
 
 

 

  

 

 

  

  

 
 
 

  
 

 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

253

Abstract—In this paper, we consider the problem of 
displaying large DEM terrains over the Web environment and 
present some new results of 3D terrains splitting for the benefit 
of displaying. Our methods are performed with the supports of 
2D Polygonal Vector Data (2PVD) and contain two algorithms: 
2OPS and SESA. The first one, 2-Objective Parallel Splitting 
Algorithm (2OPS), is proposed to split a given terrain into some 
small ones following by polygons in 2PVD. This algorithm is 
based on parallel computation and is designed for quick 
splitting process. Similarly, the second algorithm, Space 
Reduction Splitting Algorithm (SESA), is also used for terrain 
division but for a smaller memory space in each processor. 
Finally, evaluations of time and space complexity as well as a 
series of numerical experiments are performed to reveal some 
characteristics of our methods and prove their suitability for 
the original problem. 

Index Terms—2D Polygonal Vector Data, 2OPS, 3D WebGIS, 
Parallel Computation, SESA, Terrain Splitting. 

I. INTRODUCTION

Geographic Information System on web environment or 
WebGIS is being used as an important tool for various 
applications in real life such as tourism[2], line 
management[4], simulation[5], agriculture[13], natural 
resource management[14], city information system[25], pipe 
network[26], and many other fields[11] [24] [27]. Its 
advantages can be seen as the capabilities to share and exploit 
information in map forms through networks. Then, important 
decisions may be made efficiently for the sake of saving costs 
and utilizing available material facilities.  

The three dimensional WebGIS system is a higher 
development than previous GIS-2Ds and originated from the 
fact that people want to enhance the visualization of GIS. 3D 
WebGIS can provide realistic visualization of spatial 
information and has immense potential in infrastructure 
management (life-line and network infrastructure), civil 
construction, disaster management, 3D city simulation, and 
geological modeling, etc. Indeed, it is considered to be the 
main focus of GIS scientists[1].  

These kinds of systems use Digital Elevation Model (DEM) 
and Digital Surface Model (DSM) data to represent terrains 
and living objects on them, respectively. Among them, DEM 
is the most important component because it shows the 
composition of a geographic area in a 3D form. It is 

Manuscript received May 30, 2011. This work is supported by a research 
grant of Vietnam National University, Hanoi for promoting Science and 
Technology.  

Le Hoang Son is the corresponding author (e-mail: sonlh@ vnu.edu.vn).  

generated by many methods, for example via satellites, air 
planes, LIDAR technology, etc. As stated in [16] [22] [28], 
DEM or Grid DEM consists of a matrix data structure with 
the topographic elevation of each pixel stored in a matrix 
node. Grid DEMs are distinct from other DEM 
representations such as Triangular Irregular Network (TIN) 
and contour based data storage structures. In general, the time 
to display Grid DEM is often faster than other kinds’. Thus, 
Grid DEMs are often used as sources in the process of 3D 
terrain generation and display. 

However, sizes of Grid DEMs are often large depending 
on their resolution. For example, a 30m Grid DEM has a 
volume of 280 Megabytes (MB). The smaller the resolution 
of Grid DEM is, more details in 3D terrain are shown and its 
size is increased as a result. Thus, it takes long time to display 
terrains totally especially on web environment which 
requires fast processing in short time. A recent survey in [15] 
has shown that the maximal volume of DEM terrain for the 
fastest display on JSG which, in essence, is a 3D WebGIS 
system is approximately 1.2 MB. Comparing with the 
volume of 30m Grid DEM above, we can easily recognize 
that it is very difficult to display the terrain in such conditions. 
This problem should be overcome in order to make ‘truly’ 3D 
WebGIS systems in equivalent to what have been represented 
in 2D GISs and WebGISs. 

To deal with this obstacle, our idea is to divide the original 
3D terrain into some small ones for the benefit of displaying. 
Assume that we have a set of 2D Polygonal Vector Data 
(2PVD) in ESRI Shape formats[6] related to the DEM terrain. 
Then, the division is performed following by polygons in 
2PVD to ensure the spatial characteristics between regions. 
This process is implicit performed by a script on the 3D 
WebGIS system after uploading the DEM terrain. Then, the 
display time of each small terrain is, of course, faster than the 
original one’s. This solution may help 3D WebGIS systems 
reduce the possibility of being crashed or overload for 
processing large terrains. Additionally, it will focus users to 
each specific area for studying instead of the whole terrain. 

In this paper, we will present some new results of the 3D 
terrains splitting by 2PVD problem. The first one, 
2-Objective Parallel Splitting Algorithm (2OPS), is based on 
parallel computation techniques and is designed for quick 
splitting process. Similarly, the second algorithm, Space 
Reduction Splitting Algorithm (SESA), is also used for 
terrain division but for a smaller memory space in each 
processor. Finally, evaluations of time and space complexity 
as well as a series of numerical experiments are performed to 
reveal some characteristics of our methods and prove their 
suitability for the original problem. 

Some Results of 3D Terrain Splitting by  
2D Polygonal Vector Data 

Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Nguyen Dinh Hoa, and Truong Chi Cuong 



 
 

 

 

  

 

 

 
 

 
 

 

 
 

 
 

 

 

 

 

 
 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

254

The remainder of this paper is organized as follows. 
Section 2 elaborates some related researches. In Section 3 
and 4, details of the algorithm 2OPS and SESA will be 
presented, respectively. The evaluations comprising of time 
and space complexity as well as numerical experiments are 
shown in Section 5. Finally, we make conclusion and future 
works in the last section.  

II. RELATED WORKS

Before we describe the main problem, let us begin with 
some definitions as following. 

Definition 1: A Polygon jU  is a sequence of 2D 

Points ),( j
i

j
i

j
i yxM  where jni ,..,1=  and jn  is 

total number of vertices in the polygon. It is oriented by 
a specific direction jDt . This polygon can contain 
holes defined as a ring. The sign (-) means the direction 
of polygon is counterclockwise. The direction of a ring 
is opposite to the one of polygon which consists of it. 

Definition 2: A set of 2PVD can be expressed by a 

sequence{ }ljU j ,..,1/ =  where l  is total number of 

polygons in 2PVD.

Definition 3: The area of a polygon in 2PVD is 
calculated as the area of the smallest rectangle 
containing that polygon. Similarly, the area of some 
polygons is the area of the smallest rectangle containing 
these polygons. 

Definition 4: A rectangular grid in Digital Elevation 
Model is fixed and geographically specified by 
coordinate origins and the size in each cell 
( ) sycxc ,, . Besides, the number of cells in this grid 

is defined as nRnCm ×=  where nC  is the number 
of columns and nR  is the number of rows. 

Definition 5: The area of a 3D DEM terrain is defined 
as 2snRnC ×× . Additionally, the area a 3D DEM 
terrain in a processor is equal to the area of all polygons 
in that processor. 

For our given problem, the traditional method is using a 
Rendering Engine[8] including Load, 3D Rendering and 
Transform steps. The first step which turns out to be the most 
time-consuming among all is dedicated for transferring 3D 
DEM terrains to clients’ machines. Then, some 3D 
Rendering algorithms such as Texture Mapping[3], 
Z-buffering[3], BSP tree[7], Photon mapping[10], Alpha 
Compositing [19], Pre-computed Radiance Transfer[21], etc. 
are used to produce an image based on previously 
downloaded three dimensional data. The last step is used to 
attach geographic coordinate references to this image so that 
all points in the map will have coordinates. To serve for real 

time applications, for example WebGIS, an additional 
technique so called human eye perception is used. The idea is 
quite visual: showing as much information as possible as the 
eye can process in a fraction of a second, a.k.a. in one frame. 
As a result, the final image presented is not necessarily that of 
the real-world, but one close enough for the human eye to 
tolerate. All these techniques are currently applied in 
Geographic Virtual Markup Language (GeoVRML)[12] [23], 
KML[17], and GML[20] which are the most common 
geo-support standards to view 3D terrains on web. In other 
words, they enable geo-referenced data, such as maps and 3D 
terrain models, to be viewed over the web by users with a 
standard VRML plugin for their web browsers. 

However, the limitation of these standards can be 
recognized as the requirement of downloading the whole 
DEM terrain before processing. Therefore, the larger the 
DEM terrain is, the longer the waiting time requests. 
Somehow, web browsers may fall into stuck or overload 
because of handling very large 3D terrains. Imagine that 
many users access a 3D WebGIS system and request the 
same terrain. Such these cases can cause full bandwidth in the 
connection line and, of course, increase the waiting time of 
users. For this reason, the above method is not suitable for 
processing large DEM terrains. 

Fig. 1. 3D Scenes’ Display in O3D 

Another, recent approach has been presented by Google 
corporation namely O3D[18]. It is a JavaScript API for 
creating interactive 3D graphics applications that run in a 
browser window: games, 3D model viewers, product demos, 



 
 

 

 

    

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

255

virtual worlds, etc. in real time. The idea behind this kind of 
standard is the capabilities of dividing the whole 3D scene 
into some parts and transferring them to clients one after 
another. Then, each part is constructed to display using the 
Painter’s algorithm[8] or more advanced Z-buffering[3]. 
These algorithms paint distant parts of a scene before parts 
which are nearer thereby covering some areas of distant parts. 
While rendering a part, some other parts are transferred to 
client and the rendering step is continued until all parts are 
totally sent. Indeed, this process makes us feel that the 3D 
scene is displayed immediately (Fig. 1). 

Nevertheless, O3D works with a special kind of 3D scenes. 
Instead of organizing it into a unique scene, a lot of small 
scenes are pre-created in the form of O3DTGZ. This means 
that the splitting process must not be performed with O3D. 
Besides, these small scenes are arranged in the order of 
distances. Indeed, an area in 3D scene can be divided into 
some small ones and spatial characteristic integrity is not 
ensured. Finally, O3D is used for 3D graphic applications 
and not designed for 3D GIS, especially DEM terrains. 
Anyway, the display time of O3D is still better than other 
methods and we can utilize parts of this idea for our 
objective. 

Lastly, a recent study in [15] has shown a ‘rough’ method 
to split a 3D DEM terrain into some small ones by selected 
vertical and horizontal lines. Therefore, the display time is 
better than using traditional method. However, similar to 
O3D, spatial characteristics between regions are not kept. 
Thus, further analysis operations in a region such as area 
calculation, visibility, etc. can not be performed. 

From all literatures above, we may see that 3D terrain 
splitting is the most suitable method for the original problem. 
However, instead of using arbitrary splitting methods, a set of 
2PVD (Definition 1 and 2) is opted to support this process for 
the integrity of spatial characteristics between regions. As 
mentioned in the previous section, we use parallel 
computation techniques for this task. Hence, two major 
factors should be considered namely computing time and 
memory space in this approach. In the two next sections, 
details of these algorithms will be elaborated. 

III. THE 2 - OBJECTIVE PARALLEL SPLITTING ALGORITHM

The basic idea of this algorithm is to divide the original 
DEM terrain into some small ones following by the number 

of processors k  in the system and all polygons in 2PVD 
(Definition 1 and 2). This means that regions close together 
will be attached to the same processor. 

Details of the 2-Objective Parallel Splitting Algorithm
(2OPS) are shown as below. 

Step 1: For each polygon jU , lj ,..,1=  in 2PVD, find 

jjjj yyxx minmaxminmax ,,,

{ }j
i

j xx maxmax =  and { }j
i

j xx minmin = , (1)

{ }j
i

j yy maxmax =  and { }j
i

j yy minmin = , (2)

where jni ,..,1=  and jn  is total number of vertices in the 

polygon jU . 

Step 2: Find center values of the smallest rectangle 

containing the polygon jU , lj ,..,1=

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

−
+=

2
,

2
, minmax

min
minmax

min

jj
j

jj
jjj

j
yy

y
xx

xyxC . (3)

Step 3: Calculate the distance matrix 

[ ]
llijdD

×
=   , (4)

where ),( jiij CCdd = - Euclidean distance, li ,..,1=
and lj ,..,1= . 

Step 4: Each processor will have [ ]k
l  polygons. 

Additionally, the last processor should bear some extra 
polygons as the surplus of above quotient kl% . 

Step 5: For each processor, we traverse from the first 
unmarked polygon and mark its unmarked neighborhoods 

based on the distance matrix D  until [ ]k
l  polygons are 

reached. After this step, all polygons are arranged into 
processors. 

Step 6: For each processor h , find the maximum and 
minimum of coordinates of all polygons belonging to it 

{ }jh xX maxmax max=  and { }jh xX minmin min=   , (5)

{ }jh yY maxmax max=  and { }jh yY minmin min=   , (6)

where kh ,..,1=  and 
jjjj yyxx minmaxminmax ,,,  are mentioned 

in Step 1. 

Step 7: Convert four coordinates in Step 6 from the 
coordinate system of 2PVD to the ones in the coordinate 
system of 3D DEM terrain by means of the DEM’s 
coordinate origins and size (Definition 4). Then, separate a 
rectangle in the original DEM terrain which contains all 
polygons in processor h  by these converted coordinates 
above. Then, save it as a small DEM terrain. 



 
 

 

Program Separate (Output) 
Begin 

   Convert( hX min , hX max , hYmin , hYmax ) 
   for u = hYmin  to hYmax  do 
   begin 
     for v = hX min  to hX max  do 
     begin  
      if matrix[u][v] <> -9999 then 
      begin   
   splitComma(matrix[u][v], 

1& w , 2& w ); 
          if( 1w ) Output ( 1w , 2w );      
          else Output ( 1w ); 
      else  
         Output (matrix[u][v]);  
      end; 
     end; 
   end; 
End. 
 
Step 8: Repeat Step 6 and 7 for other processors until all 

processors are processed. 
 
The 2OPS method is a parallel terrain splitting algorithm 

with dedicated to computing time between processors. 
Because it assigns the same number of polygons to each 
processor, the number of tasks is definitely equal between 
processors except the last processor which has to bear the 
surplus kl% . However, the number of polygons in 2PVD 

( l ) is many times greater than the number of processor ( k ). 
Therefore, the extra job is inappreciable and we can assume 
that the dividing process assigns the same number of tasks to 
all processors. In theory, the parallel computing time of the 
algorithm is equal to the sequential computing time for 
original DEM terrain divided by the number of processors. 
Indeed, more processors we have, less waiting time is. Later, 
we will check this consideration through experiments in 
Section 5. 

 

IV. SPACE REDUCTION SPLITTING ALGORITHM 
The 2OPS algorithm above can split the original 3D terrain 

into some small parts with the priority of computing time. 
However, a limitation of 2OPS which can be recognized at 
this time is the cost of memory space. In fact, 2OPS uses a lot 
of memories to store small terrains. Indeed, the worst case 
can happen when each small terrain‘s area is equal to original 
one‘s. Therefore, it takes )(mOk ×  in memory with k  is 
the number of processors and m  is the number of cells in 
original 3D terrain (Definition 4 and 5). This number can be 
hundreds or thousands Gigabytes. Consequently, the 2OPS 
algorithm is suitable for running in cluster servers where 
memory space is abundant, not in normal PC computers. 

Our idea is to construct an algorithm to reduce the memory 
space for each processor. Moreover, this algorithm can be 
implemented to run in normal PC computers. First, let us 

specify the Input and Output of the problem. Assume that we 
have a 3D DEM terrain and some polygons in 2PVD as well 
as the number of processors k . We have to split the original 
terrain following by some polygons and the number of 
processors above and satisfying the conditions 

 
a) Condition A1: The area of the small DEM terrain in a 

processor is smaller than a given threshold α  multiplying 
the area of original 3D terrain 

 

DEMi SSP ×≤ α , for ki ,1=  . (7)

 
b) Condition A2: The difference between two areas of 

terrains in two processors is smaller than a given threshold 
multiplying the area of original 3D terrain 

 

DEMji SSPSP ×≤− ε  , (8)

 

for ki ,1= , kj ,1=  and ji ≠ . 
  
c) Condition A3: Each polygon in 2PVD is fully contained 

in any processor. 
 

To illustrate the requirements of our problem, let us 
consider two examples. 
 

 
 

Fig. 2. A 2PVD with three polygons  
 

 
Example 1:  

 
Suppose that we have a 2PVD with three polygons (Fig. 2). 

The number of processors 2=k . A suitable way to split this 
2PVD into two parts is drawing a horizontal line between 
polygons 1U , 2U  and 3U . Then, two small DEM terrains 

whose areas are 1SP  and 2SP  are created. With %80=α  

and %5=ε , we can easily check the conditions from A1 to 
A3. 

 
• Condition A1: DEMSSP ×≤ %801 ,  

                             DEMSSP ×≤ %802 . 

 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

256



 
 

 

• Condition A2: DEMSSPSP ×≤− %521 .                  

 
• Condition A3:  It is easily recognized through Fig. 2.   

 
Example 2: This case (Fig. 3) can not be divided in a 

normal way. Suppose that the number of processors 2=k . 
If we put polygons 1U , and 2U  into a processor and 3U  
into another one then the area of 3D DEM terrain in a 
processor is equal to the one of original DEM terrain. 
Therefore, the total memory space in this case is )(2 mO× . 
 

 
Fig. 3. An exceptional case  

 
For a given, desired memory saving coefficient α  of 

users, we have to find a suitable splitting way to reach that 
goal. Thus, an idea of conditional greedy partitioning 
algorithm is invoked. Basically, we traverse all partitions 
dividing n  elements into k  blocks. For each partition, 
calculate its area and check three conditions from A1 to A3. If 
finding one suitable partition, stop the algorithm and output 
the results. Certainly, to reduce the number of traversed 
partitions, a pre-processing step should be carried out to 
arrange some elements into specific blocks. For this reason, it 
is called a conditional greedy partitioning algorithm. The 
new algorithm is named as Space rEduction Splitting 
Algorithm (SESA). Details of this algorithm are summarized 
as follows. 

 
Step 1: Perform Step 1, 2 and 3 of 2OPS algorithm to 

calculate the distance matrix [ ]
llijdD

×
=  where 

),( jiij CCdd =  is the distance between polygon iU  and 

jU  in 2PVD, li ,1= , lj ,1=  and ji ≠ . 

 
Step 2: Based on the distance matrix D , find an unmarked 

polygons iU  and its closet unmarked polygon jU  in term of 

minimal distance and distance is smaller than 
22*25.0 nRnC + (Definition 4) until all polygons are 

reached. 
 
Step 3: Calculate the area of polygon iU  ( iS ), jU  ( jS ) 

and both iU  and jU  ( ijS ) (Definition 3). 

Example 3: 
 

( )( )jjjj
j yyxxS minmaxminmax −−=  . (9)

 

 
Fig. 4. Calculate area of a polygon  

 
 
Step 4: (Additive Condition) If iji SS %80≥  or 

ijj SS %80≥  then we add polygons iU  and jU  into a 

processor. 
 
This is the pre-processing step before partitioning. 

Originated from two special cases below, we have designed a 
condition to reduce the number of traversed partitions. 

 
• Case 1: The smallest rectangle containing polygon 1U  

consists of two smallest ones containing 2U  and 3U . 
Therefore, in this case, we should combine three 
polygons 1U , 2U  and 3U  into a single processor 
(Fig. 5). 

 

 
 

Fig. 5. Containment 
 

 
• Case 2: The area of polygon 1U  is greater than or 

equal to 80 percent of the area of two polygons 1U  

and 2U . Therefore, we should also combine these two 
polygons into a single processor (Fig. 6). 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

257



 
 

 

 
Fig. 6. Adjacency 

 
Step 5: Repeat from Step 2 to Step 4 for other unmarked 

polygons. The final result is a set of polygons: 

{ } >≠≠=< hjilhjiUUU hji ;,1,,/,,   (*) 

 
Step 6: Use a parallel partitioning algorithm to divide the 

set (*) into k  blocks with k  is the number of processors. In 
this case, we have used the best parallel partitioning 
algorithm from Hoang Chi Thanh et al. [9]. 

 
Step 7: For each received block i , calculate the area of all 

polygons in this block iSP , ki ,1= . 
 
Step 8: Check the conditions from A1 to A3. If they are 

satisfied then stop the partitioning algorithm and perform the 
Step 6, 7 and 8 of 2OPS algorithm for all current blocks. 
Otherwise, return to Step 6 to find another solution. 

 
Step 9: In case of no partitions satisfying the original 

conditions, we conclude that for given parameters α  and ε , 
there does not exist any solution for our problem. Therefore, 
if users want to find other solutions then they should adjust 
the parameters. For example, %5' += αα  and 

%1' += εε . In this situation, return to Step 6 to find other 
solutions. 

 
Once a solution is found, the memory space in each 

processor is saved by α  percents. Indeed, the total memory 
space over all processors is considerably reduced. A remark 
can be extracted from the Step 5 of this algorithm is that we 
are able to combine more polygons to form sets of three, four 
or higher number of polygons. However, it is not effective in 
terms of computational time. Because, we must re-compute 
the distance matrix and, perhaps, the number of clusters can 
be different from the number of processor k . To satisfy both 
space and time complexity, we stop at level two. 

 

V. EVALUATIONS 
In this part, we evaluate two algorithms above both by time 

and space complexity as well as numerical experiments. 
In 2OPS algorithm, Step 1, 2 and 5 require )(lO  memory 

space and time complexity. Step 3 requires )( 2lO  memory 
space and time complexity. In Step 6, 7, and 8, the memory 
space in the worst case is )(mOk ×  and the time 

complexity is [ ])( k
lO . Finally, the time complexity of 

2OPS is )( 2lO  and the total memory space in the worst case 

is )(mOk × . 

In SESA, Steps 1 to 5 require )( 2lO  time complexity. 

The partitioning step requires )1(O  time complexity in the 
best case and in the worst case 

 

),(1 klS
k

×⎥⎦
⎤

⎢⎣
⎡

×
−

ε
α

 
 

, (10)

 
Where ),( klS  is the number of partitions that divide a set 

of l  elements into k  blocks. Therefore, the time complexity 

of SESA in the best case is )( 2lO  and in the worst case is 

),(1 klS
k

×⎥⎦
⎤

⎢⎣
⎡

×
−

ε
α

. 

Because the areas of small DEM terrains are equal to 
)(mO×α  and the memory space used to store the distance 

matrix is )( 2lO , the total memory space in SESA 

is )(mOk ××α . 
However, theoretical time complexity does not always 

indicate clearly the speed of an algorithm. For this, 
measurements of CPU time often give better information. 
Therefore, in this part, we have implemented the two 
proposed algorithms (2OPS and SESA) in C programming 
language and executed them on a Linux Cluster 1350 with 
eight computing nodes of 51.2GFlops. Each node contains 
two Intel Xeon dual core 3.2GHz, 2GB Ram. 

First, we study the running time of 2OPS algorithm to split 
a fixed DEM terrain whose sizes are 4039 x 6529 with four 
processors following by different number of polygons (Fig. 
7). The result shows that the running time changes slightly 
when the number of polygons is smaller than 1000. For 
instance, when the number of polygons increases tenfold, the 
average increment of the running time is 2.85. In case the 
number of polygons is greater than 1000, the running time 
increases linearly. The average increment of the running time, 
in the same condition with above, is about 27.9. Therefore, 
we may predict the running time of 2OPS algorithm for a 
larger number of polygons through this test. 

 
Fig. 7. The 2OPS’s running time by number of polygons  

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

258



 
 

 

 
Fig. 8. The 2OPS’s running time by size of DEMs 

 
 

In Fig. 8, the running time of 2OPS following by various 
sizes of DEM terrains is shown. For example, when the size 
of a DEM terrain is 282 x 679 (about 191 thousands elevation 
values), the running time is 0.354 sec. However, contrary to 
previous test, the average increment of the running time is 
greatly changed where the number of elevation values is 
smaller than 4 million points or size of DEM terrains is lower 
than 2000 x 2000. In this situation, when the number of 
elevation values increases nineteen times, the running time is 
21.4 times greater. This number, in remain case, is 
approximately 2.64 times greater. Indeed, the running time 
seems to be stably changed after exceeding the threshold 
above. 

In the next test, we will investigate the running time of 
2OPS when splitting a DEM terrain whose sizes are 4039 x 
6529 following by the number of processors and the number 
of polygons (Fig. 9). It is obvious that the running times 
when using 2, 3 or 4 processors is similar and perhaps smaller 
than when using 1 processor for small cases which are under 
200 polygons. Otherwise, more processors are provided, less 
computational time is required. In average, the running time 
is 1.6 times smaller per processor. Again, this test reconfirms 
that 2OPS is good in terms of computational time. 
 

 
Fig. 9. The 2OPS’s running time by number of processors and polygons 

 

Fig. 10 shows the relation between the total (CPU) time 
spent on the performance of a program, the speedup and the 
efficiency of this performance. The speedup of the 

performance is defined as 
p

s
T

TS = , where sT  ( pT ) is 

serial execution time (parallel execution time), respectively. 

The efficiency of the performance is determined as k
SE = , 

where k  is the number of processors. Indeed, we can 
determine the number of optimal processors when running 
the 2OPS algorithm in a specific size of DEM and number of 
polygons by using the Efficiency and Speed up line, in this 
case, is three. 

 
Fig. 10. Speed up and Efficiency of 2OPS 

 
In Fig. 11, we use SESA algorithm for a given DEM 

terrain where the number of processors is four. This figure 
shows the relation between two parameters α  and ε  
following by the number of polygons. For example, with 20 
polygons in 2PVD, if %61.0=ε  then the required 
memory space is )(%1 mO× . It is the minimal error 
threshold which means no partition is found if the error 
threshold is smaller than this number. In general, this figure 
provides a relative reference of how to choose the parameter 
ε  in order to reach the memory saving percent α  in a given 
terrain. A similar test is illustrated in Fig. 12 when the 
number of processors varies. 

 
Fig. 11. Relation between α (Alpha) and ε  (Epsilon) in SESA algorithm 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

259



 
 

 

 
Fig. 12. Relation between α (Alpha) and ε  (Epsilon) by number of 

processors 
 

In this part, we investigate the experimental parameter ε  
of SESA with four processors and 200 polygons and 

%25=α  following by various sizes of DEM terrains (Fig. 
13). The maximal number %9.18=ε  seems to be our 
recommended error threshold when running the SESA 
algorithm. Certainly, more experiments are needed to obtain 
the correct parameter for users’ dataset. However, for some 
cases, the number above is the most suitable. 
 

 
Fig. 13. The experimentalε  (Epsilon) 

 
 

Finally, we compare the running time of 2OPS algorithm 
with the splitting method described in [15] (Fig. 14). The sizes 
of DEM terrain are 4039 x 6529. The parameter Density  is 
defined as the average number of processor per polygons. 
The result shows that the 2OPS algorithm is faster than the 
splitting method, about 1.5 times in average. The reason may 
come from the way to split DEM terrains. In splitting method, 
terrains are divided without concerning spatial characteristics. 
Therefore, it has to keep all values in small DEM terrains. 
Conversely, 2OPS processes the smallest rectangles 
containing some polygons in equivalent to 2PVD only. 
Indeed, in most cases, the total area processed by 2OPS is 
less than the one divided by the splitting method. Thus, the 

running time of 2OPS is faster than the splitting method’s. 
From this test, we may conclude that our method obtains fast 
processing in most cases while still keeping spatial 
characteristics between regions. 

 
Fig. 14. Compare the running times of 2OPS and the splitting method [15] 

 

VI. CONCLUSION AND FUTURE WORKS 
In this paper, we concentrate on the 3D Terrain Display 

problem in Geographic Information Systems. Throughout a 
brief introduction, we have shown how importance this 
problem can bring in practical applications as well as some 
difficulties that are currently faced when processing it over 
the Web environment. One of the most popular methods to 
deal with these obstacles is terrain splitting that is described 
in Section 2. Along with some state-of-the-art works in that 
section, our approach, based on parallel computing, can be 
considered as the amelioration of the best, current splitting 
method in [15] by keeping spatial characteristics between 
regions in 2PVD. Then, further advance analysis actions in 
each small terrain can be fully performed without difficulty. 
In details, two specific algorithms in our approach designed 
for computing time increment and memory space reduction 
in each processor namely 2OPS and SESA are presented. 
They are both evaluated by time and space complexity as 
well as numerical experiments. Some remarks in each test 
reveal characteristics of our methods and prove their 
suitability for the original problem. Lastly, we have 
implemented a simple 3D WebGIS in association with these 
algorithms to display 3D DEM terrains (Fig. 15). 

In the future, we will investigate some heuristic algorithms 
for the SESA method. Besides, a complete 3D WebGIS 
system which combines advance GIS and 3D capabilities is 
also our mission. Eventually, we also study an effective 
method to store terrains in databases as well as fast displaying 
terrains through parallel computation. 

 

APPENDICES 
The implementations and test datasets of these algorithms 

can be found at this address: http://chpc.vnu.vn/gis/tsm.rar 
 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

260



 
 

 

 
Fig. 15. A simple 3D WebGIS 

 

ACKNOWLEDGMENT 
The authors are greatly indebted to Prof. Pham Ky Anh, 

VNU; Prof. Pier Luca Lanzi, Dr. Roberto Colonello, 
Politecnico di Milano, Italy and anonymous reviewers for 
their comments and suggestions which improved the quality 
and clarity of paper. Another thank will be sent to Prof. 
Hoang Chi Thanh, VNU who gave us a valuable paper for 
this research.  

This work is supported by a research grant of Vietnam 
National University, Hanoi for promoting Science and 
Technology. 

REFERENCES 
[1] A.A. Rahman, Zlatanova, S. and M. Pilouk, “Trends in 3D GIS 

development,” Journal of Geospatial Engineering, vol. 4, no. 2, pp. 
1-10, 2002. 

[2] BAI Ming-zhe, DING An-min, ZHANG Jian-xiong, “Construction of 
Jiaozuo Tourism Information System based on WebGIS,” Journal of 
Jiaozuo Institute of Technology, vol. 5, 2005. 

[3] Catmull, E, “A subdivision algorithm for computer display of curved 
surfaces,” PhD. dissertation, University of Utah, 1974. 

[4] Cui Dong, Zhang Zhe, “A WebGIS Based Transmission Line 
Management System,” Power System Technology, vol. 6, 2002. 

[5] Chen Guohua, Zhang Jing, Zhang Hui, Yan Weiwen, "Chen 
Qingguang. Application of WebGIS to non-heavy gas cloud diffusion 
simulation,” Natural Gas Industry, vol 26, no. 10, pp. 140-143, 2006. 

[6] Esri Shapefile Technical Description, ESRI White Paper, 1998. 
[7] Fuchs, H., Kedem, Z.M., Naylor, B.F, “On visible surface generation 

by a priori tree structures,” In Proceedings of SIGGRAPH, vol. 14, no. 
3, 1980, pp. 124–133. 

[8] Foley J, Van D A, Feiner S K, Hughes J F, Computer Graphics: 
Principles and Practice, Reading, MA, USA, Addison-Wesley, 1990, 
pp. 1174. 

[9] Hoang Chi Thanh and Nguyen Quang Thanh, “An efficient parallel 
algorithm for the set partition problem,” New Challenges for Intelligent 
Information and Database Systems, Springer-Verlag, 2011. 

[10] Jensen, H.W., Christensen, N.J, “Photon maps in bidirectional monte 
carlo ray tracing of complex objects,” Computers & Graphics, vol. 19, 
no. 2, pp. 215–224, 1995. 

[11] Lu Hongli, Wu Gang, “Development of a forest resource spacial 
information system based MAPINFO,” Journal of Beijing Forestry 
University, vol. 3, 2001. 

[12] LIU Jia-fu, LIANG Yu-hua, “Application Research of 
GeoVRML-technology on the 3D Geo-information Visualization,” 
Jilin Normal University Journal (Natural Science Edition), vol. 1, 
2009. 

[13] Le Hoang Son, “A WebGIS application in agricultural land 
management,” VNU Journal of Science, Natural Sciences and 
Technology, vol. 25, no. 4, pp. 234 – 240, 2009. 

[14] Le Hoang Son, Nguyen Quoc Huy, Nguyen Tho Thong and Tran Thi 
Kim Dung, “An effective solution for sustainable use and management 
of natural resources through WebGIS Open Source and Decision- 
Making Support Tools,” In Proceeding of the 5th International 
Conference on GeoInformatics for Spatial-Infrastructure Development 
in Earth and Allied Sciences (GIS-IDEAS) 2010, Hanoi, Vietnam, 
December 9-11, 2010, pp. 87 – 92. 

[15] Le Hoang Son, Pham Huy Thong, Nguyen Duy Linh, Truong Chi 
Cuong and Nguyen Dinh Hoa, “Developing JSG Framework and 
Applications in COMGIS Project,” International Journal of Computer 
Information Systems and Industrial Management Applications 
(IJCISIM), vol. 3, pp. 108-118, 2011. 

[16] M. Albani, B. Klinkenberg, D. W. Andison, J. P. Kimmins, “The choice 
of window size in approximating topographic surfaces from Digital 
Elevation Models,” Int. J. Geographical Information Science, vol. 18, 
no. 6, pp. 577–593, 2004. 

[17] Mike Botts, George Percivall, Carl Reed and John Davidson, ”OGC 
Sensor Web Enablement: Overview and High Level Architecture,” 
GeoSensor Networks, vol. 4540, pp. 175-190, 2008. 

[18] Ortiz, S, “Is 3D Finally Ready for the Web?,” Computers, vol. 43, no. 1, 
pp. 14-16, 2010. 

[19] Porter, T., Duff, T, “Compositing digital images,” Computer Graphics, 
vol. 18, no. 3, pp. 253–259, 1984. 

[20] Ron Lake, “The application of geography markup language (GML) to 
the geological sciences,” Computers & Geosciences, vol. 31, no. 9, pp. 
1081-1094, 2005. 

[21] Sloan, P., Kautz, J., Snyder, J, “Precomputed Radiance Transfer for 
Real-Time Rendering in Dynamic, Low Frequency Lighting 
Environments,” Computer Graphics, vol. 29, pp. 527–536, 2002. 

[22] Tarboton, D.G, “A new method for the determination of flow directions 
and upslope areas in grid digital elevation models,” Water Resources 
Research, vol. 33, pp. 309-319, 1997. 

[23] THORNE, C (May 2011). Next Steps for X3D Geospatial 
Specification. Available: 
http://www.web3d.org/x3dearth/meetings/2007November/NextStepsF
orGeospatial.pdf 

[24] WEN Huai-xing et al, “Research on the Mechanism of Agricultural 
Information Management System Based Web,” Journal of Anhui 
Agricultural Sciences, vol. 6, 2005. 

[25] Wang Guangqong, “The Design and Development of GIS-Based City 
Information System,” Natural Science Journal of Harbin Normal 
University, vol. 1, 2006. 

[26] Xiao Bai,Yu Hai Long, “A Designing and Implementing of 
Water-supply Pipe Network Information System Based on the 
MapXtreme Application Server,” Geography and Territorial Research, 
vol. 3, 2002. 

[27] XUE Li-xia, WANG Zuo-cheng, “Application of WebGIS in 
intelligent community management system,” Journal of Chongqing 
University of Posts and Telecommunications (Natural Science), vol. 5, 
2006. 

[28] Zhang, W. and D. R. Montgomery, “Digital Elevation Model Grid Size, 
Landscape Representation, and Hydrologic Simulations,” Water 
Resources Research, vol. 30, no. 4, pp. 1019-1028, 1994. 

 
 
 

 
Le Hoang Son is a researcher at the Center for High 
Performance Computing, Hanoi University of Science, 
VNU. He is a member of IACSIT and also member of 
the editorial board of the International Journal of 
Engineering and Technology (IJET). His major field 
includes Data Mining, Geographic Information 
Systems and Parallel Computing. Email: 
sonlh@vnu.edu.vn 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

261



 
 

 

 
Pham Huy Thong is a researcher and Master student 
at the Center for High Performance Computing, Hanoi 
University of Science, VNU. His research interests 
include Geographic Information Systems and 
Molecular Dynamics Simulation. Email: 
thongph@vnu.edu.vn 
 
 

 
 

 
  
Nguyen Duy Linh is a researcher and Master student 
at the Center for High Performance Computing, Hanoi 
University of Science, VNU. His research interests 
include Geographic Information Systems and Grid 
Computing. Email: duylinh@vnu.edu.vn 

Nguyen Dinh Hoa is an associate professor and vice 
director of the Information Technology Institute, 
VNU. His research areas include linear programming, 
optimization, data structure and algorithms, and 
Geographic Information Systems. He is member of 
the organizing committees of many prestigious 
national conferences since 1998. Email: 
hoand@vnu.edu.vn 
 

 
 

 
Truong Chi Cuong is a collaborator at the Center 
for High Performance Computing, Hanoi University 
of Science, VNU. His research interests include 
Geographic Information Systems and Software 
Engineering. Email: 
truongchicuongbk54@gmail.com 

 

International Journal of Machine Learning and Computing, Vol. 1, No. 3, August 2011

262




