tracking across the image frames is solved by 

using weighted dynamic template matching with normalized 

cross-correlation. Such approach takes advantage of the 

simultaneous image and depth measurements by the Kinect 

device in leveraging the pattern localization and pose estimation. 

Demonstrated trajectories are stochastically encoded with 

hidden Markov model, and the obtained model is exploited for 

generation of a generalized trajectory for task reproduction. 

The developed methodology is experimentally validated in a 

real-world task learning scenario. 

 

Index Terms—Robotics, programming by demonstration, 

visual learning, pose estimation.  

 

I. INTRODUCTION 

The ever-increasing demands for novel robotic 

applications across different domains, reinforced with the 

recent progress in the fields of machine learning and artificial 

intelligence, have led to substantial research in the area of 

robotic learning systems [1]. A particular class of these 

robotic systems employs observational learning for acquiring 

knowledge from demonstrations of tasks executed by another 

agent [2], [3]. These systems enable quick development of 

robotic programs in an intuitive manner, and as such have 

great potential not only for reducing the cost of development 

of industrial robotic applications, but also for development of 

service robotic applications. The observation-based robotic 

systems are most often associated with the robot 

programming by demonstration (PbD) paradigm [4]. 

A typical observational learning procedure consists of the 

following steps: (i) Task perception: where the robotic 

system observes one or multiple task demonstrations and 

records certain attributes related to the demonstrated motions; 

(ii) Task analysis and planning: the acquired data is 

processed with an objective of generating a policy for 

reproduction of the demonstrated task, and (iii) Task 

reproduction: the generated policy is translated into a robot 
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language program and it is deployed on the robotic platform  

for execution. The step of perception of the demonstrated 

actions and the states of the world is accomplished by 

employing different sensing modalities, e.g., electro 

-magnetic sensors [5], inertial sensors [4], optical 

marker-based systems [6], vision cameras [7], etc. The focus 

of this work is on robot learning by using external form of 

task perception [8], i.e., the sensors are placed externally with 

respect to the demonstrating agent, as opposed to the 

perception modes that employ sensing devices mounted 

directly on the demonstrator’s body. The external 

perceptibility systems relate to the use of vision cameras for 

observation of demonstrated tasks. For instance, a single 

vision camera [9], stereo cameras [10], or multiple cameras 

[11] can be utilized.  

On one hand, tasks perception using vision cameras is very 

challenging, and requires solving difficult problems, such as: 

detection and identification of objects and/or agents in 

acquired images; tracking the objects; and, estimation of the 

spatial pose (position and orientation) of scene objects from 

two-dimensional images. Consequently, this sensing 

modality has often been avoided in the robot PbD 

methodology. However, the steady progress in the field of 

image processing has lately produced several efficient, fast 

and fairly robust approaches for object detection and tracking 

(e.g., adaptive discriminative trackers [12], [13], particle 

filter tracking [14], TLD framework [15], etc. On the other 

hand, even if the problem of object tracking during the task 

perception is performed perfectly, retrieving full 

six-dimensional poses or trajectories of the scene objects 

from video images requires additional task knowledge, such 

as geometric models of the objects or the environment.  

The release of Kinect sensor in 2010 have caused 

momentous advances in the domain of computer vision, 

where the provision of both visual (RGB) and depth (D) 

information of the environment enabled a new spectrum of 

possibilities and applications [16][18]. Regarding the 

robotic observational learning, the abilities of the Kinect 

sensor for on-line tracking of human motions have been 

quickly embraced by the research community and utilized in 

a body of works [19][21]. These works employ a skeletal 

model of human bodies (provided by open source Kinect 

libraries) for extracting task knowledge in the form of joint 

trajectories of the demonstrator’s limbs, and transferring the 

task knowledge to a robot for reproduction. However, Kinect 

libraries for objects tracking are not currently available, and 

therefore most of the robot learning works using Kinect are 

focused on imitation of human gestures.  

The article studies the problem of robotic learning of tasks 

that involve manipulation of an object (e.g., a tool or a work 

piece) for accomplishing the task goals. A single Kinect 
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sensor is utilized for perception of the demonstrations. Such 

sensing mode allows unobtrusive object manipulation since it 

does not require attaching sensors for capturing the 

demonstrated motions. Differently from the task perception 

using vision cameras, the Kinect sensor allows extraction of 

objects’ trajectories without any prior knowledge about their 

geometry. The presented work introduces a novel method for 

task perception, which employs weighted template matching 

for detection and tracking of a manipulated object during the 

task demonstrations. The template weights are assigned on 

the basis of the range measurements for the corresponding 

object. The orientation of the object is also estimated using 

the depth channel information from the Kinect sensor. The 

task analysis and planning involves task modeling at the 

trajectory level of abstraction using hidden Markov model 

(HMM) [22], and generating a trajectory for task 

reproduction via smoothing spline regression. Experimental 

validation of the proposed method for observational learning 

is performed with a CRS-A255 robot. 

The rest of the paper is organized as follows: Section II 

introduces a few basics facts about the Kinect sensor. Section 

III presents the proposed approach for object tracking and 

detection for robotic learning. Section IV describes the pose 

estimation from Kinect measurements. The task modeling 

and planning is described in Section V. The experimental 

evaluation is provided in Section VI, and the last section 

briefly summarizes the paper.  

 

II. KINECT SENSOR 

The Kinect sensor has a color camera and an infrared 

camera for acquiring image and range data simultaneously. 

The maximum rate of data acquisition is 30 frames per 

second. The default resolution of the RGB sensor is 640×480, 

whereas the maximum resolution is 1280×960 pixels at a rate 

of 12 frames per second. Similarly, for the infrared camera, 

the default resolution is 640×480 at 30 frames per second. 

The device has also an infrared laser emitter, an array of 4 

microphones, and a motor for tilting the unit.   

The range data is generated using a structured light pattern 

that is projected on the environment by the infrared laser 

projector. Based on the correlation between the emitted and 

captured light patterns, the distances between the scene 

points and the infrared camera are calculated. 

The Kinect sensor was initially designed as a means of 

natural user interface in gaming environments for 

Microsoft’s Xbox console. Its wide popularity among the 

researchers, hobbyist, and the industry, motivated Microsoft 

to offer it as a stand-alone unit for Windows operating 

systems, and more importantly, to release a software 

development kit (SDK). The SDK provides libraries for 

access to the raw RGB and depth streams, skeletal tracking 

data, audio noise suppression, integration with the Windows 

speech recognition API, etc. This incited developers to build 

a number of new applications for the Kinect sensor. 

 

III. OBJECT TRACKING WITH KINECT 

The first step of observational learning pertains to task 

perception, where an agent demonstrates a task in front of a 

robot learner, while the robot observes the demonstrations 

and records the motions and changes in the environment. It is 

assumed here that the agent is a human demonstrator, and the 

task involves manipulation of an object. Without loss in 

generality, the object can represent a tool for performing an 

industrial task (e.g., painting, welding), an object for 

accomplishing a service task (e.g., setting dishes on a table), a 

work piece for an assembly operation, etc. 

The task demonstrations are captured solely by a Kinect 

sensor that is strategically located in the scene, so that during 

the task demonstrations the objects of interest are visible, i.e., 

within the field-of-view and free of occlusions.  

This section deals with the problem of tracking the object 

across the sequence of acquired data streams from the Kinect 

sensor. The presented work here assumes that the learning 

system does not have any prior information about the 

manipulated object. For initialization of the tracking 

procedure, the demonstrator is asked to identify the object of 

interest in the first image. The learning system should 

afterwards possess abilities for autonomous detection of the 

object in the sequence of consecutive images. 

The proposed approach employs the method of template 

matching using normalized cross-correlation (NCC) [23] for 

localizing a given pattern in an image.  

Let I denotes an image of size u vm m , and let the 

intensity of the pixel with coordinates  ,u v  is denoted 

 ,I u v , for  1,2, , uu m ,  1,2, , vv m . The template 

T represents an image patch of size u vt t (Fig. 1(a), (b)). The 

NCC at the pixel  ,p q  is calculated as 
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

     

 

 

(1) 

where the summations are performed for  1,2, , up t , 

 1,2, , vq t . The notation T  pertains to the average 

value of the mask, whereas I denotes the average value of 

the image patch corresponding to the template. The best 

match for the pattern in the image is at the position with the 

maximum correlation, i.e., 

 

   pos pos
,

, max ,
u v

u v r u v .                          (2) 

 

The normalization of the correlation coefficient in (1), 

achieved by subtracting the patches means and dividing by 

the patches standard deviations, enhances the robustness of 

the matching procedure to changes in brightness and contrast.  

However, the above described procedure has several 

drawbacks, among which are its computational 

expensiveness and sensitivity to the pattern appearance.  

The computational time for performing the template 

matching can be reduced by performing the procedure only 

within a region of interest in the image, based on prior 

information for the estimated location of the pattern. Taking 

into consideration that in the studied case the images are 

acquired 30 times per seconds, it is assumed that the object of 
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interest is located in close vicinity of its position in the 

previous image. Therefore, if  pos pos,k ku v  are the coordinates 

of the pattern in the image kI , where k is used for indexing 

the images in the video stream,  for finding the best template 

match in the image 
1kI 
, the NCC in (1) is calculated for an 

image patch R with size 
u vt t   that is centered at the 

coordinate  1 1

pos pos,k ku v  . After the maximum correlation 

between the region R and the template T is found, the location 

of the origin of the pattern with respect to the image 
1kI 
 is 

retrieved (Fig. 1c). The value of the parameter θ, related to 

the size of the region of interest, was set equal to 2 in the 

presented work. Its value is application specific, and it 

depends on the speed of motion of the target object. 

 

As mentioned earlier, the template matching algorithm has 

strong dependence on the appearance of the pattern in the 

image, and it can fail when the scale or orientation of the 

object of interest change. This problem is handled here by 

applying dynamic templates [24], i.e., the image patch with 

the highest correlation coefficient in the current image 
kT , is 

employed as a template for the next image 
1kI 
. 

One shortcoming of dynamically adapted templates is the 

drift phenomenon. Namely, since the template patch beside 

the object of interest contains also pixels that belong to the 

background (Fig. 1b), the cross-correlation calculation also 

encompasses the background pixels. Switching the template 

patches for each consecutive image can cause the object of 

interest to slowly drift within the template. As the drift errors 

accumulate, over time the object can be lost partially, or even 

lost completely in some cases. This phenomenon is more 

pronounced for scenes with cluttered background, and also 

when the pixels intensities between the object and the 

background are similar. In order to tackle the drift problem, 

this work introduced weighted template matching [23], by 

using the depth information provided by the Kinect sensor. 

Consequently, the depth data is utilized to filter out the 

background pixels from the template, so that only the pixels 

that correspond to the object of interest are employed for the 

template matching. To initialize the procedure, the 

demonstrator selects the target object by clicking in the first 

image, i.e., 
1I . Then a mask image is created over the 

template 
1T , so that 

 

 
 1

1 1, if ,
,

0, otherwise

z D p q z
W p q

    
 


       (3) 

For  1,2, , up t ,  1,2, , vq t , where 
1W  is a 

matrix of weight coefficients, 
1D  is the matrix of depth 

values corresponding to the template 
1T , z is the depth of the 

selected pixel by the demonstrator, and   and   denote 

lower and upper range of distances, respectively. For 

illustration, Fig. 2 shows the template image patch 
1T  and 

the resulting weights image 
1W .  

For the k
th

 image, the weighted normalized 

cross-correlation is calculated as  
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(4) 

Note that the weights matrix 
1kW 
 and the template 

1kT 
 

from the previous frame are used for calculating the 

maximum correlation in the image 
kR , and consequently, 

kI . 

The current weights kW  are updated at each frame using 

(3), based on the depth values 
kD , yielding 

 

 
 1, if ,

,
0, otherwise

k

k z D p q z
W p q

    
 


.     (5) 

 

The variable z is also updated at each iteration. For 

simplicity, an artificial feature is added on the object in the 

form of a dark circle, and the depth value z is assigned to the 

pixel that corresponds to the centroid of the circle.  

 

IV. POSE ESTIMATION WITH KINECT 

The pose estimation from images (i.e., calculating the 

translation and rotation of a frame attached to an object) can 

be achieved in several different ways. In the case of using a 

pair of stereo cameras, the pose is estimated by the 

triangulation technique. In cases when a monocular vision 

system is used for image acquisition, the pose estimation 

problem is often solved using homography transformation 

[25]. Other approaches involve fitting a 3D model of the 

object to image features [26], reconstructing the relative 

transformation of an object’s pose between consecutive 

frames based on features correspondence [27], etc. For 

estimation of the homography matrix, the corresponding 

image coordinates of at least 4 coplanar points, or 8 

non-coplanar points, are required. If the Cartesian distances 

between the points are known, the full pose can be recovered 

Fig. 1. (a) An image acquired with Kinect sensor; (b) Selected template 

that contains the target object; (c) The boundaries of the template T and 

the region of interest R are represented in the image I with blue and red 

rectangles, respectively. 

(a)                        (b)      (c) 

R 

T 

Fig. 2. (a) A template image; (b) Weights mask, calculated based on the 

depth data for the template image. 

(a)                    (b)     
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from a single image; otherwise, a partial pose up to an 

unknown scalar can be estimated from images. The other 

approaches [26], [27] also require either a 3D model of the 

object or an initial estimate of the pose. 

The pose estimation problem from Kinect-provided 

measurements is alleviated, due to the access to both visual 

and range information of the scene. First, the pose estimation 

does not require knowledge of the objects geometry, or the 

scene geometry. Second, the pose estimation does not require 

extraction of the projections of several object features (at 

least 4) in the images, and subsequently finding the features 

correspondences across the image frames. Third, it does not 

require pose estimation at the initial states of the objects in 

the scene. 

Let assume a coordinate frame O-xyz is attached to the 

object. The distance of the frame origin to the Kinect sensor 

(z coordinate) is read directly from the depth data. The other 

two coordinates of the frame origin with respect to the 

camera are easily calculated using the perspective projection 

equation 

 

 
   0 0

,
f u f vu u s v v s

x z y z
f f

 
  ,               (6) 

 

where 
fu  and 

fv  are pixel coordinates of the frame origin,  f 

denotes the focal length of the camera, 
us  and 

vs  are the 

horizontal and vertical pixel sizes, respectively, whereas 
0u  

and 
0v  are used to denote the horizontal and vertical pixel 

coordinates for the principal point of the image sensor, 

respectively.     

The three coordinates form the Cartesian position of the 

object frame relative to the camera frame, i.e., 

 
Tc

oP x y z . 

The orientation of the object can also be retrieved from the 

available RBGD information. For that purpose, first, the 

surface normal of the object at the frame origin is calculated 

as a cross product of two perpendicular vectors that lie in the 

plane of the object:  

 

    
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where        , , , ,
T

u v x u v y u v z u v   w  is a vector in 

the Cartesian space with coordinates  ,x u v  and  ,y u v  

calculated using (6),  ,z u v  is the depth value in D of the 

corresponding pixel, and   is an adopted value that 

represents the distance in pixels in calculating the vectors. 

The obtained surface normal vector is afterwards normalized 

to a unit length vector: 
2

/z z z
 o o o .     

The rotation of the object around the plane of the image 

sensor can also be extracted from the RGBD data. In the 

considered case, the orientation of the template weights with 

respect to the horizontal axis is calculated for this purpose.  

Afterwards, the vector is calculated from 

   , tan ,x u v u v     o w w ,                (8) 

 

where   is the angle between the principal axis of the object 

and the horizontal axis, and   is an user-selected value for 

the pixels distance in the vector calculation. The obtained 

vector is also normalized to a unit length vector, i.e., 

2
/x x x

 o o o . 

The vector 
y
o  is calculated to form a triplet of 

orthonormal vectors, as a cross product of z
o  and x

o . 

The vectors are arranged in an orthogonal rotation matrix 
c

o x y zR      o o o , that gives the rotation of the object in 

the camera frame (See Fig. 3). 

 

V.  TASK MODELING, PLANNING AND REPRODUCTION 

The trajectories of the object from multiple demonstrations 

of the task under similar conditions are used as input data for 

generating a policy for task reproduction. For this purpose, 

the approach we developed in [6] has been employed. It is 

based on modeling the task demonstrations with HMM by 

using trajectories key points as relevant task features. The 

observed variables for the HMM are 12-dimensional vectors, 

consisting of the poses (6-dimensional) and the 

corresponding velocities for the captured trajectories. 

Consequently, the key points are assigned to the trajectories 

coordinates with significant change in position or velocity. A 

Bakis left-right topology is employed for the HMM 

configuration. The Baum-Welch algorithm is used for 

training the model parameters, whereas the most likely 

sequence of hidden states is calculated based on the Viterbi 

algorithm. The trajectories key points are assigned at the 

transitions between the hidden states. The output key points 

from the HMM are afterwards temporally aligned along a 

common time vector using the dynamic temporal warping 

(DTW) technique [28]. The final step performs smoothing 

spline regression through the resulting key points for 

generating a trajectory for task reproduction. The generalized 

trajectory is translated to a robot executable program and 

deployed on the robotic platform for task execution. 

Fig. 3. Orientation vectors for the object. The surface normal vector z
o  is 

obtained as a normalized cross product of the vectors xv  and yv  (based on 

a slight violation of the notation in (7)). The vector x
o  is calculated based 

on (8), using the weights’ axis orientation. The vector y
o  completes an 

orthonormal frame with z
o  and x

o . 

x
o    

 

 

 

 

y
o    

 

 

 

 

z
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vy 
vx 
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VI. EXPERIMENTS 

This section is dedicated to experimental validation of the 

presented robot learning approach.  

The task consists of manipulating an object along a desired 

Cartesian trajectory. It is demonstrated 5 times by a human 

demonstrator.  A Kinect sensor is employed for capturing the 

demonstrated motions. The acquired data streams are stored 

in a computer’s memory for processing. A sequence of 

images for one of the demonstrations is displayed in Fig. 4a. 

The demonstrator indicates the location of the object in the 

first image of each demonstration using a rectangular 

selection tool. The demonstrator also clicks once within the 

circular dot on the object in the first image, to initialize the 

adaptive template matching process through assignment of 

weights for the image pattern. A sequence of extracted 

templates is shown in Fig. 4b, whereas the corresponding 

weights masks for the templates are presented in Fig. 4c.   

The estimation of the pose of the object is based on the 

described procedure in Section IV. The origin of the object 

frame is attached to the centroid of the circular feature. The 

measured position trajectory for one sample demonstration is 

shown in Fig. 5a. The orientation of the object expressed in 

Euler’s roll-pitch-yaw angles is displayed in Fig. 5b.  

One important problem of the Kinect device that is worth 

mentioning is the inconsistency of the depth data. In 

particular, the depth maps do not provide measurements for a 

number of points (which is very pronounced around the 

objects edges), as well as the measurement noise produce 

depth fluctuations and incoherent reading among the 

neighboring pixels. To improve the depth accuracy of the 

measurements, several filtering techniques has been applied, 

e.g., bilateral filter [16], spatio-temporal median filter [29], 

joint-bilateral filter [30]. These approaches rely on the 

intensity values of the corresponding pixels, as well as on the 

past temporal information for the depth maps in recovering 

the missing depth measurements. However, in the considered 

application, the object of interest is changing its position 

across the sequence of image frames and therefore the 

temporal filtering may not improve the depth accuracy. In 

addition, the most relevant depth information for the 

considered application relates to the target object. Therefore, 

a Gaussian filter was employed for the depth data in this work. 

To smooth the orientation vectors 
x
o , y

o  and 
z
o , the 

calculations in (7) and (8) are averaged for 5 values of the 

parameter  , i.e.,   2,5,8,14,20  . 

Note also that the frame origin can be attached to any 

feature of the object. Examples are the four corners on the 

rectangular base of the object, or the top point of the nozzle. 

These features would be easier to detect and identify across 

the image frames, based on the significant changes of the 

neighborhood intensities values. On the other side, the depth 

measurements are noisy and inconsistent around the edges, 

thus an interior feature that lies in a locally planar region is 

preferred for the presented pose estimation. 

For comparison, the depth readings from the Kinect sensor 

are compared to the depth values calculated with 

homography transformation (Fig. 6a). An object with 4 

circular planar features, shown in Fig. 6b, is employed for 

calculating the depths using homography. The distances 

between the circular features were measured and used for the 

calculations. The depth measurements from the Kinect sensor 

are displayed with dashed (red) line in Fig. 6a, alongside the 

depths calculated using homography displayed with solid line. 

One can conclude that the Kinect readings contain less 

fluctuation, which is especially pronounced for the distance 

of the object from the camera greater than 1.5 meters. On the 

other hand, the direct measurements were not available for 

distances less than 480 millimeters.  

The next step entails probabilistic encoding of the task 

with HMM. A discrete form of HMM is employed for 

modeling the extracted positions and orientations of the 

object, by mapping the continuous sequences of observations 

into a codebook of 128 discrete values. A variant of the 

Linde-Buzo-Gray algorithm [31] is utilized for the vector 

quantization. For initialization of the HMM, the minimum 

distortion trajectory is calculated, and based on the number of 

regions between the key points of the minimum distortion 

trajectory, the number of hidden states of the HMM was set 

equal to 13. Key points are assigned at the transitions 

Fig. 5. (a) Position, and (b) Orientation, of the manipulated object with 

respect to the camera frame. 

(a)                    (b) 

Fig. 6. (a) Depth measurements provided by the Kinect sensor (dashed line) 

and corresponding depth values calculated via homography transformation; 
(b) The 4 outer circular features on the object are employed for calculating 

the homogrpahy matrix. 

(a)              (b) 

Fig. 4. (a) Sample images of the task demonstration acquired with Kinect 

sensor at frames k = 32, 95, 142, 189, 237 and 284; (b) Sequence of 

templates for the images in (a); (c) Corresponding weights masks. 

(b) 

(a) 

(c) 
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between the hidden states of the model. One of the 

demonstrated trajectories with the assigned key points is 

shown in Fig. 7a. Temporal normalization of the time indexes 

for the resulting key points is performed via the 

multi-dimensional DTW algorithm. The generalized 

trajectory for task reproduction is obtained by interpolation 

through the key points from all trajectories using cubic 

splines. For the Cartesian position, the generalized position 

trajectory is displayed on Fig 7b, superimposed with the 

demonstrated trajectories.  

The generalized trajectory is afterwards transferred to a 

CRS A255 robot for task reproduction. The A255 robot has 5 

degrees-of-freedom, and therefore, only the roll and yaw 

angles are taken into account for the task execution. A 

sequence of images of the task execution by the CRS robot is 

displayed in Fig. 8. 

 

VII. SUMMARY 

The work presents an approach for robotic learning based 

on task abstraction at a trajectory level. A Kinect sensor is 

employed here for visual observations of multiple task 

demonstrations performed by a human task expert. The work 

focuses on the task perception component of the trajectory 

learning problem, i.e., object detection and tracking, and pose 

estimation.  

The novelty of the presented methodology is in exploiting 

the combined color and range structure of the Kinect 

measurements in solving these problems. A dynamic 

template matching is used for detecting the location of a 

manipulated object in the video streams. Weight masks are 

introduced for filtering the object pixels from the background, 

based on the depth measurements of the scene. The pose 

estimation from Kinect data is greatly simplified, and does 

not require a priory knowledge of the object geometry. The 

only provided information is the initial selection of a single 

appearance of the object of interest using a rectangle and a 

single click on the object (to help in differentiating between 

the object and the background). The presented method 

performs well in cluttered environments, and it is robust to 

color/texture fluctuation. Additionally, the object tracking 

does not require extraction of a set of features and finding 

their correspondences across the image frames.  

The extracted object trajectories are probabilistically 

modeled and used to calculate a generalized task model, 

which is transferred to a robot learner for execution.   
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