

Abstract—‘Smart Homes’ or ‘Intelligent Homes’ are capable

in making smart or rational decisions and increase home

automation. This is done to maximize inhabitant comfort and

minimize operation cost. Tracing and predicting the mobility

patterns and usages of devices by the inhabitant, sets a step

towards the objective. The paper discusses in detail, the role of

certain Prediction algorithms to bring about next event

recognition. Further, an Episode Discovery helps in finding the

frequency of occurrence of these events and targeting the

particular events for automation. The effectiveness of the

Prediction algorithms used is demonstrated ;making it clear

how they prove to be a key component in the efficient

implementation of a Smart Home architecture.

Index Terms—Active LeZi, event history, LZ78, Smart

Home, trie.

I. INTRODUCTION

A ‘Smart Home’ is defined as a living or working space

that interacts in a natural way and adapts to the occupant.

Adaptation refers to the fact that it learns to recognize and

change itself depending on the identity and activity

undertaken by the occupant with minimal intervention from

the occupant. Hence, a Smart Home agent must be able to

predict the mobility patterns and device usages of the

inhabitants. Using these predictions, the home can

accurately route messages and multimedia information, and

can automate activities that would otherwise be manually

performed by the inhabitants. The Smart Home behaves as a

rational agent, perceiving the state of the home through

sensors and acting on the environment through effectors.

The goal of the Smart Homes is to maximize comfort and

safety, optimize energy usage and eliminate strenuous

repetitive activities [1].

Prediction Algorithm helps in prediction of next probable

state of the occupant and is a key component in developing

an active Smart Home. Few Prediction Algorithms are

IPAM,ONISI [2], Jacobs Blockeel Algorithm, LZ78 , LeZi-

Update, Active LeZi, FXl and Adaptive FXl [3]. The choice

of the Prediction Algorithm used will in turn affect the

efficiency of working of a Smart Home. This paper talks

about the use of Active LeZi Prediction Algorithm in logical

implementation of a Smart Home.

Consider the following scenario, at 7:00 am, the alarm

goes off ,which signals the bedroom night lamp to switch off

and simultaneously the coffee maker in the kitchen to switch

on. Ann heads to the bathroom, the news and weather

forecast is displayed on the bathroom mirror. When Ann

finishes grooming and heads towards the kitchen to have her

morning coffee, the bathroom light goes off, the news

Manuscript received October 9, 2013; revised December 13, 2013.

Aditi Dixit and Anjali Naikare are with Cummins College of

Engineering For Women, Pune, India (e-mail: aditi.dxt@gmail.com).

program moves to the kitchen wall. When Ann leaves for

work, the Smart Home secures the home and later that it

places a grocery order for milk and bread. When Ann arrives

from work, the grocery order has arrived .The Smart Home

is prompt in recording minute details of interaction of Ann

with her home every single minute.

II. SMART HOME ARCHITECTURE

The architecture of a Smart Home can be accurately

depicted as four layers (Ref. Fig.1) :

Physical Layer: This layer contains the basic hardware

within the house including individual devices, transducers,

and network hardware.

Communication Layer: This layer includes software to

format and route information between agents, between users

and the house, and between the house and external resources.

Information Layer: This layer gathers, stores, and

generates knowledge useful for decision making.

Decision Layer: This layer selects actions for the agent to

execute based on information supplied from other layers.

Fig. 1. Smart Home agent architecture.

Perception is a bottom-up process. The sensors monitor

the environment (e.g. the temperature of the home) and, if

necessary, transmit the information to another agent through

the communication layer. The database records the

information in the information layer, updates its learned

concepts and predictions accordingly, and alerts the decision

layer of the presence of new data.

The execution is a top down process. The decision layer

selects an action (e.g. adjust the temperature to a lower

value) and relates the decision to the information layer.

After updating the database, the communication layer routes

the action to physical layer. The physical allocates action to

the appropriate effectors to execute [4].

III. MOBILITY MODEL

Seamless connectivity is a absolute necessity for a Smart

Home. A wireless network system is incorporated in the

entire home. The wireless terminals are usually integrated in

the sensors deployed in a Smart Home environment and are

 Use of Prediction Algorithms in Smart Homes

Aditi Dixit and Anjali Naik

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

157DOI: 10.7763/IJMLC.2014.V4.405

to be worn by the inhabitant.

The Smart Home coverage area is partitioned into zones

or sectors. Location management involves keeping track of

the user movement. When Smart Home needs to contact an

inhabitant, the system initiates a search for the target

terminal device by polling all zones where it can possibly be

found. All terminals listen to the broadcast page message,

and only the target sends a response. The restrictions

imposed by sensor characteristics like limitation due to

infrared technology sometimes may become unavoidable.

Also, to avoid location uncertainty of the inhabitant, a

periodic update of the inhabitant’s location needs to be

captured. The most probable current position is predicted by

update information and the last known position.

The Smart Home network can be represented by a

bounded-degree connected graph, G = (ϑ, ε), where node set

ϑ represents the zones and edge set ε represents the

neighborhood (walls, hallways, etc.) between pairs of zones.

Fig. 2. Shows the representation of a Smart Home by a

graph.

Fig. 2. A graph model of a Smart Home floor plan.

Fig. 3. Ann’s Movement history.

The location determination of the inhabitant is a purely

movement based scheme. An update is generated whenever

a zone boundary crossing is detected or a distinctly different

user activity as compared to the last one is observed.

The movement history of a user is represented by a string

“υ1υ2υ3..” of symbols from the alphabet ϑ, where ϑ is the set

of zones in the house and υi denotes the zone id reported by

the i
th

 update. Consider, the movement history of Ann, in her

Smart Home, during an entire day is generated as

mamcmrkdkd- googdk., where symbols denoting the

movement history can be interpreted with the help of the

Fig. 3. The tacit assumption is that an inhabitant’s

movement is merely a reflection of the patterns of his/her

life, and those can be learned. This defines the learning

phase that in turn aids decision making when reappearance

of the patters are detected [4].

IV. PREDICTION ALGORITHMS

The prediction algorithm aims to construct a universal

predictor or estimator for determining the next user action.

The scheme creates a dictionary of zone ids treated as

character symbols and uses the dictionary to gather statistics

based on movement history contexts, or phrases.

The problem of predicting the next symbol (representing

a user action) in an input sequence can be formally defined

as follows: Let ∑ be the set of possible input symbols and

let A = a1...an with aj ∈ ∑ be a sequence of input symbols

of which the first i symbols, that is a1…ai. A Prediction

Algorithm decides at first whether it is able to make a

prediction and if so, returns the probability for each symbol

x ∈ ∑ , that x is the next element in the input sequence.

These values define a conditional probability distribution P

over ∑, where P(x|a1…ai) is the probability for the singleton

subset of ∑ containing x.

There are two ways of calculating the probabilities: on-

demand or live. Algorithms using the former method

maintain a data structure to compute the probabilities. They

update the data structure after each symbol in the input

sequence, whereas the live algorithms update the probability

distributions itself [3].

A. LZ78 Algorithm

The LZ78 data compression is an incremental parsing

algorithm based on the Markov model. This algorithm has

been interpreted as a Universal modeling scheme that

sequentially calculates empirical probabilities in each

context of the data; the generated probabilities reflect

contexts seen from the beginning of the parsed sequence to

the current symbol. The LZ code length of any individual

sequence attains the Markovian empirical entropy for any

finite Markov order. This algorithm parses an input string

“x
1,
 x

2
… x

i
” into c(i) substrings “w

1
,w

2
,... w

c(i)
” such that for

all j>0, the prefix of the substring w
j
(i.e., all but the last

character of w
j
) is equal to some w

i
for 1<i<j. Because of

this prefix property, parsed substrings can efficiently be

maintained in a trie. The LZ78 is used only as a system that

breaks up a given sequence (string) of states into phrases.

Algorithm:

 initialize dictionary := null

initialize phrase w := null

loop

wait for next symbol v

if ((w.v) in dictionary):

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

158

w := w.v

else

add (w.v) to dictionary

w := null

increment frequency for every

possible prefix of phrase

endif

forever

Consider the sequence of input symbols nx =

“aaababbbbbaabccddcbaaaa”. An LZ78 parsing of this

string of input symbols as per above mentioned algorithm of

LZ78 ,would yield the following set of phrases:

“a,aa,b,ab,bb,bba,abc,c,d,dc,ba,aaa”. The generated

dictionary is shown below. As described above, this

algorithm maintains statistics for all contexts seen within the

phrases w
i
thesetext statistics are stored in a trie(Ref. Fig. 4.)

Dictionary:

a 5

aa 2

b 4

ab 2

bb 2

bba 1

abc 1

c 1

d 2

dc 1

ba 1

aaa 1

The LZ78 algorithm suffers from the slow convergence

problem. This is because, all the information crossing phrase

boundaries is lost. In many situations, there will be

significant patterns crossing phrase boundaries, and these

patterns will affect the next symbol in the sequence [5].

Eg. In above example string

(aaababbbbbaabccddcbaaaa), 6
th

 symbol (bba) and 7
th

 (abc)

does not form phrase baab.

Fig. 4. Trie formed by LZ78 parsing of the string

“aaababbbbbaabccddcbaaaa” (Order-2 Markov model).

B. Active LeZi Algorithm

The Active LeZi is an on-demand algorithm that is based

on Markov models and primarily stores the frequency of

input patterns in a trie according to the compression

algorithm LZ78. The amount of information being lost

across the phrase boundaries increases rapidly when there is

an increase in the number of states seen in the input

sequence. This problem can be overcome by maintaining a

variable length window of previously-seen symbols.

The length of the longest phrase seen in a classical LZ78

parsing is chosen as equal to the length of window at each

stage. The reason for selecting this window size is that the

LZ78 algorithm is essentially constructing an order-k-1

Markov model, where k is equal to the length of the longest

LZ78 phrase seen so far.

Within this window, we can now gather statistics on all

possible contexts. This builds a better approximation to the

order-k Markov model, because it has captured information

about contexts in the input sequence that cross phrase

boundaries in the classical LZ78 parsing. Therefore, we gain

a better convergence rate to optimal predictability as well as

greater predictive accuracy [5].

Characteristics of Active LeZi are as follows:

 A growing-order Markov model attains optimal FS

predictability, due to the optimality of LZ78.

 As the length of the longest LZ78 phrase grows, Active

LeZi stores more and more information; as the input

sequence (the experience) grows, the algorithm

performs better. This is a desirable characteristic of

any learning algorithm.

The given trie in Fig. 5 shows the Active LeZi parsing of

the same string “aaababbbbbaabccddcbaaaa” as per the

Active LeZi algorithm.

Algorithm:

initialize dictionary:= null

initialize phrase w:= null

initialize window: = null

initialize Max_LZ_length = 0

loop

wait for next symbol v

if ((w.v) in dictionary):

w:= w.v

else

add (w.v) to dictionary

update Max_LZ_length if

necessary

w:= null

endif

add v to window

if (length(window) > Max_LZ_length)

delete window[0]

endif

Update frequencies of all possible

 contexts within window that includes v

forever

Fig. 5. Trie formed by Active LeZi parsing of the string

“aaababbbbbaabccddcbaaaa”

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

159

The Active LeZi builds an order-k Markov model. The

Prediction by Partial Match (PPM) strategy of exclusion to

gather information from models of order 1 through k to

assign the next symbol its probability value. Consider the

example of previous sequence

“aaababbbbbaabccddcbaaaa”.

The window maintained by Active LeZi represents the set

of contexts used to compute the probability of the next

symbol. In the example, the last phrase “aaa” (which is also

the current ALZ window) is used. Within this phrase, the

contexts that can be used are all suffixes within the phrase,

except the window itself (i.e. “aa,” “a,” and the null

context).

Suppose the probability that the next symbol is an “a” is

being computed. It is seen that(Ref. Fig. 5), an “a” occurs

two out of the five times that the context “aa” appears, the

other cases producing two null outcomes and one “b”.

Therefore the probability of encountering an “a” at the

context “aa” is 2/5, and we now fall back to the order-1

with probability 2/5. At the order-1 context, we see an “a”

five out of the ten times that we see the “a” context, and of

the remaining cases, we see two null outcomes. Therefore,

we predict the “a” at the order-1 context with probability

5/10, and escape to the order-0 model with probability 2/10.

At the order-0 model, we see the “a” ten out of 23 symbols

seen so far, and we therefore predict “a” with probability

10/23 at the null context.

The blended probability of seeing an “a” as the next

symbol is therefore:

2/5 + 2/5 × (5/10 + 2/10 × (10/23))

The probability that the next symbol is a “c”. In this case,

the order-2 and the order-1 contexts do not yield a “c”.

Therefore, we escape to the order-0 model and predict a “c”

with a probability of 3/23. In this case the total probability

of seeing a “c” would be

0/5 + 2/5 × (0/10 + 2/10 × (3/23)) = 2/5 × 2/10 × 3/23

This method of assigning probabilities has the following

advantages:

 It solves the zero-frequency problem. In the above

example, if only the longest context had been chosen to

make a decision on probability, it would have returned a

zero probability for the symbol “c,” whereas lower-

order models show that this probability is indeed non-

zero.

 This blending strategy assigns greater weight to higher-

order models in calculating probability if the symbol

being considered is found in that context, while lower-

order models are suppressed owing to the null context

escape probability [5].

V. EPISODE DISCOVERY

The prediction results obtained from the prediction

algorithm above can be used to automate interactions with

the home, removing the need for manual control of devices.

However, these automated actions can be annoying or

detrimental if the inhabitant must undo the action executed

by the house or repair damage caused by a faulty decision.

To eliminate the possibility of frequent occurrence of this

event, the episode discovery becomes a necessary part of

Smart Home prediction logic [4], [6].

Instead of identifying and automating each inhabitant

pattern, we use an Episode Discovery (ED) prediction

algorithm that identifies significant episodes within an

inhabitant event history. A significant episode can be

viewed as a related set of device events that may be ordered,

partially ordered, or unordered. A significant episode occurs

at some regular interval or in response to other significant

episodes called triggers. The objective of the problem

domain is to mine the input stream in order to discover the

significant episodes. Actions can then be automated based

on the significance of the discovered pattern as well as the

predictive accuracy of the next event [4].

The episode discovery problem is defined as follows. Let

E be the set of all device events. An event occurrence O is a

pair (e, t) relating an event e to an integer time value t. An

event sequence S is an ordered sequence of event

occurrences. The episode ε is defined as a set of event

occurrences, and a candidate item set I as a set of events and

episodes, I = ({e1, e2, e3, en},{E1, E2, …, Em}), where

each event ei has an occurrence in each of the episodes Ej,

for 1 ≤ i ≤n and 1 ≤ j ≤ m. A significant episode L is an

episode that meets or exceeds the evaluation threshold, and

an event sequence description D is a description of an event

sequence using significant episodes and event occurrences.

Algorithm for Episode Discovery:

1) Construct an event sequence S from input O.

2) Partition S into episodes using a sliding window of

length w.

3) Create candidate itemsets from the episodes.

4) Compute compression values for each of the candidate

itemsets.

5) Using a greedy approach, identify the candidate item set

that minimizes the description length of the set of

episodes as a significant episode.

6) Remove all of the episodes associated with the

candidate itemset from the remaining candidate itemsets.

7) Remove all candidate itemsets that have an empty

episode set.

8) Repeat steps 4–7 until the list of candidate [4].

The above described Episode Discovery algorithm helps

to gain significant insights to the episodes and the frequency

of occurrences.

For example, certain conclusions from these algorithms

can be as-

 Alarm On, Alarm Off, Bedroom Light On, Coffeemaker

On, Bathroom Light On (daily)

 Bedroom Light Off, Bathroom Light Off. Kitchen Light

On, Kitchen Screen On (daily) Coffee Maker Off,

Kitchen Light Off, Kitchen Screen Off (daily)

 Order Groceries (weekly)

 Other activities, such as switching on of Television,

would not be identified by ED as significant because

they do not occur with any predictable regularity [4].

VI. ANALYSIS OF PREDICTION ALGORITHM

The evaluations of performance of Prediction Algorithms,

the following metrics are used in the literature:

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

160

 Prediction accuracy prac

 Prediction probability prp

 Applicability ap

The prediction accuracy and probability are computed by

assigning a score to every prediction made by the algorithm

and averaging over the number of predictions made by the

algorithm. Thus, we can compute the prediction accuracy

prac and probability prp over the whole input sequence a1...an

using following equation:

prx(a1...an) =(1/m) × ∑
 evalx(a1...ai, ai+1)

where m (≤ n) is the number of predictions made and evalx

the evaluation function that returns the value for a single

prediction (it returns 0 if no prediction was made by the

algorithm). The evalx function thereby differs for the two

metrics.

The prediction accuracy evalac considers only the symbols

which are predicted with maximal probability. We define

the set A as the set of all these symbols:

Ai+1 ={x ∈ _|∀y ∈ _.P(x|a1 . . . ai) ≥ P(y|a1 . . . ai)}.

The evalac function for the prediction accuracy then

is among these values Ai+1. Thus, evalac is 0 if ai +1 ∈/ Ai+1

otherwise it is computed as evalac(a1...ai, ai+1) = 1/|Ai+1|.

In contrast, the evalp function for the prediction

probability rates with which probability the correct symbol

was suggested, no matter if it has been assigned a maximal

probability or not: evalp(a1... ai, ai +1) = P(ai +1| a1... ai).

The third metric applicability ap is defined as the ratio of

input symbols the algorithm was able to make a prediction

for: ap = m/n [3].

Fig. 6. Performance based on dataset size.

Fig. 7. Performance regarding sequence length.

The characteristics of the input sequences plays an

important role to find which algorithm is best suited to

requirements of the application. The most important

parameters are:

 Dataset size available for training

 Distribution of repetitive sequences

 Noise in the repetitive sequences

Fig. 8. Performance regarding different noise levels.

Fig. 6, Fig. 7 and Fig. 8 denote the results of an

experiment carried out by Melanie Hartmann and Daniel

Schreiber prove the significance of above mentioned

characteristics of input sequences in determining prediction

accuracy of various Prediction Algorithms.

 The Fig. 6 shows, for Active LeZi Prediction Algorithm,

with an increase in the size of the dataset, there is an

increase in the prediction accuracy.

 The Fig. 7 shows, for the Active LeZi Prediction

Algorithm, there is an increase in the prediction

accuracy with increase in the frequency of the repeating

sequence.

The Fig. 8 shows, there is an overall decay in prediction

accuracy with increase in noise in the input data. But we

clearly see that, even in zones of higher noise, the Active

LeZi comparatively demonstrates higher prediction accuracy

than other algorithms like IPAM and ONISI.

Thus, from all the three graphs we conclude that Active

LeZi displays an optimum performance regarding all tested

parameters. The Active LeZi is a suitable choice for Smart

Home logic implementation and is easy to understand and

incorporate.

VII. CONCLUSION

In the paper, the concept of a Smart Home and necessary

steps in implementing its logic is discussed. The skeletal

architecture for implementation of a Smart Home provides

an approach to its deployment. The paper sheds a light on

three basic steps of logic development for a Smart Home.

The first being creation of a mobility model and

representation of event occurrences as strings. The second

step, the use of a Prediction Algorithm to predict the most

likely next state or inhabitant action. This step facilitates

decision making for automation of necessary actions; is the

most crucial step and backbone of the entire Smart Home

framework. The LZ78 Algorithm is described, which

primarily is used for a trie formation. The Active LeZi

Prediction Algorithm is then introduced to overcome the

drawbacks of LZ78 and helps in effective prediction of

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

161

returns a value reflecting whether the actual next symbol +1 ai

probable next event. The episode discovery helps to find

significant patterns in event history and determine the

frequency of its occurrence. It helps to identify which

patterns can be automated easily with least fault occurrence.

Lastly, we understand the parameters that influence the

selection of a Prediction Algorithm. The Active LeZi

Prediction Algorithm having suitable performance for all the

tested parameters. It is easy to understand and implement

and thus, an optimum choice for the logical implementation

of a Smart Home.

REFERENCES

[1] D. N. Monekosso, P. Remagnino, and Y. Kuno, Intelligent
Environments: Methods, Algorithms and Applications, Springer, 2009,

ch. 1, pp. 1-11.

[2] P. Gorniak and D. Poole, “Predicting future user actions by observing
unmodified applications,” AAAI-00 Proceedings, 2000.

[3] M. Hartmann and D. Schreiber, “Prediction algorithms for user

actions,” LWA’07, pp. 349-354, 2007.
[4] S. K. Das, D. J. Cook, A. Bhattacharya, E. O. H. Iii, and T.-Y. Lin,

“The role of prediction algorithms in the mavhome smart home

architecture,” IEEE Wireless Communications, December 2002.

[5] K. Gopalratnam and D. J. Cook, “Active Lezi: an incremental parsing

algortihm for sequential prediction,” IEEE Intelligent Systems, vol. 22,

no. 1, pp. 52-58, 2007.

[6] S. Laxman, P. S. Shastry, and K. P. Unnikrishnan, “Fast algorithms

for frequent episode discovery in event sequences,” presented at the

Third Workshop on Mining Temporal and Sequential Data Seattle,
August 2004.

Aditi A. Dixit was born and brought up in Pune, India.

She is a Ph.D. student of her final year in computer

engineering at Cummins college of Engineering for
women.

Her current research interests include artificial

intelligence, neural networks, machine learning.

Anjali Naik is an assistant professor at Cummins

College of Engineering for Women.
Her current research interest include artificial

intelligence, neural networks, medical image

processing.

International Journal of Machine Learning and Computing, Vol. 4, No. 2, April 2014

162

