
 

Abstract—‘Smart Homes’ or ‘Intelligent Homes’ are capable 

in making smart or rational decisions and increase home 

automation. This is done to maximize inhabitant comfort and 

minimize operation cost. Tracing and predicting the mobility 

patterns and usages of devices by the inhabitant, sets a step 

towards the objective. The paper discusses in detail, the role of 

certain Prediction algorithms to bring about next event 

recognition. Further, an Episode Discovery helps in finding the 

frequency of occurrence of these events and targeting the 

particular events for automation. The effectiveness of the 

Prediction algorithms used is demonstrated ;making it clear 

how they prove to be a key component in the efficient 

implementation of a Smart Home architecture. 

 
Index Terms—Active LeZi, event history, LZ78, Smart 

Home, trie. 
 

I.  INTRODUCTION 

A ‘Smart Home’ is defined as a living or working space 

that interacts in a natural way and adapts to the occupant. 

Adaptation refers to the fact that it learns to recognize and 

change itself depending on the identity and activity 

undertaken by the occupant with minimal intervention from 

the occupant. Hence, a Smart Home agent must be able to 

predict the mobility patterns and device usages of the 

inhabitants. Using these predictions, the home can 

accurately route messages and multimedia information, and 

can automate activities that would otherwise be manually 

performed by the inhabitants. The Smart Home behaves as a 

rational agent, perceiving the state of the home through 

sensors and acting on the environment through effectors. 

The goal of the Smart Homes is to maximize comfort and 

safety, optimize energy usage and eliminate strenuous 

repetitive activities [1]. 

Prediction Algorithm helps in prediction of next probable 

state of the occupant and is a key component in developing 

an active Smart Home. Few Prediction Algorithms are 

IPAM,ONISI [2], Jacobs Blockeel Algorithm, LZ78 , LeZi-

Update, Active LeZi, FXl and Adaptive FXl [3]. The choice 

of the Prediction Algorithm used will in turn affect the 

efficiency of working of a Smart Home. This paper talks 

about the use of Active LeZi Prediction Algorithm in logical 

implementation of a Smart Home. 

Consider the following scenario, at 7:00 am, the alarm 

goes off ,which signals the bedroom night lamp to switch off 

and simultaneously the coffee maker in the kitchen to switch 

on. Ann heads to the bathroom, the news and weather 

forecast is displayed on the bathroom mirror. When Ann 

finishes grooming and heads towards the kitchen to have her 

morning coffee, the bathroom light goes off, the news 
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program moves to the kitchen wall. When Ann leaves for 

work, the Smart Home secures the home and later that it 

places a grocery order for milk and bread. When Ann arrives 

from work, the grocery order has arrived .The Smart Home 

is prompt in recording  minute details of interaction of Ann 

with her home every single minute. 

 

II.   SMART HOME ARCHITECTURE 

The architecture of a Smart Home can be accurately 

depicted as four layers (Ref. Fig.1) : 

Physical Layer: This layer contains the basic hardware 

within the house including individual devices, transducers, 

and network hardware. 

Communication Layer: This layer includes software to 

format and route information between agents, between users 

and the house, and between the house and external resources. 

Information Layer: This layer gathers, stores, and 

generates knowledge useful for decision making. 

Decision Layer: This layer selects actions for the agent to 

execute based on information supplied from other layers. 

 

 
Fig. 1. Smart Home agent architecture. 

 

Perception is a bottom-up process. The sensors monitor 

the environment (e.g. the temperature of the home) and, if 

necessary, transmit the information to another agent through 

the communication layer. The database records the 

information in the information layer, updates its learned 

concepts and predictions accordingly, and alerts the decision 

layer of the presence of new data.  

The execution is a top down process. The decision layer 

selects an action (e.g. adjust the temperature to a lower 

value) and relates the decision to the information layer. 

After updating the database, the communication layer routes 

the action to physical layer. The physical allocates action to 

the appropriate effectors to execute [4].                  

                                                                               

III. MOBILITY MODEL  

Seamless connectivity is a absolute necessity for a Smart 

Home. A wireless network system is incorporated in the 

entire home. The wireless terminals are usually integrated in 

the sensors deployed in a Smart Home environment and are 
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to be worn by the inhabitant. 

The Smart Home coverage area is partitioned into zones 

or sectors. Location management involves keeping track of 

the user movement. When Smart Home needs to contact an 

inhabitant, the system initiates a search for the target 

terminal device by polling all zones where it can possibly be 

found. All terminals listen to the broadcast page message, 

and only the target sends a response. The restrictions 

imposed by sensor characteristics like limitation due to 

infrared technology sometimes may become unavoidable. 

Also, to avoid location uncertainty of the inhabitant, a 

periodic update of the inhabitant’s location needs to be 

captured. The most probable current position is predicted by 

update information and the last known position. 

The Smart Home network can be represented by a 

bounded-degree connected graph, G = (ϑ, ε), where node set 

ϑ represents the zones and edge set ε represents the 

neighborhood (walls, hallways, etc.) between pairs of zones. 

Fig. 2. Shows the representation of a Smart Home by a 

graph. 

  

 
Fig. 2. A graph model of a Smart Home floor plan. 

 

 
Fig. 3. Ann’s Movement history. 

 

The location determination of the inhabitant is a purely 

movement based scheme. An update is generated whenever 

a zone boundary crossing is detected or a distinctly different 

user activity as compared to the last one is observed. 

The movement history of a user is represented by a string 

“υ1υ2υ3..” of symbols from the alphabet ϑ, where ϑ is the set 

of zones in the house and υi denotes the zone id reported by 

the i
th

 update. Consider, the movement history of Ann, in her 

Smart Home, during an entire day is generated as 

mamcmrkdkd- googdk., where symbols denoting the 

movement history  can be interpreted with the help of the 

Fig. 3. The tacit assumption is that an inhabitant’s 

movement is merely a reflection of the patterns of his/her 

life, and those can be learned. This defines the learning 

phase that in turn aids decision making when reappearance 

of the patters are detected [4]. 

 

IV. PREDICTION ALGORITHMS 

The prediction algorithm aims to construct a universal 

predictor or estimator for determining the next user action. 

The scheme creates a dictionary of zone ids treated as 

character symbols and uses the dictionary to gather statistics 

based on movement history contexts, or phrases.  

The problem of predicting the next symbol (representing 

a user action) in an input sequence can be formally defined 

as follows: Let ∑ be the set of possible input symbols and 

let A = a1...an with aj ∈ ∑ be a sequence of input symbols 

of which the first i symbols, that is a1…ai. A Prediction 

Algorithm decides at first whether it is able to make a 

prediction and if so, returns the probability for each symbol 

x ∈ ∑ , that x is the next element in the input sequence. 

These values define a conditional probability distribution P 

over ∑, where P(x|a1…ai) is the probability for the singleton 

subset of ∑ containing  x. 

There are two ways of calculating the probabilities: on-

demand or live. Algorithms using the former method 

maintain a data structure to compute the probabilities. They 

update the data structure after each symbol in the input 

sequence, whereas the live algorithms update the probability 

distributions itself [3]. 

A. LZ78  Algorithm 

The LZ78 data compression is an incremental parsing 

algorithm based on the Markov model. This algorithm has 

been interpreted as a Universal modeling scheme that 

sequentially calculates empirical probabilities in each 

context of the data; the generated probabilities reflect 

contexts seen from the beginning of the parsed sequence to 

the current symbol. The LZ code length of any individual 

sequence attains the Markovian empirical entropy for any 

finite Markov order. This algorithm parses an input string 

“x
1,
 x

2
… x

i
” into c(i) substrings “w

1 
,w

2 
,... w

c(i)
” such that for 

all j>0, the prefix of the substring w
j 
(i.e., all but the last 

character of w
j
) is equal to some w

i 
for 1<i<j. Because of 

this prefix property, parsed substrings can efficiently be 

maintained in a trie. The LZ78 is used only as a system that 

breaks up a given sequence (string) of states into phrases.  

Algorithm: 

        initialize dictionary := null     

initialize phrase w := null  

loop  

wait for next symbol v  

if ((w.v) in dictionary):  
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w := w.v  

else  

add (w.v) to dictionary  

w := null  

increment frequency for every  

possible prefix of phrase  

endif  

forever 

 

Consider the sequence of input symbols nx = 

“aaababbbbbaabccddcbaaaa”. An LZ78 parsing of this 

string of input symbols as per above mentioned algorithm of 

LZ78 ,would yield the following set of phrases: 

“a,aa,b,ab,bb,bba,abc,c,d,dc,ba,aaa”. The generated 

dictionary is shown below. As described above, this 

algorithm maintains statistics for all contexts seen within the 

phrases w
i 
thesetext statistics are stored in a trie(Ref. Fig. 4.) 

Dictionary: 

a 5 

aa 2 

b 4 

ab 2 

bb 2 

bba 1 

abc 1 

c 1 

d 2 

dc 1 

ba 1 

aaa 1 

                                                                

The LZ78 algorithm suffers from the slow convergence 

problem. This is because, all the information crossing phrase 

boundaries is lost. In many situations, there will be 

significant patterns crossing phrase boundaries, and these 

patterns will affect the next symbol in the sequence [5].  

Eg. In above example string 

(aaababbbbbaabccddcbaaaa), 6
th

 symbol (bba) and 7
th

 (abc) 

does not form phrase baab. 

 
Fig. 4. Trie formed by LZ78 parsing of the string 

“aaababbbbbaabccddcbaaaa”  (Order-2 Markov model). 
 

B. Active LeZi Algorithm 

The Active LeZi is an on-demand algorithm that is based 

on Markov models and primarily stores the frequency of 

input patterns in a trie according to the compression 

algorithm LZ78. The amount of information being lost 

across the phrase boundaries increases rapidly when there is 

an increase in the number of states seen in the input 

sequence. This problem can be overcome by maintaining a 

variable length window of previously-seen symbols. 

The length of the longest phrase seen in a classical LZ78 

parsing is chosen as equal to the length of window at each 

stage. The reason for selecting this window size is that the 

LZ78 algorithm is essentially constructing an order-k-1 

Markov model, where k is equal to the length of the longest 

LZ78 phrase seen so far. 

Within this window, we can now gather statistics on all 

possible contexts. This builds a better approximation to the 

order-k Markov model, because it has captured information 

about contexts in the input sequence that cross phrase 

boundaries in the classical LZ78 parsing. Therefore, we gain 

a better convergence rate to optimal predictability as well as 

greater predictive accuracy [5]. 

Characteristics of Active LeZi are as follows: 

 A growing-order Markov model attains optimal FS 

predictability, due to the optimality of LZ78.  

 As the length of the longest LZ78 phrase grows, Active 

LeZi stores more and more information; as the input 

sequence (the experience) grows, the algorithm 

performs better. This is a desirable characteristic of 

any learning algorithm.  

The given trie in Fig. 5 shows the Active LeZi parsing of 

the same string “aaababbbbbaabccddcbaaaa” as per the 

Active LeZi algorithm. 

Algorithm: 

initialize dictionary:= null  

initialize phrase w:= null  

initialize window: = null  

initialize Max_LZ_length = 0  

loop 

wait for next symbol v  

if ((w.v) in dictionary):  

w:= w.v  

else  

add (w.v) to dictionary  

update Max_LZ_length if 

necessary  

w:= null  

endif  

add v to window  

if (length(window) > Max_LZ_length)  

delete window[0]  

endif  

Update frequencies of all possible  

                              contexts within window that includes v  

forever 

 
Fig. 5. Trie formed by Active LeZi parsing of the string 

“aaababbbbbaabccddcbaaaa” 
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The Active LeZi builds an order-k Markov model. The 

Prediction by Partial Match (PPM) strategy of exclusion to 

gather information from models of order 1 through k to 

assign the next symbol its probability value. Consider the 

example of previous sequence 

“aaababbbbbaabccddcbaaaa”.  

The window maintained by Active LeZi represents the set 

of contexts used to compute the probability of the next 

symbol. In the example, the last phrase “aaa” (which is also 

the current ALZ window) is used. Within this phrase, the 

contexts that can be used are all suffixes within the phrase, 

except the window itself (i.e. “aa,” “a,” and the null 

context).  

Suppose the probability that the next symbol is an “a” is 

being computed. It is seen that(Ref. Fig. 5), an “a” occurs 

two out of the five times that the context “aa” appears, the 

other cases producing two null outcomes and one “b”. 

Therefore the probability of encountering an “a” at the 

context “aa” is 2/5, and we now fall back  to the order-1 

with probability 2/5. At the order-1 context, we see an “a” 

five out of the ten times that we see the “a” context, and of 

the remaining cases, we see two null outcomes. Therefore, 

we predict the “a” at the order-1 context with probability 

5/10, and escape to the order-0 model with probability 2/10. 

At the order-0 model, we see the “a” ten out of 23 symbols 

seen so far, and we therefore predict “a” with probability 

10/23 at the null context.  

The blended probability of seeing an “a” as the next 

symbol is therefore: 

2/5 + 2/5 × (5/10 + 2/10 × (10/23)) 

The probability that the next symbol is a “c”. In this case, 

the order-2 and the order-1 contexts do not yield a “c”. 

Therefore, we escape to the order-0 model and predict a “c” 

with a probability of 3/23. In this case the total probability 

of seeing a “c” would be 

0/5 + 2/5 × (0/10 + 2/10 × (3/23)) = 2/5 × 2/10 × 3/23 

This method of assigning probabilities has the following 

advantages:  

 It solves the zero-frequency problem. In the above 

example, if only the longest context had been chosen to 

make a decision on probability, it would have returned a 

zero probability for the symbol “c,” whereas lower-

order models show that this probability is indeed non-

zero.  

 This blending strategy assigns greater weight to higher-

order models in calculating probability if the symbol 

being considered is found in that context, while lower-

order models are suppressed owing to the null context 

escape probability [5]. 

 

V.  EPISODE DISCOVERY 

The prediction results obtained from the prediction 

algorithm above can be used to automate interactions with 

the home, removing the need for manual control of devices. 

However, these automated actions can be annoying or 

detrimental if the inhabitant must undo the action executed 

by the house or repair damage caused by a faulty decision. 

To eliminate the possibility of frequent occurrence of this 

event, the episode discovery becomes a necessary part of 

Smart Home prediction logic [4], [6]. 

Instead of identifying and automating each inhabitant 

pattern, we use an Episode Discovery (ED) prediction 

algorithm that identifies significant episodes within an 

inhabitant event history. A significant episode can be 

viewed as a related set of device events that may be ordered, 

partially ordered, or unordered. A significant episode occurs 

at some regular interval or in response to other significant 

episodes called triggers. The objective of the problem 

domain is to mine the input stream in order to discover the 

significant episodes. Actions can then be automated based 

on the significance of the discovered pattern as well as the 

predictive accuracy of the next event [4]. 

The episode discovery problem is defined as follows. Let 

E be the set of all device events. An event occurrence O is a 

pair (e, t) relating an event e to an integer time value t. An 

event sequence S is an ordered sequence of event 

occurrences. The episode ε is defined as a set of event 

occurrences, and a candidate item set I as a set of events and 

episodes, I = ({e1, e2, e3, en},{E1, E2, …, Em}), where 

each event ei has an occurrence in each of the episodes Ej, 

for 1 ≤ i ≤n and 1 ≤ j ≤ m. A significant episode L is an 

episode that meets or exceeds the evaluation threshold, and 

an event sequence description D is a description of an event 

sequence using significant episodes and event occurrences. 

Algorithm for Episode Discovery: 

1) Construct an event sequence S from input O. 

2) Partition S into episodes using a sliding window of 

length w. 

3) Create candidate itemsets from the episodes. 

4) Compute compression values for each of the candidate 

itemsets. 

5) Using a greedy approach, identify the candidate item set 

that minimizes the description length of the set of 

episodes as a significant episode. 

6) Remove all of the episodes associated with the 

candidate itemset from the remaining candidate itemsets. 

7) Remove all candidate itemsets that have an empty 

episode set. 

8) Repeat steps 4–7 until the list of candidate [4]. 

The above described Episode Discovery algorithm helps 

to gain significant insights to the episodes and the frequency 

of occurrences. 

For example, certain conclusions from these algorithms 

can be as- 

 Alarm On, Alarm Off, Bedroom Light On, Coffeemaker 

On, Bathroom Light On (daily) 

 Bedroom Light Off, Bathroom Light Off. Kitchen Light 

On, Kitchen Screen On (daily) Coffee Maker Off, 

Kitchen Light Off, Kitchen Screen Off (daily) 

 Order Groceries (weekly) 

 Other activities, such as switching on of Television, 

would not be identified by ED as significant because 

they do not occur with any predictable regularity [4]. 

 

VI. ANALYSIS OF PREDICTION ALGORITHM 

The evaluations of performance of Prediction Algorithms, 

the following metrics are used in the literature:  
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 Prediction accuracy prac 

 Prediction probability prp 

 Applicability ap 

The prediction accuracy and probability are computed by 

assigning a score to every prediction made by the algorithm 

and averaging over the number of predictions made by the 

algorithm. Thus, we can compute the prediction accuracy 

prac and probability prp over the whole input sequence a1...an 

using following equation: 

prx(a1...an) =(1/m) × ∑     
    evalx(a1...ai, ai+1) 

where m (≤ n) is the number of predictions made and evalx 

the evaluation function that returns the value for a single 

prediction (it returns 0 if no prediction was made by the 

algorithm). The evalx function thereby differs for the two 

metrics. 

The prediction accuracy evalac considers only the symbols 

which are predicted with maximal probability. We define 

the set A as the set of all these symbols:  

Ai+1 ={x ∈ _|∀y ∈ _.P(x|a1 . . . ai) ≥ P(y|a1 . . . ai)}. 

The evalac function for the prediction accuracy then 

is among these values Ai+1. Thus, evalac is 0 if ai +1 ∈/ Ai+1  

otherwise it is computed as evalac(a1...ai, ai+1) = 1/|Ai+1|. 

In contrast, the evalp function for the prediction 

probability rates with which probability the correct symbol 

was suggested, no matter if it has been assigned a maximal 

probability or not: evalp(a1... ai, ai +1) = P(ai +1| a1... ai). 

The third metric applicability ap is defined as the ratio of 

input symbols the algorithm was able to make a prediction 

for: ap = m/n [3]. 

 

 
Fig. 6. Performance based on dataset size. 

  

   
Fig. 7. Performance regarding sequence length. 

 

The characteristics of the input sequences plays an 

important role to find which algorithm is best suited to 

requirements of the application. The most important 

parameters are:  

 Dataset size available for training 

 Distribution of repetitive sequences 

 Noise in the repetitive sequences  

 

 
Fig. 8. Performance regarding different noise levels. 

 

Fig. 6, Fig. 7 and Fig. 8 denote the results of an 

experiment carried out by Melanie Hartmann and Daniel 

Schreiber  prove the significance of above mentioned 

characteristics of input sequences in determining prediction 

accuracy of various Prediction Algorithms.  

 The Fig. 6 shows, for Active LeZi Prediction Algorithm, 

with an increase in the size of the dataset, there is an 

increase in the prediction accuracy.  

 The Fig. 7 shows, for the Active LeZi Prediction 

Algorithm, there is an increase in the prediction 

accuracy with increase in the frequency of the repeating 

sequence. 

The Fig. 8 shows, there is an overall decay in prediction 

accuracy with increase in noise in the input data. But we 

clearly see that, even in zones of higher noise, the Active 

LeZi comparatively demonstrates higher prediction accuracy 

than other algorithms like IPAM and ONISI. 

Thus, from all the three graphs we conclude that Active 

LeZi displays an optimum performance regarding all tested 

parameters. The Active LeZi is a suitable choice for Smart 

Home logic implementation and is easy to understand and 

incorporate. 

 

VII.  CONCLUSION 

In the paper, the concept of a Smart Home and necessary 

steps in implementing its logic is discussed. The skeletal 

architecture for implementation of a Smart Home provides 

an approach to its deployment. The paper sheds a light on 

three basic steps of logic development for a Smart Home. 

The first being creation of a mobility model and 

representation of event occurrences as strings. The second 

step, the use of a Prediction Algorithm to predict the most 

likely next state or inhabitant action. This step facilitates 

decision making for automation of necessary actions; is the 

most crucial step and backbone of the entire Smart Home 

framework. The LZ78 Algorithm is described, which 

primarily is used for a trie formation. The Active LeZi 

Prediction Algorithm is then introduced to overcome the 

drawbacks of LZ78 and helps in effective prediction of 
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probable next event. The episode discovery helps to find 

significant patterns in event history and determine the 

frequency of its occurrence. It helps to identify which 

patterns can be automated easily with least fault occurrence. 

Lastly, we understand the parameters that influence the 

selection of a Prediction Algorithm. The Active LeZi 

Prediction Algorithm having suitable performance for all the 

tested parameters. It is easy to understand and implement 

and thus, an optimum choice for the logical implementation 

of a Smart Home. 
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