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Abstract—It is a common task in pattern recognition to 

evaluate the similarity of large data objects. These are often 

represented by high dimensional vectors. A frequently used 

mathematical model for evaluating their similarity is to view 

them as points (vectors) in a high dimensional space, and 

compute their distances from each other. The “distance,” 

however, can be defined in a very complicated way, it may be 

much more complex than the well known Euclidean distance. 

Therefore, the algorithmic bottleneck often becomes the number 

of distance computations that need to be carried out. We 

consider the case when we have to compute all the distances 

between n objects, where n is large. Without any shortcuts it 

takes n(n − 1)/2 = O(n2) distance computations. In those 

applications where the distances are complicated, being defined 

by sophisticated algorithms (such as in speech and image 

recognition), a quadratically growing number of distance 

computations becomes a severe bottleneck. We prove the 

following general result that can help eliminating the bottleneck: 

for a large and general class of distances it is possible to obtain 

a very close approximation of each of the O(n2) pairwise 

distances of n objects by doing only a linear number distance 

computations, which is optimal with respect to the order of 

magnitude. Moreover, the approximation factor can be made 

arbitrarily close to 1, making the approximation error negligible. 

The needed side computations to achieve this reduction can also 

be done in polynomial time. 

 
Index Terms—Pattern recognition, approximate distance 

computation, metric space, normed space. 

 

I. INTRODUCTION 

It is a typical task in pattern recognition that various objects 

are represented by high dimensional vectors and some kind of 

measure of similarity is defined among them. To visualize the 

situation, we refer to this measure as distance, even if it may 

not satisfy all the usual axioms of the mathematical distance 

in metric spaces. 

In some cases these distances can be quite complicated to 

compute. Such complex similarity measures occur, for ex- 

ample, in speech recognition, image recognition, handwriting 

recognition, and a number of other pattern recognition tasks. 

Even if we restrict ourselves to those metrics that actually 

satisfy the distance axioms, they may still be much harder to 

compute than the classic Euclidean distance. 

Let us recall the well-known distance axioms, denoting the 

distance function by d(x, y): (1) Symmetry: d(x, y) = d(y, x) 

for every x, y; (2) Positivity: d(x, y) > 0 for every x ≠ y; (3) 
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Identity: d(x, x) = 0 for every x; (4)  Triangle inequality: d(x, 

y) + d(y, z) ≥ d(x, z) for every x, y, z. 

A classical example that satisfies the axioms is the Eu- 

clidean distance in vector spaces, which is, of course, easy 

to compute. Generally, if we have a set and a function d(x, y) 

defined on it, satisfying the above axioms, then it is called a 

metric space. 

In pattern recognition tasks one often uses much more 

complicated distances than the Euclidean. An example of a 

significantly harder distance is the Hausdorff-distance, which 

is used, for example, in computer vision to identify a template 

in a given target image [1], [2]. The Hausdorff-distance is 

much more time consuming to compute, yet it is of practical 

importance, as it is actually used in computer vision and 

image processing. 

Let us now consider the following general task. Given a 

metric space and n points in this space. Note that the points, 

represented by vectors, may actually be encoded descriptions 

of much more complicated objects, such as images. We want 

to compute all the distances between the n points. This may be 

important for several practical reasons: in pattern recognition 

algorithms, clustering, analyzing the geometry, such as 

finding nearest and farthest pairs etc. 

There are altogether n(n − 1)/2 = O(n2) distances among n 

points. As complex distance computation can be quite de- 

manding, the computation of a quadratic ally growing number 

of distances can become prohibitively slow. Therefore, we 

are interested in the question: can these O(n2) distances be 

obtained using only a linear number of distance 

computations? 

It is clear that sublinear cannot be enough, if we can only 

obtain information about the data objects through computing 

their distances. The reason is that with strictly less than n 

distance computations there must be a data object among the 

n ones, which is not involved in any distance computation. 

Such an object does not influence the results at all, so it may 

be changed arbitrarily, without changing the result. This is 

clearly impossible, if we want to compute all distances among 

n data objects, as some of the distances must depend on this 

particular data object. Thus, if the task can be solved with 

a linear number of distance computations, that solution is 

optimal with respect to the order of magnitude. 

In the rest of the paper we show the surprising fact that, 

under some quite general conditions, we can indeed achieve 

this optimal order of magnitude. The price is that we need to 

accept approximate distances, instead of the exact ones. The 

approximation factor, however, can be brought arbitrarily 

close to 1, so the error can be made negligible. 

Before presenting our solution, let us provide a brief 

historical survey on related results, to put our method in 

perspective. 
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II. HISTORICAL REVIEW OF RELATED RESULTS 

It is a common situation in many applications that the data 

is represented by a large number of points in a metric space. 

This can be viewed such that the data itself forms a finite 

metric space. In these situations it is very useful if we can 

simplify the data by mapping the source points into a 

significantly simpler target metric space, such that the 

pairwise distances between data points are preserved. If they 

are preserved exactly, then it is called isometric embedding. 

Unfortunately, perfect isometric embedding into a simpler 

space is rarely possible. Therefore, one usually looks for the 

relaxed case, when the distances are preserved only 

approximately, but with small error. In this case we talk 

about low distortion metric embedding. If the error can be 

made arbitrarily small, then it is referred to as almost 

isometric embedding. Such solutions have provided 

tremendous help in many algorithms and applications. 

While our method aims at computing all-pairs distances, 

rather than an embedding, it is still methodologically related 

to the issue of almost isometric embedding that is why we 

review the main embedding results here. 

The embedding task usually comes in two typical flavors. 

The first one is when the distance metric in the source space 

is too complicated. Here the main goal is to replace the 

complicated metric with a much simpler one, which is 

typically the well-known lp metric with p=1, 2, or ∞. Recall 

that the lp distance of two vectors x= (x1,...,xn) and 

y=(y1,...,yn) is defined as: 
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In the special case of l = 1 we get the l1 metric: 
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while for l = 2 the Euclidean distance is obtained: 
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If l = ∞, then we get the maximum norm based distance: 

( , ) i i
i

d x y max x y    

It may also happen that the data points themselves are not 

structured (or we may not be interested in their intrinsic 

structure, so they can be represented just by abstract labels), 

then the key information is carried solely by the metric. In 

that case we are led to the task of embedding a general finite 

metric space into 
d

pl , which is the d-dimensional real vector 

space R
d
, equipped with the lp norm. 

The other flavor is when the source data may reside in a 

space of simple structure, such as Rd with the Euclidean norm 

l2, but the dimension is excessively high. Even if the metric 

is simple, the high dimension can dramatically slow down 

algorithms that often have running times exponential in the 

dimension (known as the “curse of dimensionality”). In this 

case the goal of embedding is dimensionality reduction: the 

mapping into a much lower dimensional space can provide 

significant help, even if the metric is not simplified. 

Since finding good algorithms for metric embedding with 

low distortion is far from trivial, it is one of the rare fields 

where clear practical importance meets the intrinsic 

mathematical beauty of the question. 

Embedding problems of finite metric spaces have been the 

subject of extensive research for a very long time, yielding 

a large number of results. Below we briefly review some 

fundamental results about low distortion embedding of n- 

point metric spaces into
p

dl
 with d « n, as these cases relate 

most closely to our work. 

A classic result is Bourgain’s Theorem [3], which says that 

any n-point finite metric space can be embedded into an 

Euclidean space, with distortion O(log n). Linial, London and 

Rabinovich [4] showed that it also works with target norm lp 

for any p. The dimension of the target space was originally 

exponential, but was later reduced to O(log
2 

n) by Linial, 

London and Rabinovich, and Matoušek [5]. Linial, London 

and Rabinovich also proved an Ω(log n) lower bound for the 

distortion. Further improvement was obtained by Abraham, 

Bartal and Neiman [6], who reduced the target dimension to 

O(log n), which is optimal, and also showed that the average 

(but not the worst case!) distortion can be made constant. A 

lesson from this chain of results is that when a general n-point 

metric space is embedded into d

pl , then neither the dimension 

d, nor the distortion can remain bounded as n grows. 

Thus, if we hope to achieve the ideal case of almost 

isometric embedding into bounded dimension, then we must 

impose some restriction on the source metric space, rather 

than allowing an arbitrary source metric. A classic result in 

this direction is the Johnson-Lindenstrauss Lemma [7], which 

says that for every ϵ >0, any n points from an l2 space can be 

embedded with 1+ ϵ distortion (i.e., almost isometrically) into 

2

dl  , where d = O(log n/ϵ
2 
). Since it is known (see, e.g., Indyk 

and Matoušek [8]) that the isometric embedding of the same 

points is not possible into 2

dl with d < n − 1, therefore, it is an 

appealing and extremely useful fact that allowing a very slight 

distortion can bring down the target dimension to O(log n), 

resulting in exponential dimension reduction. Another useful 

feature is that the embedding can be computed via a simple 

random projection. On the other hand, it is not possible to 

reduce the target dimension to a constant, as there is a known 

almost matching lower bound of Ω(log n/(ϵ2 log(1/ ϵ))) for the 

dimension, due to Alon [9], see also Matoušek [10]. 

The lower bound on the dimension shows that we cannot 

achieve our ideal goal with l2 target metric, when the source 

is an arbitrary normed space. How about l1 as target metric? 

Then the situation is even worse, as Brinkman and Charikar 

[11] proves that for every n, the embedding of an n-point l1 

metric into 
1

dl
  with distortion c > 1 requires 

2(1/ )cd n  

in the worst case. 

Regarding l  as the target metric, Matousek [12] showed 

that any n-point metric can be embedded into dl  With 

distortion c and of dimension   

Furthermore, an almost matching lower bound can be proved, 

so the target dimension cannot remain bounded for a general 
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source metric with l  target. 

One may ask at this point: is there any nontrivial 

embedding result with constant target dimension, independent 

of the number of source data points? While such results do 

exist, under special conditions, they are quite rare. A folklore 

example (see Indyk [13]) is that 
1

dl isometrically embeds into 

dl



with d   = 2d, regardless of the number of source points. 

Another example is the theorem of Gupta, Krauthgamer and 

Lee [14], which says that every doubling tree metric embeds 

into d

pl  with constant d and constant distortion (which may 

not be arbitrarily close to 1), for every  1,p  . Here a tree 

metric is the shortest path metric on the vertices of a tree. A 

metric is called doubling, if its doubling dimension is finite, 

where the doubling dimension is the smallest integer k, such 

that every ball can be covered by 2
k balls of half the radius. 

Another embedding result into constant dimension is 

Assouad’s Theorem [15]. It says that if the source metric has 

constant doubling dimension, and 0 < γ < 1 is a constant, 

then there exist constants d, C, such that the “snowflake 

version” of the source metric embeds into 
2

dl  with distortion 

C. Here the snowflake version of the source metric is the 

original metric raised to the power of γ (which remains a 

metric for 0 < γ < 1). The target dimension and the distortion 

in Assouad’s Theorem depend on the doubling dimension and 

γ, but not on the number of input points. On the other hand, the 

embedded metric is a modified version of the source metric, 

not the original itself. Note that the difference between the 

original and the snowflake version is not bounded for any 0 

< γ < 1. Assouad conjectured that the embedding also 

applies to the original source metric (corresponding to γ = 1), 

but that was disproved by Semmes [16]. As a further step, 

Gottlieb and Krauthgamer [17] extended Assouad’s Theorem 

by showing that if the source metric is also Euclidean (beyond 

having constant doubling dimension), then the embedding of 

the snowflake version into constant dimension can be done 

with 1+ϵ distortion with arbitrary ϵ >0. This again applies to 

the modified source metric, not the original. 

Apparently, the most general result so far on embedding the 

original n-point source metric (not its snowflake version) into 

constant dimension is the theorem of Abraham, Bartal and 

Neiman [18]. It says that any n-point metric space of doubling 

dimension k can be embedded into 
d

pl  with d = O(k/θ) and 

distortion O(log
1+θ 

n), where (0,1]  . While the target 

dimension is constant here, the distortion grows to infinity 

with n, so it is not an almost isometric embedding. 

Our result (to be presented in the next sections) can 

technically be viewed as an almost isometric embedding, 

when the source points are from a fixed finite dimensional 

normed space, and the target space is a constant dimensional 

metric space. This constant target dimension makes it 

possible to reduce the number of distance computations to 

linear order. 

 

III. THE TASK 

In this section we specify the task we are going to solve. 

First, we have to impose some restriction on the considered 

distances, to make the task tractable. The restriction still 

allows that many different distances are incorporated, 

including ones that are hard to compute. 

We restrict ourselves to distances that are generated by a 

norm in a vector space. To recall the well known concept of 

a norm, let us review its axioms. A norm is a function that 

assigns a real number to each vector in a vector space and 

satisfies the properties listed below. The norm of a vector x 

is denoted by x .  

 Positivity: x > 0 for each vector x ≠ 0 , where 0  is the 

zero vector 

 Linearity: cx = c x  for any vector x and any scalar 

c (this also implies 0 = 0) 

 Triangle inequality: x + y ≥ x y for every x, y. 

A vector space with a norm defined on it is called a 

normed space. If the underlying vector space is finite 

dimensional, then we call it a finite dimensional normed 

space. Note that one may define many different norms on the 

same vector space Once we have a norm, it directly generates 

a distance by 

( , )d x y x y   

It is easy to prove that this is indeed a distance, satisfying 

the distance axioms. It is known, however, that not every 

distance can be generated by a norm. The restriction we 

impose is that we only deal with norm-generated distances. 

One may suspect at this point that perhaps only the al- 

gorithmically “easy” distances are generated by a norm, so 

by restricting ourselves to norm-generated distances, we may 

exclude all the hard cases. This is, however, not so at all. The 

reason is that a norm itself can also be very hard to compute. 

Here is an example. Let C be a convex set in a vector space, 

such that C contains the origin in its interior. It is known [19] 

that the following construction generates a norm: 

 inf 1/ :x x C    

Now choosing the convex set C such that it is hard to carry 

out the above optimization makes the norm hard to compute. 

For example, we can create a norm that is NP-hard to 

compute, if we choose C as the convex hull of the incidence 

vectors of cliques in a graph (with a little shifting to include 

the origin in its interior). 

Now the specific task we are going to solve is detailed 

below. 

Task All-Pairs Distance Computation (APDC) 

Input: n vectors in a finite dimensional normed space 

Goal: Compute (approximately) all the n(n−1)/2 pair- wise 

distances among the vectors 

Assumption: The algorithm can access the norm of any 

vector of the space via a (black box) subroutine. Calling the 

subroutine is counted as a single step in the running time of 

the algorithm. 

Requirements: 

1) Approximation quality. The computed approximate 
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distances can deviate from the exact ones at most by a 

constant factor. That is, there must exist constants 0 < α ≤ 

1 and β ≥ 1 (independent of n), such that for any vectors x, 

y 

( , ) ( , ) ( , )d x y d x y d x y                      (1) 

holds, where ( , )d x y x y   is the exact distance 

(defined by the norm), and d- (x, y) is the computed 

approximation. Moreover, we require that the value of 

β − α can be made an arbitrarily small positive number, 

yielding an approximation factor arbitrarily close to 1. 

2) The algorithm can call the norm subroutine only O(n) 

times. This makes the problem hard (otherwise we could 

just compute all the O(n2) distances). This requirement 

reflects the view that the main bottleneck is the 

computation of a complex distance function. 

3) No excessive hidden costs. If all the vectors fall in a 

fixed bounded subset (independent of n), then the 

algorithm must run in polynomial time (counting the 

norm subroutine calls as single steps). This means, the 

linear number of distance (norm) computations cannot 

come at the price of exponentially high 

side-computations. 

 

IV. RESULT 

Now we prove that an algorithm that satisfies all the above 

requirements indeed exists. Before presenting the result 

formally, let us note that for number representation and 

operation we adopt the unit cost model: each number is 

considered a single data unit and each elementary number 

operation (addition, subtraction, multiplication, division and 

comparison) is counted as a single step. That is, the bit length 

of numbers is not considered. 

 

 

 

Proof. Let S be a finite dimensional normed space with 

norm l · l. Let U be the closed unit ball in this space, that 

is,  : 1U u S u   . Fix a real number α with 0 < α < 

1. First we show that one can fix k vectors z1, . . . , zk ∈ S for 

some constant k, such that 

 i i
i

x y max x z y z x y         (2) 

holds for every ,x y U . 

For the proof, let us define a new normed space on S2 = 

S × S. The operations on S2 are defined as c(x, y) = (cx, cy) 

and (x1, y1)+(x2, y2) = (x1+x2, y1+y2), and let us introduce the 

norm ( , ) +x y x y  on S
2
. One can directly check 

that this way again a finite dimensional normed vector space 

is obtained. Now fix a real number 0 < α < 1 and for each 

z S  define the set 
2

zA S  by  

2( , ) : ,z

y z x z
A x y S x y

x y


    
    

  

 

Furthermore, let 2H S  be the following set. 

 ( , ) : 2, 1, 1/ 2H x y x y x y      

We will use the following properties of these sets: 

1) H is closed and bounded; 

2) Az  is open; 

3) 
z S zH U A  . 

Clearly, 1) and 2) follow from the definition. To see 3) it 

is enough to observe that for any x y ( , )S x y xA  

must hold, since with x = z we have 

0
1

y z x z y z

x y x y


    
  

 
 

Thus the sets  ,zA z S  form an open cover of H. 

Given that the space is finite dimensional, it follows from the 

well-known Heine-Borel theorem that there exists a finite 

subcover, that is, there are points 
1,..., kz z  with 

1 i

k

i zH U A  means that for any ( , )x y H . 

j jy z x z

x y


  



                    (3) 

holds for some 1 ≤ j ≤ k. 

We now show that (3) also holds for any ,x y U , 

x y If 1/ 2x y  , then ( , )x y H , so then we 

already know it. Now take two points ,x y U  at 

distance λ apart, for some 0 < λ < 1/2. That is 1x  , 

1y  , and 0 1/ 2x y     . Set 

1
( (1 ) )x x y


     Then (1 )x x y     holds, 

that is, x divides the line segment x y  such that 

x y x y    . As we have chosen x y   , it 

implies 1x y   . This, together with y U  and by the 

triangle inequality, gives 2 x y y x     , 

yielding 2x  . Collecting these facts, they imply 

( , )x y H  . But then by (3) there is a zj with 

j jy z x z

x y


  



                   (4) 

Now using ( ) (1 )( )j j jx z x z y z       , as 

well as the fact that the norm axioms imply that every norm 

is a convex function, we can write 

j jy z x z

x y

  



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Theorem 1. Let B be a fixed bounded subset in a finite 

dimensional normed space and let 1,..., nx x S be 

arbitrary input vectors. Assume that a subroutine is available 

to compute the norm of any vector in the space. Then there 

exists a polynomial-time algorithm that finds a constant factor 

approximation of all the pairwise distances between the input 

vectors, such that the algorithm requires only O(n) norm 

computations. Moreover, the approximation factor can be 

made arbitrarily close to 1.



  

( (1 ) )j j jy z x z y z 



     
  

j jy z x z     

j jy z x z

x y


  



                  (5) 

Thus, for any ,x y U  there must be a 

 1,...,j k such that 

j jx z y z x y                      (6) 

holds. For 1/ 2x y   this follows from (3) and the case 

1/ 2x y   is covered by the analysis resulting in (5). 

Since the triangle inequality implies 

x z y z x y      for every x, y, z, therefore, 

combining this with (6), we obtain that (2) holds for every 

,x y U .  

Now, let B be the bounded subset in the statement of the 

theorem and let supx BR x  . Then ,x y B  

implies 1 1
,x y U

R R
 , so we can apply (2) to 1 1

,x y
R R

. 

Multiplying all sides in (2) by R and replacing each 
iz  by 

i iz Rz  , we obtain that  

max i i
i

x y x z y z x y              (7) 

holds for every ,x y B . 

Thus the value 

( , ) max i i
i

d x y x z y z                  (8) 

satisfies the requirements of the approximate distance (1) we 

are looking for, with β = 1. Since α can be chosen to be 

arbitrarily close to 1, the difference β − α = 1−α can be made 

arbitrarily close to 0, as required. Finally, we also observe 

from the formula that in order to compute ( , )i jd x x  for all 

i, j it is enough to know the norms 
i jx z  for every i, j. 

Since there are k vectors jz  and for a fixed set B the value 

of k is constant (independent of n), therefore, we need only 

constantly many norm computations for each xi, which is 

altogether O(n) norm computations, as desired. The other 

side-computations can clearly be done in polynomial time, 

thus completing the proof. 

 

V. DISCUSSION AND OPEN PROBLEMS 

A key feature of our result is that it proves only the 

existence of an algorithm with all the desired properties. On 

the other hand, the proof is not constructive, that is, it does 

not provide an effective method to actually construct the 

algorithm. In other words, we did not specify in the proof 

how to effectively find the required 
1,..., kz z   vectors that 

allow the computation of the approximate distance, according 

to formula (8). Nevertheless, we have proved that these 

vectors exist, so the algorithm with the desired properties 

must also exist. 

A next natural research issue (which we plan to address in a 

future paper) is how to efficiently find the needed vectors 

1,..., kz z  , so that the algorithm can be practically 

implemented.. Regarding this issue, we present the following 

conjecture. 

 

 

 

 

 

VI. CONCLUSION 

We have presented a method for the optimization of 

massive distance computations. We have proved that the 

quadratic all pairs distance computation in any normed space 

can be carried out with a linear number of distance 

computations. This can provide significant speed-up in those 

computationally intensive pattern recognition tasks that 

require many sophisticated distance computations. Let us note 

that while the rigorous proof of Theorem 1 is not simple, the 

result is more practical than it appears. Specifically, if 

Conjecture 1 is true (for which there is good chance), then it 

results in a quick and practical way of constructing an 

algorithm that can compute the O(n2) all pairs distances of n 

points (data objects) in an arbitrary normed space, using only 

a linear number of distance computations, without excessive 

hidden costs in the side computations. 
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