



Abstract—It is a common task in pattern recognition to

evaluate the similarity of large data objects. These are often

represented by high dimensional vectors. A frequently used

mathematical model for evaluating their similarity is to view

them as points (vectors) in a high dimensional space, and

compute their distances from each other. The “distance,”

however, can be defined in a very complicated way, it may be

much more complex than the well known Euclidean distance.

Therefore, the algorithmic bottleneck often becomes the number

of distance computations that need to be carried out. We

consider the case when we have to compute all the distances

between n objects, where n is large. Without any shortcuts it

takes n(n − 1)/2 = O(n2) distance computations. In those

applications where the distances are complicated, being defined

by sophisticated algorithms (such as in speech and image

recognition), a quadratically growing number of distance

computations becomes a severe bottleneck. We prove the

following general result that can help eliminating the bottleneck:

for a large and general class of distances it is possible to obtain

a very close approximation of each of the O(n2) pairwise

distances of n objects by doing only a linear number distance

computations, which is optimal with respect to the order of

magnitude. Moreover, the approximation factor can be made

arbitrarily close to 1, making the approximation error negligible.

The needed side computations to achieve this reduction can also

be done in polynomial time.

Index Terms—Pattern recognition, approximate distance

computation, metric space, normed space.

I. INTRODUCTION

It is a typical task in pattern recognition that various objects

are represented by high dimensional vectors and some kind of

measure of similarity is defined among them. To visualize the

situation, we refer to this measure as distance, even if it may

not satisfy all the usual axioms of the mathematical distance

in metric spaces.

In some cases these distances can be quite complicated to

compute. Such complex similarity measures occur, for ex-

ample, in speech recognition, image recognition, handwriting

recognition, and a number of other pattern recognition tasks.

Even if we restrict ourselves to those metrics that actually

satisfy the distance axioms, they may still be much harder to

compute than the classic Euclidean distance.

Let us recall the well-known distance axioms, denoting the

distance function by d(x, y): (1) Symmetry: d(x, y) = d(y, x)

for every x, y; (2) Positivity: d(x, y) > 0 for every x ≠ y; (3)

Manuscript received October 10, 2013; revised December 7, 2013. The

author is grateful for the support of NSF Grant CNS-1018760.

Andras Farago is with the Department of Computer Science, The

University of Texas at Dallas, Richardson, TX 75080, USA (e-mail:

farago@utdallas.edu).

Identity: d(x, x) = 0 for every x; (4) Triangle inequality: d(x,

y) + d(y, z) ≥ d(x, z) for every x, y, z.

A classical example that satisfies the axioms is the Eu-

clidean distance in vector spaces, which is, of course, easy

to compute. Generally, if we have a set and a function d(x, y)

defined on it, satisfying the above axioms, then it is called a

metric space.

In pattern recognition tasks one often uses much more

complicated distances than the Euclidean. An example of a

significantly harder distance is the Hausdorff-distance, which

is used, for example, in computer vision to identify a template

in a given target image [1], [2]. The Hausdorff-distance is

much more time consuming to compute, yet it is of practical

importance, as it is actually used in computer vision and

image processing.

Let us now consider the following general task. Given a

metric space and n points in this space. Note that the points,

represented by vectors, may actually be encoded descriptions

of much more complicated objects, such as images. We want

to compute all the distances between the n points. This may be

important for several practical reasons: in pattern recognition

algorithms, clustering, analyzing the geometry, such as

finding nearest and farthest pairs etc.

There are altogether n(n − 1)/2 = O(n2) distances among n

points. As complex distance computation can be quite de-

manding, the computation of a quadratic ally growing number

of distances can become prohibitively slow. Therefore, we

are interested in the question: can these O(n2) distances be

obtained using only a linear number of distance

computations?

It is clear that sublinear cannot be enough, if we can only

obtain information about the data objects through computing

their distances. The reason is that with strictly less than n

distance computations there must be a data object among the

n ones, which is not involved in any distance computation.

Such an object does not influence the results at all, so it may

be changed arbitrarily, without changing the result. This is

clearly impossible, if we want to compute all distances among

n data objects, as some of the distances must depend on this

particular data object. Thus, if the task can be solved with

a linear number of distance computations, that solution is

optimal with respect to the order of magnitude.

In the rest of the paper we show the surprising fact that,

under some quite general conditions, we can indeed achieve

this optimal order of magnitude. The price is that we need to

accept approximate distances, instead of the exact ones. The

approximation factor, however, can be brought arbitrarily

close to 1, so the error can be made negligible.

Before presenting our solution, let us provide a brief

historical survey on related results, to put our method in

perspective.

Optimizing Massive Distance Computations in

Pattern Recognition

Andras Farago

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

114DOI: 10.7763/IJMLC.2014.V4.397

II. HISTORICAL REVIEW OF RELATED RESULTS

It is a common situation in many applications that the data

is represented by a large number of points in a metric space.

This can be viewed such that the data itself forms a finite

metric space. In these situations it is very useful if we can

simplify the data by mapping the source points into a

significantly simpler target metric space, such that the

pairwise distances between data points are preserved. If they

are preserved exactly, then it is called isometric embedding.

Unfortunately, perfect isometric embedding into a simpler

space is rarely possible. Therefore, one usually looks for the

relaxed case, when the distances are preserved only

approximately, but with small error. In this case we talk

about low distortion metric embedding. If the error can be

made arbitrarily small, then it is referred to as almost

isometric embedding. Such solutions have provided

tremendous help in many algorithms and applications.

While our method aims at computing all-pairs distances,

rather than an embedding, it is still methodologically related

to the issue of almost isometric embedding that is why we

review the main embedding results here.

The embedding task usually comes in two typical flavors.

The first one is when the distance metric in the source space

is too complicated. Here the main goal is to replace the

complicated metric with a much simpler one, which is

typically the well-known lp metric with p=1, 2, or ∞. Recall

that the lp distance of two vectors x= (x1,...,xn) and

y=(y1,...,yn) is defined as:

1/

1

(,)

p
n

p

p i i

i

d x y x y


 
  
 


In the special case of l = 1 we get the l1 metric:

1

1

(,)
n

i i

i

d x y x y


 

while for l = 2 the Euclidean distance is obtained:

1/2

2

2

1

(,) ()
n

i i

i

d x y x y


 
  
 


If l = ∞, then we get the maximum norm based distance:

(,) i i
i

d x y max x y  

It may also happen that the data points themselves are not

structured (or we may not be interested in their intrinsic

structure, so they can be represented just by abstract labels),

then the key information is carried solely by the metric. In

that case we are led to the task of embedding a general finite

metric space into
d

pl , which is the d-dimensional real vector

space R
d
, equipped with the lp norm.

The other flavor is when the source data may reside in a

space of simple structure, such as Rd with the Euclidean norm

l2, but the dimension is excessively high. Even if the metric

is simple, the high dimension can dramatically slow down

algorithms that often have running times exponential in the

dimension (known as the “curse of dimensionality”). In this

case the goal of embedding is dimensionality reduction: the

mapping into a much lower dimensional space can provide

significant help, even if the metric is not simplified.

Since finding good algorithms for metric embedding with

low distortion is far from trivial, it is one of the rare fields

where clear practical importance meets the intrinsic

mathematical beauty of the question.

Embedding problems of finite metric spaces have been the

subject of extensive research for a very long time, yielding

a large number of results. Below we briefly review some

fundamental results about low distortion embedding of n-

point metric spaces into
p

dl
 with d « n, as these cases relate

most closely to our work.

A classic result is Bourgain’s Theorem [3], which says that

any n-point finite metric space can be embedded into an

Euclidean space, with distortion O(log n). Linial, London and

Rabinovich [4] showed that it also works with target norm lp

for any p. The dimension of the target space was originally

exponential, but was later reduced to O(log
2

n) by Linial,

London and Rabinovich, and Matoušek [5]. Linial, London

and Rabinovich also proved an Ω(log n) lower bound for the

distortion. Further improvement was obtained by Abraham,

Bartal and Neiman [6], who reduced the target dimension to

O(log n), which is optimal, and also showed that the average

(but not the worst case!) distortion can be made constant. A

lesson from this chain of results is that when a general n-point

metric space is embedded into d

pl , then neither the dimension

d, nor the distortion can remain bounded as n grows.

Thus, if we hope to achieve the ideal case of almost

isometric embedding into bounded dimension, then we must

impose some restriction on the source metric space, rather

than allowing an arbitrary source metric. A classic result in

this direction is the Johnson-Lindenstrauss Lemma [7], which

says that for every ϵ >0, any n points from an l2 space can be

embedded with 1+ ϵ distortion (i.e., almost isometrically) into

2

dl , where d = O(log n/ϵ
2
). Since it is known (see, e.g., Indyk

and Matoušek [8]) that the isometric embedding of the same

points is not possible into 2

dl with d < n − 1, therefore, it is an

appealing and extremely useful fact that allowing a very slight

distortion can bring down the target dimension to O(log n),

resulting in exponential dimension reduction. Another useful

feature is that the embedding can be computed via a simple

random projection. On the other hand, it is not possible to

reduce the target dimension to a constant, as there is a known

almost matching lower bound of Ω(log n/(ϵ2 log(1/ ϵ))) for the

dimension, due to Alon [9], see also Matoušek [10].

The lower bound on the dimension shows that we cannot

achieve our ideal goal with l2 target metric, when the source

is an arbitrary normed space. How about l1 as target metric?

Then the situation is even worse, as Brinkman and Charikar

[11] proves that for every n, the embedding of an n-point l1

metric into
1

dl
 with distortion c > 1 requires

2(1/)cd n

in the worst case.

Regarding l as the target metric, Matousek [12] showed

that any n-point metric can be embedded into dl With

distortion c and of dimension

Furthermore, an almost matching lower bound can be proved,

so the target dimension cannot remain bounded for a general

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

115

d = O((c + 1)n2/(c+1) log n).

source metric with l target.

One may ask at this point: is there any nontrivial

embedding result with constant target dimension, independent

of the number of source data points? While such results do

exist, under special conditions, they are quite rare. A folklore

example (see Indyk [13]) is that
1

dl isometrically embeds into

dl



with d  = 2d, regardless of the number of source points.

Another example is the theorem of Gupta, Krauthgamer and

Lee [14], which says that every doubling tree metric embeds

into d

pl with constant d and constant distortion (which may

not be arbitrarily close to 1), for every  1,p  . Here a tree

metric is the shortest path metric on the vertices of a tree. A

metric is called doubling, if its doubling dimension is finite,

where the doubling dimension is the smallest integer k, such

that every ball can be covered by 2
k balls of half the radius.

Another embedding result into constant dimension is

Assouad’s Theorem [15]. It says that if the source metric has

constant doubling dimension, and 0 < γ < 1 is a constant,

then there exist constants d, C, such that the “snowflake

version” of the source metric embeds into
2

dl with distortion

C. Here the snowflake version of the source metric is the

original metric raised to the power of γ (which remains a

metric for 0 < γ < 1). The target dimension and the distortion

in Assouad’s Theorem depend on the doubling dimension and

γ, but not on the number of input points. On the other hand, the

embedded metric is a modified version of the source metric,

not the original itself. Note that the difference between the

original and the snowflake version is not bounded for any 0

< γ < 1. Assouad conjectured that the embedding also

applies to the original source metric (corresponding to γ = 1),

but that was disproved by Semmes [16]. As a further step,

Gottlieb and Krauthgamer [17] extended Assouad’s Theorem

by showing that if the source metric is also Euclidean (beyond

having constant doubling dimension), then the embedding of

the snowflake version into constant dimension can be done

with 1+ϵ distortion with arbitrary ϵ >0. This again applies to

the modified source metric, not the original.

Apparently, the most general result so far on embedding the

original n-point source metric (not its snowflake version) into

constant dimension is the theorem of Abraham, Bartal and

Neiman [18]. It says that any n-point metric space of doubling

dimension k can be embedded into
d

pl with d = O(k/θ) and

distortion O(log
1+θ

n), where (0,1]  . While the target

dimension is constant here, the distortion grows to infinity

with n, so it is not an almost isometric embedding.

Our result (to be presented in the next sections) can

technically be viewed as an almost isometric embedding,

when the source points are from a fixed finite dimensional

normed space, and the target space is a constant dimensional

metric space. This constant target dimension makes it

possible to reduce the number of distance computations to

linear order.

III. THE TASK

In this section we specify the task we are going to solve.

First, we have to impose some restriction on the considered

distances, to make the task tractable. The restriction still

allows that many different distances are incorporated,

including ones that are hard to compute.

We restrict ourselves to distances that are generated by a

norm in a vector space. To recall the well known concept of

a norm, let us review its axioms. A norm is a function that

assigns a real number to each vector in a vector space and

satisfies the properties listed below. The norm of a vector x

is denoted by x .

 Positivity: x > 0 for each vector x ≠ 0 , where 0 is the

zero vector

 Linearity: cx = c x for any vector x and any scalar

c (this also implies 0 = 0)

 Triangle inequality: x + y ≥ x y for every x, y.

A vector space with a norm defined on it is called a

normed space. If the underlying vector space is finite

dimensional, then we call it a finite dimensional normed

space. Note that one may define many different norms on the

same vector space Once we have a norm, it directly generates

a distance by

(,)d x y x y 

It is easy to prove that this is indeed a distance, satisfying

the distance axioms. It is known, however, that not every

distance can be generated by a norm. The restriction we

impose is that we only deal with norm-generated distances.

One may suspect at this point that perhaps only the al-

gorithmically “easy” distances are generated by a norm, so

by restricting ourselves to norm-generated distances, we may

exclude all the hard cases. This is, however, not so at all. The

reason is that a norm itself can also be very hard to compute.

Here is an example. Let C be a convex set in a vector space,

such that C contains the origin in its interior. It is known [19]

that the following construction generates a norm:

 inf 1/ :x x C  

Now choosing the convex set C such that it is hard to carry

out the above optimization makes the norm hard to compute.

For example, we can create a norm that is NP-hard to

compute, if we choose C as the convex hull of the incidence

vectors of cliques in a graph (with a little shifting to include

the origin in its interior).

Now the specific task we are going to solve is detailed

below.

Task All-Pairs Distance Computation (APDC)

Input: n vectors in a finite dimensional normed space

Goal: Compute (approximately) all the n(n−1)/2 pair- wise

distances among the vectors

Assumption: The algorithm can access the norm of any

vector of the space via a (black box) subroutine. Calling the

subroutine is counted as a single step in the running time of

the algorithm.

Requirements:

1) Approximation quality. The computed approximate

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

116

distances can deviate from the exact ones at most by a

constant factor. That is, there must exist constants 0 < α ≤

1 and β ≥ 1 (independent of n), such that for any vectors x,

y

(,) (,) (,)d x y d x y d x y   (1)

holds, where (,)d x y x y  is the exact distance

(defined by the norm), and d- (x, y) is the computed

approximation. Moreover, we require that the value of

β − α can be made an arbitrarily small positive number,

yielding an approximation factor arbitrarily close to 1.

2) The algorithm can call the norm subroutine only O(n)

times. This makes the problem hard (otherwise we could

just compute all the O(n2) distances). This requirement

reflects the view that the main bottleneck is the

computation of a complex distance function.

3) No excessive hidden costs. If all the vectors fall in a

fixed bounded subset (independent of n), then the

algorithm must run in polynomial time (counting the

norm subroutine calls as single steps). This means, the

linear number of distance (norm) computations cannot

come at the price of exponentially high

side-computations.

IV. RESULT

Now we prove that an algorithm that satisfies all the above

requirements indeed exists. Before presenting the result

formally, let us note that for number representation and

operation we adopt the unit cost model: each number is

considered a single data unit and each elementary number

operation (addition, subtraction, multiplication, division and

comparison) is counted as a single step. That is, the bit length

of numbers is not considered.

Proof. Let S be a finite dimensional normed space with

norm l · l. Let U be the closed unit ball in this space, that

is,  : 1U u S u   . Fix a real number α with 0 < α <

1. First we show that one can fix k vectors z1, . . . , zk ∈ S for

some constant k, such that

 i i
i

x y max x z y z x y        (2)

holds for every ,x y U .

For the proof, let us define a new normed space on S2 =

S × S. The operations on S2 are defined as c(x, y) = (cx, cy)

and (x1, y1)+(x2, y2) = (x1+x2, y1+y2), and let us introduce the

norm (,) +x y x y on S
2
. One can directly check

that this way again a finite dimensional normed vector space

is obtained. Now fix a real number 0 < α < 1 and for each

z S define the set
2

zA S by

2(,) : ,z

y z x z
A x y S x y

x y


    
    

  

Furthermore, let 2H S be the following set.

 (,) : 2, 1, 1/ 2H x y x y x y    

We will use the following properties of these sets:

1) H is closed and bounded;

2) Az is open;

3)
z S zH U A .

Clearly, 1) and 2) follow from the definition. To see 3) it

is enough to observe that for any x y (,)S x y xA

must hold, since with x = z we have

0
1

y z x z y z

x y x y


    
  

 

Thus the sets  ,zA z S form an open cover of H.

Given that the space is finite dimensional, it follows from the

well-known Heine-Borel theorem that there exists a finite

subcover, that is, there are points
1,..., kz z with

1 i

k

i zH U A means that for any (,)x y H .

j jy z x z

x y


  



 (3)

holds for some 1 ≤ j ≤ k.

We now show that (3) also holds for any ,x y U ,

x y If 1/ 2x y  , then (,)x y H , so then we

already know it. Now take two points ,x y U at

distance λ apart, for some 0 < λ < 1/2. That is 1x  ,

1y  , and 0 1/ 2x y     . Set

1
((1))x x y


    Then (1)x x y    holds,

that is, x divides the line segment x y such that

x y x y    . As we have chosen x y   , it

implies 1x y   . This, together with y U and by the

triangle inequality, gives 2 x y y x     ,

yielding 2x  . Collecting these facts, they imply

(,)x y H  . But then by (3) there is a zj with

j jy z x z

x y


  



 (4)

Now using () (1)()j j jx z x z y z       , as

well as the fact that the norm axioms imply that every norm

is a convex function, we can write

j jy z x z

x y

  




International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

117

Theorem 1. Let B be a fixed bounded subset in a finite

dimensional normed space and let 1,..., nx x S be

arbitrary input vectors. Assume that a subroutine is available

to compute the norm of any vector in the space. Then there

exists a polynomial-time algorithm that finds a constant factor

approximation of all the pairwise distances between the input

vectors, such that the algorithm requires only O(n) norm

computations. Moreover, the approximation factor can be

made arbitrarily close to 1.

((1))j j jy z x z y z 



     


j jy z x z   

j jy z x z

x y


  



 (5)

Thus, for any ,x y U there must be a

 1,...,j k such that

j jx z y z x y     (6)

holds. For 1/ 2x y  this follows from (3) and the case

1/ 2x y  is covered by the analysis resulting in (5).

Since the triangle inequality implies

x z y z x y     for every x, y, z, therefore,

combining this with (6), we obtain that (2) holds for every

,x y U .

Now, let B be the bounded subset in the statement of the

theorem and let supx BR x  . Then ,x y B

implies 1 1
,x y U

R R
 , so we can apply (2) to 1 1

,x y
R R

.

Multiplying all sides in (2) by R and replacing each
iz by

i iz Rz  , we obtain that

max i i
i

x y x z y z x y         (7)

holds for every ,x y B .

Thus the value

(,) max i i
i

d x y x z y z     (8)

satisfies the requirements of the approximate distance (1) we

are looking for, with β = 1. Since α can be chosen to be

arbitrarily close to 1, the difference β − α = 1−α can be made

arbitrarily close to 0, as required. Finally, we also observe

from the formula that in order to compute (,)i jd x x for all

i, j it is enough to know the norms
i jx z for every i, j.

Since there are k vectors jz and for a fixed set B the value

of k is constant (independent of n), therefore, we need only

constantly many norm computations for each xi, which is

altogether O(n) norm computations, as desired. The other

side-computations can clearly be done in polynomial time,

thus completing the proof.

V. DISCUSSION AND OPEN PROBLEMS

A key feature of our result is that it proves only the

existence of an algorithm with all the desired properties. On

the other hand, the proof is not constructive, that is, it does

not provide an effective method to actually construct the

algorithm. In other words, we did not specify in the proof

how to effectively find the required
1,..., kz z  vectors that

allow the computation of the approximate distance, according

to formula (8). Nevertheless, we have proved that these

vectors exist, so the algorithm with the desired properties

must also exist.

A next natural research issue (which we plan to address in a

future paper) is how to efficiently find the needed vectors

1,..., kz z  , so that the algorithm can be practically

implemented.. Regarding this issue, we present the following

conjecture.

VI. CONCLUSION

We have presented a method for the optimization of

massive distance computations. We have proved that the

quadratic all pairs distance computation in any normed space

can be carried out with a linear number of distance

computations. This can provide significant speed-up in those

computationally intensive pattern recognition tasks that

require many sophisticated distance computations. Let us note

that while the rigorous proof of Theorem 1 is not simple, the

result is more practical than it appears. Specifically, if

Conjecture 1 is true (for which there is good chance), then it

results in a quick and practical way of constructing an

algorithm that can compute the O(n2) all pairs distances of n

points (data objects) in an arbitrary normed space, using only

a linear number of distance computations, without excessive

hidden costs in the side computations.

REFERENCES

[1] W. J. Rucklidge, “Efficiently locating objects using the hausdorff

distance,” International Journal of Computer Vision, vol. 24, issue 3,

pp. 251–270, 1997.
[2] X. Yi and O. I. Camps, “Line feature-based recognition using

hausdorff distance,” International Symposium on Computer Vision,

1995.
[3] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert

space,” Israel J. Math., vol. 52, pp. 46–52, 1985.
[4] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and

some of its algorithmic applications,” Combinatorica, vol. 15, pp.

215–245, 1995.
[5] J. Matoušek, “Note on Bi-lipschitz embeddings into low dimensional

euclidean spaces”, Comment. Math. Univ. Carolinae, vol. 31, pp.

589–600, 1990.
[6] Abraham, Y. Bartal and O. Neiman, “Advances in metric embedding

theory,” in Proc. 38th Annual ACM Symp. on Theory of Computing,

Seattle, WA, USA, May 2006, pp. 271-286.

[7] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings

into a hilbert space,” Contemp. Math., vol. 26, pp. 189–206, 1984.
[8] P. Indyk and J. Matoušek, “Low distortion embeddings of finite metric

spaces,” in Handbook of Discrete and Combinatorial Geometry, J. E.

Goodman and J. O’Rourke, Eds. Chapman and Hall/CRC, 2004, pp.

177–196.
[9] N. Alon, “Problems and results in extremal combinatorics,” Discrete

Math., vol. 273, pp. 31–53, 2003.
[10] J. Matoušek, Lectures on Discrete Geometry, New York:

Springer-Verlag, 2002.
[11] B. Brinkman and M. Charikar, “On the impossibility of dimension

reduction in l1,” Journal of the ACM, vol. 52, pp. 766–788, 2005.

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

118

Conjecture 1: In a d-dimensional normed space, let us

choose d + 1 vectors independently at random from a

continuous probability distribution, and let us use them in the

approximate distance formula (8), as the z’ vectors. If the

input comes from a continuous probability distribution, then

the algorithm (as described in the proof of Theorem 1) will

work correctly, with probability approaching 1.

[12] J. Matoušek, “On the distortion required for embedding finite metric

spaces into normed spaces,” Israel J. Math., vol. 93, pp. 333–344,

1996.
[13] P. Indyk, “Algorithmic applications of low-distortion geometric em-

beddings,” in Proc. 42nd Annual IEEE Symp. on Foundations of

Computer Science, Las Vegas, NV, October 2001, pp. 10–33.
[14] A. Gupta, R. Krauthgamer, and J. R. Lee, “Bounded geometries, frac-

tals, and low-distortion embeddings,” in Proc. 44th Annual IEEE

Symp. on Foundations of Computer Science, Cambridge, MA, USA,

October 2003, pp. 534–543.
[15] P. Assouad, “Plongements lipschitziens dans Rn,” Bull. Soc. Math,

vol. 111, pp. 429–448, France, 1983.
[16] S. Semmes, “On the nonexistence bilipschitz parametrizations and ge-

ometric problems about a∞ weights,” Revista Mathemática

Iberoamericana, vol. 12, pp. 337–410, 1996.
[17] L. A. Gottlieb and R. Krauthgamer, “A nonlinear approach to dimen-

sion reduction,” Cornell University Library, April 2010.
[18] I. Abraham, Y. Bartal, and O. Neiman, “Embedding metric spaces in

their intrinsic dimension”, in Proc.19th Annual ACM-SIAM Symp. on

Discrete Algorithms, San Francisco, CA, USA, January 2008, pp.

363–372.
[19] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

Andras Farago received the B.Sc., M.Sc. and Ph.D.

degrees in electrical engineering from the Technical

University of Budapest, Budapest, Hungary, in 1976,

1979, and 1981, respectively. Until 1997, he was a

faculty member at the Department of

Telecommunications and Telematics, Technical

University of Budapest. In 1996 he obtained the

distinguished title “Doctor of Sciences” from the

Hungarian Academy of Sciences. In 1998 he moved to the USA, and became

a professor of computer science at the University of Texas at Dallas. He also

worked as a visiting senior research fellow at the University of

Massachusetts at Amherst in 1991/92, and spent a sabbatical year at Boston

University in 1996. He is a Senior Member of IEEE, member of ACM, and

of the IFIP Working Group 6.3 “Performance of Communication Systems.”

He serves as editor for the journal Wireless Networks. His research focuses

on modeling, design and analysis methods of communication networks, as

well as on algorithms for various application fields. He authored over 200

research publications.

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

119

