
 

 

 

Abstract—In this work we propose an unsupervised 

machine learning method of predicting chronic fatigue 

syndrome (CFS) based on the k-means algorithm using 

self-reported questionnaire responses. We first suggest a 

method of determining the presence of a symptom based on its 

frequency and severity using an unsupervised dynamic 

thresholding approach. This threshold is used to diagnose 

subjects with 54 symptoms related to CFS. Based on these 

diagnoses, k-means is used to predict the presence of CFS. We 

find that k-means does not have significantly worse predictive 

diagnostic accuracy than commonly used CFS case definitions. 

After applying supervised feature selection, k-means achieves 

significantly better diagnostic accuracy than any of the case 

definitions examined. We use these results to suggest the basis 

for an empirically founded CFS case definition. 

 

Index Terms—Chronic fatigue syndrome, computer-aided 

diagnosis, k-means clustering, machine learning. 

 

I. BACKGROUND AND MOTIVATION 

Chronic fatigue syndrome (CFS) is a disease characterized 

by six months of debilitating fatigue, accompanied by 

post-exertional malaise, pain, and various neurological and 

autonomic symptoms such as short-term memory loss and 

imbalance [1]. The causes of CFS are not yet well understood. 

There is no reliable, widely accepted biomarker for CFS, and 

because its symptoms are often shared by other illnesses, 

classifying CFS in a precise way has presented a significant 

challenge. As a result, there has been interest from the CFS 

research community in utilizing data mining techniques to 

better identify key features of the illness. Machine learning 

and statistical selection techniques can help reveal which 

symptoms are the most useful in distinguishing between CFS 

patients and healthy people, and hence which symptoms are 

most characteristic of the illness. These symptoms may then 

form the basis for an empirical CFS definition. 

Many definitions of CFS have been proposed, but few 

have gained traction and none have escaped criticism. The 

Fukuda criteria, developed in 1994, which is currently the 
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most widely used diagnostic measure. The Fukuda criteria 

stipulates that chronic fatigue of a definite onset (i.e. not 

lifelong) must be present, in addition to four of the eight 

following symptoms: memory/concentration impairment, 

sore throat, tender lymph nodes, muscle pain, joint pain, 

headaches, unrefreshing sleep, and post-exertional malaise 

[2]. However, the Fukuda criteria has been criticized for 

being overly inclusive, as cardinal CFS symptoms such as 

post-exertional malaise and memory or concentration 

impairment do not need to be present for a positive diagnosis 

[1]. Additionally, the Fukuda criteria places particular 

emphasis on the construct of fatigue, which is a common 

complaint among the general population and thus less useful 

in distinguishing between CFS sufferers and healthy people 

[1]. 

Since the introduction of the Fukuda criteria, there have 

been numerous efforts to formulate a precise, standardized 

definition for CFS. In 2003, the Canadian case definition was 

proposed, which requires the presence of fatigue, 

post-exertional malaise, sleep dysfunction, and pain, in 

addition to two forms of various neurological or cognitive 

manifestations, and one or more symptoms from at least two 

of the following symptom categories: autonomic, 

neuroendocrine, and immune [3]. The Canadian criteria has 

been found to select for cases with greater physical 

functioning and neurological impairment, as well as less 

psychiatric comorbidity than the Fukuda definition [4]. 

However, the Canadian criteria has come under scrutiny for 

not requiring sudden symptom onset, a feature most other 

definitions agree on [1].  

The Myalgic Encephalomyelitis International Consensus 

Criteria (ME-ICC) was developed in 2011, requiring 

post-exertional neuroimmune exhaustion and at least 50% 

reduction in activity level following onset. The ME-ICC also 

stipulates at least one type of energy 

production/transportation impairment (e.g. cardiovascular or 

respiratory dysfunction), as well as at least one symptom 

from three of the four following categories: neurocognitive 

impairments, pain, sleep disturbance, and neurosensory, 

perceptual, and motor disturbances [5]. The ME-ICC has 

been shown to select for patients with greater functional, 

physical, and mental impairment than the Fukuda definition, 

but those meeting the ME-ICC also have higher rates of 

psychiatric comorbidity [4].  

Although there have been numerous other proposed CFS 

definitions, this paper will focus on the aforementioned three, 

as they have received the most widespread recognition. 

However, a commonality between these and nearly all other 

case definitions is that they were formed via a clinician 
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consensus approach, rather than an empirical one. An 

empirical definition could help to more accurately diagnose 

patients by reflecting authentic symptom patterns of CFS 

sufferers.  

Reeves et al. developed an empirical definition based on 

patient self-report data from the Multidimensional Fatigue 

Inventory (MFI), the Medical Outcomes Short Form-36 

(SF-36), and Symptom Inventory (SI), as measures of fatigue, 

disability, and frequency and severity of accompanying 

symptoms, respectively [6]. Reeves et al. compared patients 

who either currently met the Fukuda criteria or had met it at 

one time against a control group. 2-step log-likelihood 

clustering was used to set thresholds for a CFS definition 

based on scores from the respective tests. However, since the 

study exclusively examined patients diagnosed under the 

Fukuda criteria their results may simply reflect selection 

biases of the Fukuda definition, rather than providing a truly 

unique basis for a new classification standard. Moreover, the 

MFI, SF-36, and SI were created as general-purpose 

diagnostic tests and are not specifically directed toward CFS. 

This may result in a definition that is overly inclusive, as the 

tests do not target specific CFS symptoms. The Reeves 

definition has been criticized for its broadness, as CFS rates 

would increase by over ten times previous estimates under 

the new criteria [1]. Jason et al. found that 38% of patients 

with a Major Depressive Disorder would be misdiagnosed as 

having CFS under the Reeves definition [7].  

 

II. RELATED WORK 

Numerous past studies have employed supervised machine 

learning techniques to understand the disease. Hanson, Gause, 

and Natelson used multilayer neural networks to predict CFS 

based on 29 immunological genetic transcription factors [8]. 

The neural network identified 14 relevant factors in 

distinguishing CFS patients from controls, and achieved an 

out of sample classification accuracy of 65%. Their results 

support the hypothesis that CFS stems from immunological 

dysfunction, and indicate the underlying genetic relationships 

associated with CFS are complex and nonlinear. 

Similarly, Huang, Hsu, and Lin sought to identify Single 

Nucleotide Polymorphisms (SNPs) associated with CFS [9]. 

They explored a wide range of classification algorithms and 

feature selection techniques, and were able to identify 8 SNPs 

correlated with CFS using a Naïve Bayes classifier with 

wrapper-based feature selection, with an AUC of 70%. 

In an effort to study the disease from a semantic 

perspective, Bronikowski et al. explored ensemble decision 

tree classifiers as a means of predicting CFS based on patient 

self-report data. Ensemble methods did not achieve a higher 

accuracy than standard two-way decision tree classifiers, 

which were able to distinguish between patients and “others” 

(controls, exclusions, and unexplained fatigue) with 68.75% 

accuracy [10].  

There has been little application of unsupervised machine 

in regards to CFS. Supervised machine learning techniques, 

as used in [8]-[10], are only valid insofar as they reflect the 

initial diagnosis criteria. In order to develop an empirical 

definition of CFS, it is imperative to minimize any reliance 

on pre-existing case definitions so that results do not simply 

mirror selection biases of the prior definitions.  

In this paper, we draw on diverse patient data to show that 

unsupervised machine learning techniques can accurately 

predict CFS, even for patients diagnosed under different 

criteria. We then use these techniques as a basis for 

identifying the most predictive CFS symptoms, and draw 

conclusions as to which features an empirical CFS definition 

should focus on.  

 

III. METHODS 

A. Datasets 

In order to increase generalizability we analyzed data from 

three separate datasets: BioBank, DePau l, and Newcastle. 

Since these datasets used different criteria for recruiting 

subjects and diagnosing CFS, a cumulative analysis of the 

datasets can provide a holistic interpretation of the disease.  

Each dataset contains subject self-responses to the DePaul 

Symptom Questionnaire (DSQ). The DSQ is designed to 

gauge the presence of 54 symptoms most commonly 

associated with CFS [1]. Each symptom is reported in terms 

of frequency and severity on a 0-4 Likert scale, so there are 

effectively 108 DSQ features. A frequency of 0 means a 

symptom occurs “none of the time,” whereas a frequency of 4 

means a symptom occurs “all of the time.” Likewise, a 

severity of 0 means the symptom is “not present,” and a 

severity of 4 means a symptom occurs “all of the time.” 

Relevant background information for the individual datasets 

is given below, but all analysis was done using the combined 

data from all three. Table I summarizes relevant database 

statistics. 

1) BioBank 

 

TABLE I: NUMBER OF CFS PATIENTS AND CONTROLS IN BIOBANK, 

DEPAUL, NEWCASTLE, AND COMBINED DATASETS 

Sample set Number of CFS 

patients 

Number of 

controls 

Total number of 

subjects 

BioBank 233 80 313 

DePaul 187 96 283 

Newcastle 95 0 95 

Combined 

datasets 

515 176 691 

 

CFS patients were recruited for the BioBank sample via 

the CFIDS Association of America website, internet forums 

and other social networks, as well as physician referrals. All 

patients received a diagnosis under the Fukuda or Canada 

criteria from a licensed physician specializing in the illness. 

After eliminating subjects missing 10% or more responses to 

the DSQ, the dataset contains a total 137 missing values 

(about 0.4% of the data). Methods for replacing missing data 

are described in detail below. The final dataset consists of 

233 CFS patients and 80 controls. 

2) DePaul 

The DePaul sample recruited CFS sufferers through 

internet forums, support groups, and from previous DePaul 

University studies. DePaul undergraduates were recruited as 

controls. After removing cases missing 10% or more 

responses, 214 missing values remained (about 0.6% of the 

data). 27 subjects with exclusionary conditions such as 

morbid obesity or depression were also removed. The final 

dataset contains 187 patients and 96 controls. 
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3) Newcastle 

CFS patients were referred to the Newcastle study through 

their primary care physician, who gave them a suspected 

diagnosis of CFS. It is worth noting that the Newcastle data 

was collected from subjects in the United Kingdom, whereas 

BioBank and DePaul were collected in the United States. The 

dataset contains no controls. Subjects missing 10% or more 

responses were removed, leaving 76 missing values (about 

0.7% of the total data). The cleaned dataset contains 95 

patients. 

B. Methods for Replacing Missing Values  

For the cases that had a score of 0 for either frequency or 

severity of a symptom and were missing the other field, the 

missing value was set to 0; the rationale was that a symptom 

should occur “none of the time” (frequency=0) if and only if 

the symptom is “not present” (severity=0). Otherwise, if a 

subject was missing data in only one of the two fields 

(frequency or severity) for a symptom, then the missing value 

was replaced with the mode value from the cases that had the 

same score for the non-missing field. When both fields were 

missing for a symptom, the values were replaced with the 

overall medians in those fields for that symptom. 

C. Unsupervised Thresholding  

In order to avoid treating frequency and severity scores for 

a symptom as independent features when applying machine 

learning algorithms, it was necessary to consolidate them into 

a single value. A thresholding approach was used to 

determine the presence of a symptom based on its frequency 

and severity, thus reducing the two dimensional scores for 

each symptom to one binary score (symptom present/not 

present). Rather than choosing an arbitrary threshold, we 

wanted to dynamically adjust the threshold for each symptom 

based on observed frequency and severity scores. This was 

achieved through a k-means clustering approach. 

Generally speaking, the k-means algorithm works by 

iteratively dividing coordinate points into a predetermined 

number of clusters based on which cluster center the point 

lies closest to. The cluster center is defined by the average 

value of all coordinate pairs in the cluster. After all points 

have been assigned to a cluster, the new cluster centers are 

calculated. Each point is then reassigned based on the new 

cluster centers. This process of center calculation and 

reassignment repeats until equilibrium is reached or a set 

number of iterations is completed. 

In this case, the k-means clustering algorithm was set to 

find two clusters, based on the underlying assumption that the 

data consists of delineable patient and control groups. 

Frequency and severity scores for each symptom were treated 

as coordinate pairs for the purpose of cluster assignment, and 

the Euclidean distance was used to measure closeness to the 

cluster centers. After equilibrium was reached, the 

perpendicular bisector of the line between cluster centers was 

found. This bisecting line was used as the threshold; 

frequency-severity pairs above the threshold line were 

considered “symptom present,” whereas scores below the 

line were considered “symptom not present.” 

D. Assessing Threshold Validity 

In order to determine the validity of unsupervised 

thresholding, the diagnostic accuracy of the unsupervised 

threshold was compared against two static thresholds and a 

threshold developed from a supervised clustering technique. 

The static one-one threshold considered a symptom present if 

the frequency and severity scores for the symptom are both 

greater than or equal to one. The static two-two threshold was 

similar, but used a score of two as the minimum for symptom 

presence. The supervised threshold was developed using a 

similar cluster-based perpendicular bisector technique as the 

unsupervised threshold, but subjects were divided into 

clusters based on the label of patient or control, rather than 

frequency and severity of symptoms.  

Using these thresholds for determining symptom presence, 

subjects were diagnosed under the Fukuda, Canadian, and 

ME-ICC case definitions. The sensitivity, specificity, and 

accuracy of the thresholds under each case definition were 

calculated based on how well they predicted the diagnostic 

labels (e.g. the official label of patient or control as given in 

the dataset). It is important to note that while the DSQ 

contains nearly all of the symptoms listed in the ME-ICC and 

Canadian criteria, some symptoms (disorientation, for 

example) are absent. Hence, minor modifications to the 

ME-ICC and Canadian definitions had to be made for the 

purpose of analysis, either through omission or by 

substituting closely related symptoms. It was possible to 

apply the Fukuda criteria without modification. 

E. Guided Feature Selection 

A naive feature selection method was used to identify the 

most predictive CFS symptoms. K-means clustering (k=2) 

was performed on the frequency/severity scores for each of 

the 54 DSQ symptoms individually. Hence, for each 

symptom we identified a cluster of high frequency and 

severity scores (deemed ‘symptom present’) and a cluster of 

low frequency and severity scores (‘symptom not present’). 

Sensitivity, specificity, and accuracy were calculated for each 

symptom by treating the diagnostic label of each case (patient 

or control) as the actual value, and membership in the 

symptom present or symptom not present clusters as the 

predicted value (e.g. assigning a patient to the symptom 

present cluster is considered a true positive, assigning a 

control subject to the symptom not present cluster is a true 

negative, etc.). Thus, the predictive accuracy of a symptom 

provides a measure of how well it can be used to distinguish 

between CFS patients and controls. Symptoms were then 

ranked by descending accuracy, and subsets of the top 1-15 

symptoms were evaluated for their predictive diagnostic 

accuracy.  

F. Assessing Feature Subset Validity via Unsupervised 

Symptom Clustering 

K-means clustering was used as a diagnostic tool to 

measure the predictive accuracy of subsets of the top 1-15 

symptoms against all 54 DSQ items. For each case, the 

presence of each symptom was determined using the 

unsupervised thresholding technique, resulting in a new set of 

binary (symptom present/not present) data. K-means 

clustering (k=2) was then performed on the binarized data for 

each of the feature subsets, as well as the set of all 54 DSQ 

features. Thus, clusters of low symptom presence and high 

symptom presence were identified for each feature set. The 
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sensitivity, specificity, and accuracy of each feature set were 

calculated using the diagnostic label of each case as the actual 

value and cluster membership as the predicted value, where 

placement in the low symptom cluster represents a negative 

diagnosis (control), and placement in the high symptom 

cluster represents a positive diagnosis (CFS).  

 

IV. DISCUSSION 

 In order to assess threshold validity, subjects’ frequency 

and severity scores for each of the 54 DSQ symptoms were 

converted into binary symptom present/not present scores 

using the unsupervised clustering threshold, the supervised 

clustering threshold, the two-two threshold, and the one-one 

threshold. Next, subjects were given diagnoses under the 

Fukuda, Canadian, and ME-ICC definitions for each 

threshold. Sensitivity, specificity, and accuracy were 

determined by comparing the predicted diagnosis of CFS 

against the diagnostic label associated with each case. 

Statistical significance was calculated using paired t-tests 

with p = 0.01. 

As Table II shows, unsupervised thresholding generally 

provides significantly better or comparable accuracy to the 

static and supervised thresholds. Unsupervised and 

supervised thresholding are not significantly different in 

terms of sensitivity, specificity, or accuracy for the Fukuda 

and Canada definitions. For the ME-ICC case definition, 

supervised thresholding achieves significantly better 

sensitivity and accuracy, but significantly worse specificity. 

Supervised and unsupervised thresholds achieve high scores 

overall, indicating that they are reliable measures relative to 

the static thresholds. 

  

With regard to statistical significance, unsupervised 

thresholding performs as well or better than the static 

two-two threshold across all definitions. Unsupervised 

thresholding achieves significantly higher sensitivity and 

accuracy than the two-two threshold for the Canadian and 

ME-ICC definitions but otherwise does not perform 

significantly differently than the two-two threshold. Scores 

for the unsupervised threshold tend to be higher overall. 

The one-one static threshold provides significantly higher 

sensitivity than unsupervised thresholding for each case 

definition. However, the one-one threshold also has 

significantly lower specificity than the unsupervised 

threshold for each definition, dipping as low as 42% for the 

Fukuda criteria. Accuracies for the two thresholds are not 

significantly different for any case definition, but the 

particularly low specificity of the one-one threshold makes 

unsupervised thresholding a more reliable measure. 

Hence, we conclude that unsupervised thresholding is a 

reliable metric for symptom diagnosis. It is superior to a static 

two-two threshold, substantially more specific than the 

one-one threshold, and generally comparable to the 

supervised threshold. Supervised thresholding seems to 

provide the best scores overall, but inflated performance is to 

be expected, as it was trained based on the original patient 

and control labels. 

Using the unsupervised threshold, the presence of each of 

the 54 DSQ symptoms was determined for each subject. 

K-means clustering (k=2) was applied to this dataset, 

resulting in one cluster of subjects experiencing few 

symptoms, and another cluster of subjects with relatively 

many symptoms. Hence, placement in the low-symptom 

cluster was treated as a negative CFS diagnosis, whereas 

placement in the high-symptom cluster was considered a 

positive diagnosis. Sensitivity, specificity, and accuracy were 

calculated by comparing this predicted diagnosis against the 

diagnostic label. As Table III shows, this approach provides 

significantly better predictive accuracy than the ME-ICC 

definition, and does not perform significantly differently than 

the Fukuda or Canadian criteria. 

 In order to improve diagnostic accuracy and suggest a  

more precise definition, a naive method of feature selection 

was performed upon the 54 DSQ symptoms. The 15 

symptoms most characteristic of CFS were identified by 

ranking symptoms according to greatest predictive accuracy 

for the disease (see Table V). K-means clustering was then 

applied as a method of predicted diagnosis (described above) 

using subsets of the top 1-15 symptoms (see Fig. 1). 

 

 
Fig. 1. Diagnostic sensitivity, specificity, and accuracy of subsets of 1-15 

most predictive CFS symptoms. 

TABLE II: COMPARATIVE SENSITIVITY, SPECIFICITY, AND 

ACCURACY OF THRESHOLDING TECHNIQUES FOR FUKUDA, CANADA, 

AND ME-ICC CASE DEFINITIONS 
Technique Definition Sensitivity Specificity Accuracy 

U.T.  Fukuda 83.1 85.8 83.8 

 

 

Canada 82.9 87.5 84.1 

 

 

ME-ICC 74.4 91.5 78.7 

S.T.ᵇ Fukuda 80.8 86.4 82.2 

 

 

Canada 85.8 87.5 86.3 

 

 

ME-ICC 89.9* 81.3* 87.7* 

Two-two 

static 

threshold 

Fukuda 80.8 85.8 82.1 

 

 

Canada 77.9* 89.8 80.9* 

 

 

ME-ICC 67.4* 91.5 73.5* 

One-one 

static 

threshold 

Fukuda 98.1* 42.0* 83.8 

 

 

Canada 97.3* 50.0* 85.2 

 

 

ME-ICC 93.4* 52.8* 83.1 

ᵃ Unsupervised thresholding 

ᵇ Supervised thresholding 

* Significantly different from corresponding value using 

unsupervised thresholding for p = 0.01 
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TABLE III: DIAGNOSTIC SENSITIVITY, SPECIFICITY, AND ACCURACY OF 

SELECTIONS OF DSQ ITEMS 

Number of symptoms or case 

definition used 

Sensitivity Specificity Accuracy 

Top 11 90.1 90.3 90.2 

All 54 79.4 90.9 82.3 

Fukuda 83.1 85.8 83.8 

Canadian 82.9 87.5 84.1 

ME-ICC 74.4 91.5 78.7 

 

Using the top 11 symptoms achieves the highest accuracy 

at 90.2%, with a corresponding sensitivity of 90.1% and 

specificity of 90.3%. This is significantly more accurate 

case definitions (see Table III). Using the top 11 symptoms 

does not provide significantly different sensitivity, specificity, 

or accuracy than the top 5, 7-10, 13, or 15 symptoms. This 

suggests that an empiric CFS definition based on these 

selections of symptoms may provide greater diagnostic 

accuracy than consensus-based criteria.  

Perhaps unsurprisingly, the most predictive symptom of 

CFS is fatigue. Symptoms 2-5 and 13 are related to 

post-exertional malaise, symptom 6 is a facet of sleep 

dysfunction, symptoms 7-10 and 12, 14, and 15 are 

neurocognitive issues, and symptom 11 is an aspect of 

general pain. This indicates that fatigue, post-exertional 

malaise, and neurocognitive disorders are the most predictive 

symptom categories of CFS. As such, a CFS case definition 

should place particular emphasis on these factors. 

 
TABLE IV: SENSITIVITY, SPECIFICITY, AND ACCURACY OF TOP 15 DSQ SYMPTOMS MOST PREDICTIVE OF CFS 

Ranking* Symptom Sensitivity Specificity Accuracy 

1 Fatigue/extreme tiredness 95.7 63.6 87.6 

2 Next day soreness or fatigue after non-strenuous, everyday activities 86.2 84.7 85.8 

3 Minimum exercise makes you physically tired 85.6 85.2 85.5 

4 Physically drained or sick after mild activity 82.7 90.3 84.7 

5 Dead, heavy feeling after starting to exercise 82.1 88.6 83.8 

6 Feeling unrefreshed after waking up in the morning 85.4 76.7 83.2 

7 Problems remembering things 82.9 81.3 82.5 

8 Muscle weakness 74.2 91.5 78.6 

9 Difficulty finding the right word to say or expressing thoughts 77.7 79.5 78.1 

10 Only able to focus on one thing at a time 76.7 82.4 78.1 

11 Pain or aching in your muscles 75.1 84.1 77.4 

12 Difficulty paying attention for a long period of time 78.8 72.7 77.3 

13 Mentally tired after the slightest effort 72.8 89.2 77.0 

14 Absent-mindedness or forgetfulness 72.0 87.5 76.0 

15 Sensitivity to noise 69.7 91.5 75.3 

*by predictive accuracy of CFS    

 

V. CONCLUSION 

Our results indicate that the DSQ, when combined with 

unsupervised thresholding and feature selection techniques, 

can provide an accurate basis for diagnosing CFS. These 

findings hold promise for the development of an empirical 

CFS case definition as an accurate diagnostic tool. We 

compared unsupervised, supervised, and naive thresholding 

techniques and found unsupervised thresholding to be a 

reliable means of determining symptom presence based on 

DSQ responses. We went on to show that applying k-means 

clustering to the DSQ data can provide an accurate diagnosis 

of CFS, as compared to the Fukuda, Canadian, and ME-ICC 

case definitions. Applying feature selection techniques to the  

DSQ symptoms can further increase the DSQ’s diagnostic 

accuracy. In particular, we identify eleven symptoms that 

provide the highest predictive capability of CFS. Future work 

should focus on extending these findings to standardized 

criteria that can be easily implemented in a clinical setting. 

Further exploration of unsupervised thresholding could yield 

standardized thresholds for each DSQ symptom, reducing its 

ambiguity as a diagnostic tool. Additionally, our findings 

suggest subsets of symptoms that are most important in 

diagnosing CFS. Future studies should identify some criteria 

for the number or types of symptoms that must be expressed 

in order to develop a definition that can be applied in a 

clinical setting.  
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