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Abstract—This paper proposes an artificial immune 

algorithm with a multiplier updating method (AIA-MU) for 

practical power economic dispatch (PED) considering units with 

prohibited operating zones (POZ). The AIA equipped with a 

migration operation can efficiently search and actively explore 

solutions. The multiplier updating (MU) is introduced to handle 

the system constraints. To show the advantages of the proposed 

algorithm, two examples are investigated, and the 

computational results of the proposed method are compared 

with that of the previous methods. The proposed approach 

integrates the AIA and the MU, revealing that the proposed 

approach has the following merits - ease of implementation; 

applicability to non-convex fuel cost functions of the POZ; 

better effectiveness than previous methods, and the requirement 

for only a small population in applying the optimal PED 

problem of generators with POZ. 

  
Index Terms—Power economic dispatch, artificial immune 

algorithm, prohibited operating zones.  

 

I.   INTRODUCTION 

Power generators may possess some POZ between their 

minimum and maximum generation limits, because of the 

practical limitations of power plant elements. Operating in 

those zones may cause amplification of vibrations in a shaft 

bearing, which must be avoided in practice. The PED problem 

becomes a non-convex optimization problem because the 

prohibited regions separate the decision space into disjoint 

subsets constituting a non-convex solution space [1]. 

Furthermore, utilities must maintain some generation capacity 

as spinning reserve to serve loads in the event that operating 

units or other equipment suddenly or unexpectedly failed.  

Many approaches have been adopted to resolve such PED 

problems with POZ and spinning reserve. Lee et al. [1] 

decomposed the non-convex decision space into a small 

number of subsets such that each of the associated dispatch 

problems, if feasible, was solved via the conventional 

Lagrangian relaxation approach. Fan et al. [2] defined a small 

and advantageous set of decision space with respect to the 

system demand, used an algorithm to determine the most 

advantageous space, and then utilized the λ-δ iterative method 

to find the feasible optimal dispatch solution. For infeasible 

solutions, they re-dispatch the units using some heuristic rules 

to probe the neighborhood for feasibility.  

To adequately solve the dispatch problem for units with 

POZ and spinning reserve, solution techniques that do not 
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directly rely on the incremental cost function formulation but 

perform a direct search of the solution search space are 

required. Such solution techniques include: Hopfiled model 

of neural network [3], [4], genetic algorithm (GA) [5], and 

evolutionary programming (EP) [6], evolutionary strategy 

optimization (ESO) [7], particle swarm optimization with 

time varying acceleration coefficients (PSO-TVAC) [8]. Su et 

al. [3] employed a linear input-output model for neurons, 

enabling the development of an operational model for rapidly 

resolving the PED problems. Yalcinoz et al. [4] proposed an 

improved Hopfield neural network that used a slack variable 

technique to handle inequality constraints by mapping process 

for obtaining the weights and biases. Orero et al. [5] presented 

a penalty function approach to handle the POZ and spinning 

reserve constraints. Pereira-Neto et al. [7] used the ESO for 

solving the non-convex problem of power system. Chaturvedi 

et al. [8] employed the PSO-TVAC method to avoid the 

premature convergence for the POZ and spinning reserve of 

the PED problem. 

AIA [9] is inspired by immunology, immune function and 

principles observed in nature. AIA is a very intricate 

biological system which accounts for resistance of a living 

body against harmful foreign entities. It is now interest of 

many researchers and has been successfully used in various 

areas of research [9], [10]. 

 

II.    SYSTEM FORMULATION 

Generally, the PED problem with some units possessing 

POZ can be mathematically stated as follows [11]: 
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where Fi(Pi) is the fuel cost function of the unit i, Pi is the 

power generated by unit i, ai, bi, and ci are cost coefficients of 

generator i, Np is the number of on-line units, and Ω is the set 

of all on-line units. The PED problem subject to the following 

constraints: 

A. Power Balance Constraints 

The equality constraint of the power balance is given by: 

1
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i d L

i

P P P
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where Pd is the system load demand, and PL is the 

transmission loss. 

B. System Limits 

The generating capacity constraints are written as: 
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min max , 1, ,i i i pP P P i n                      (3) 

where Pi
min

 and Pi
max

 are the minimum and maximum power 

outputs of unit i. 

C. System Spinning Reserve Constraints 

Units with spinning reserve can be are given as: 

i R

i
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0iS i                                 (6) 

where Si is spinning reserve contribution of unit i in MW, SR 

stands system spinning reserve requirement in MW, Pi
max

 is 

maximum generation limit of unit i, Si
max

 denotes maximum 

spinning reserve contribution of unit i, and   is set of all 

on-line units with prohibited zones. Due to a unit with 

prohibited zones may operate into one of its zones while 

system load is regulating, it is shown in (6) that this kind of 

units should not contribute any regulating reserve to the 

system. In other words, system spinning reserve requirement 

must be satisfied by way of regulating the units without 

prohibited zones. 

D. Units with POZ 

The unit operating range denotes the effects of a generator 

with POZ [5]: 
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,1

, 1 ,

max

,

, 2, , or

,

l

i i i

u l

i j i i j i

u

i ni i i

P P P or

P P P j n

P P P i 



 

  

   

      (7) 

where 
l

j,iP  and 
u

j,iP  respectively are the lower and upper 

bounds of prohibited zone j of unit i, and ni is the number of 

prohibited zones in unit i. 

Clearly, the entire operating region of a dispatching unit 

with ni prohibited zones is divided into (ni+1) disjoint 

operating sub-regions. The total number of decision 

sub-spaces caused by that division may be counted as follows: 

( 1)i

i

N n
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                                       (8) 

Equation (8) shows that the total number of decision 

sub-spaces rises extremely quickly as the number of units with 

prohibited zones rises. 

 

III. THE PROPOSED ALGORITHM 

A. The AIA 

In AIA [10], mimics these biological principles of clone 

generation, proliferation and maturation. The main steps of 

AIS based on clonal selection principle are activation of 

antibodies, proliferation and differentiation on the encounter 

of cells with antigens, maturation by carrying out affinity 

maturation process, eliminating old antibodies to maintain the 

diversity of antibodies and to avoid premature convergence, 

selection of those antibodies whose affinities with the antigen 

are greater. 

In order to emulate AIA in optimization, the antibodies and 

affinity are taken as the feasible solutions and the objective 

function respectively. 

B. The MU 

Michalewicz et al. [12] surveyed and compared several 

constraint-handling techniques used in evolutionary 

algorithms. Among these techniques, the penalty function 

method is one of the most popularly used to handle constraints. 

In this method, the objective function includes a penalty 

function that is composed of the squared or absolute 

constraint violation terms. Powell [13] noted that classical 

optimization methods include a penalty function have certain 

weaknesses that become most serious when penalty 

parameters are large. More importantly, large penalty 

parameters ill condition the penalty functions so that 

obtaining a good solution is difficult. However, if the penalty 

parameters are too small, the constraint violation does not 

contribute a high cost to the penalty function. Accordingly, 

choosing appropriate penalty parameters is not trivial. Herein, 

the MU [14] is introduced to handle this constrained 

optimization problem. Such a technique can overcome the ill 

conditioned property of the objective function. 

Considering the nonlinear problem with general constraints 

as follows: 

 
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             (9) 

where hk (x) and gk (x) stand for equality and inequality 

constraints, respectively. 

The augmented Lagrange function (ALF) [13] for 

constrained optimization problems is defined as: 
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where k and k are the positive penalty parameters, and the 

corresponding Lagrange multipliers )( 1 em,,    and 

)( 1 im,,   > 0 are associated with equality and 

inequality constraints, respectively. 

The contour of the ALF does not change shape between 

generations while constraints are linear. Therefore, the 

contour of the ALF is simply shifted or biased in relation to 

the original objective function, f(x). Consequently, small 

penalty parameters can be used in the MU. However, the 

shape of contour of La is changed by penalty parameters while 

the constraints are nonlinear, demonstrating that large penalty 

parameters still create computational difficulties. Adaptive 

penalty parameters of the MU are employed to alleviate the 

above difficulties, and Table I presents computational 

procedures of the MU. More details of the MU have shown in 

[15]. 
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TABLE I: COMPUTATIONAL PROCEDURES OF THE MU 

Step 1. Set the initial iteration 0l . Set initial multiplier, 

ek
l
k

mk ,...,1,00  , ik
l
k

mk ,...,1,00  , and the initial 

penalty parameters, αk>0, k=1,…,me and βk>0, k=1,…,mi . Set 

tolerance of the maximum constraint violation, εk (e.g. εk =1032), and 

the scalar factors, ω1 >1 andω2 >1 . 

Step 2. Use a minimization solver, e.g. AIA, to solve  ll
a xL  ,, . Let ,l

b
x  

be a minimum solution to the problem  ll
a xL  ,, . 

Step 3. Evaluate the maximum constraint violation as 

   kk
k

k
k

k gh   ,maxmax,maxmaxˆ , and establish the 

following sets of equality and inequality constraints whose violations 

have not been improved by the factorω1: 

 

 i
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kkI

e
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,,1,:
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


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





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Step 4. If kk  ˆ , let kk  2 and 2
1 / l

k
l
k

  for all EIk , let 

kk  2 and 2
1 / l

k
l
k

  for all IIk  , and go to step7. 

Otherwise, go to step 5. 

Step 5. Update the multipliers as follows:  

 
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k
l
bk

l
k

l
k

l
bk

l
k

l
k

l
bk

l
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xgxg

xh




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




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Step 6. If 1/ˆ  kk  , let kk  ˆ and go to step 7. Otherwise, let 

kk  2 and 2
1 / l

k
l
k

  for all EIk , and let kk  2  

and 2
1 / l

k
l
k

  for all IIk  . Let kk  ˆ and go to step 7. 

Step 7. If the maximum iteration reaches, stop. Otherwise, repeat steps 2 to 6. 

 

Fig. 1 displays the flow chart of the proposed algorithm, 

which has two iterative loops. The ALF is used to obtain a 

minimum value in the inner loop with the given penalty 

parameters and multipliers, which are then updated in the 

outer loop toward producing an upper limit of La. When both 

inner and outer iterations become sufficiently large, the ALF 

converges to a saddle-point of the dual problem [15]. 

Advantages of the proposed AIA-MU are that the AIA 

efficiently searches the optimal solution in the economic 

dispatch process and the MU effectively tackles system 

constraints. 

 

IV. SYSTEM SIMULATIONS 

This section investigates two examples to illustrate the 

effectiveness of the proposed algorithm with respect to the 

quality of the solution obtained. The first example compares 

the proposed AIA-MU with the previous methods in terms of 

production cost for a 5-unit system. The second example 

compares the AIA-MU with the previous methods in terms of 

production cost for a 15-unit system, in which four units 

(Units 2, 5, 6 and 12) have POZ.  

The proposed AIA-MU was directly coded using real 

values, and the computation was implemented on a personal 

computer (P5-3.0 GHz) in FORTRAN-90. Setting factors 

utilized in these examples were as follows: the population size 

Np was set to 5 for the proposed AIA-MU, and iteration 

numbers of the outer loop and inner loop were set to (outer, 

inner) as (50, 5000) for examples of 1 and 2. For most setting 

of the parameters, the proposed method is able to converge 

satisfactorily.  

 

 
. The flow chart of thr AIA-MU. 

A.  Example 1 

This example system has five on-line units with the 

following input-output cost functions: 

  2 6 3350 8 0.01 1 10 $/i i i i iF P P P P h         (11) 

where i =1, …, 5. The operating limits are 120 MW < Pi < 

450MW for i =1, 2, …, 5. Units 1, 2 and 3 have POZ as 

defined in [2], these zones result in a non-convex decision 

space composed of 27 convex sub-spaces. The system load 

demand PD and spinning reserve SR are 1175 MW and 100 

MW, respectively. 

For comparison, Table II lists the computational results of 

the proposed AIA-MU, the - Method [2], and the EP 

Method [6]. The total cost obtained by the AIA-MU is 

satisfactory compared with that obtained by the - method [2] 

and the EP method [6]. 

TABLE II: COMPUTATIONAL RESULTS OF THE PREVIOUS METHODS AND THE 

PROPOSED IGAMUM FOR EXAMPLE 1 

Items - Method [2] EP Method [6] AIA-MU 

P1 (MW) 

P2 (MW) 

P3 (MW) 

P4 (MW) 

P5 (MW) 

Total power (MW) 

Total cost ($/h) 

238.33 

210.00 

250.00 

238.33 

238.33 

1,174.99 

11,492.51 

240.00 

210.00 

250.00 

223.07 

251.93 

1,175.00 

11,493.23 

238.13 

210.00 

250.00 

238.46 

238.41 

1,175.00 

11,492.50 

Fan et al. [2] defined a small and advantageous set of 

decision space with respect to the system demand, used an 
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algorithm to determine the most advantageous space, and then 

utilized the λ-δ iterative method to find the feasible optimal 

dispatch solution. For infeasible solutions, they re-dispatch 

the units using some heuristic rules to probe the neighborhood 

for feasibility. The AIA-MU combines the AIA and the MU. 

The AIA can efficiently search and actively explore solutions, 

the MU avoids deforming the augmented Lagrange function 

and resulting in difficulty of solution searching. Unlike the 

method [2], it requires neither the decomposition of the 

non-convex decision space nor the determination of the 

advantageous set of decision space before solving via this 

conventional approach. 

B. Example 2 

To further demonstrate the effectiveness of the proposed 

method, a larger practical system of units with POZ having 

non-convex cost functions and spinning reserve was 

addressed in this example, which is identical to that used by 

Lee et al. [1]. The remaining units will contribute with 

regulating reserves [16]. This system supplies a 2650MW 

load demand with 200MW as spinning reserve. This system 

has 15 on-line units supplying a system demand of 2650MW. 

Among these dispatching generators, units 2, 5 and 6 have 

three POZ, and unit 12 has two POZ, forming 192 decision 

sub-spaces for this realistic system. The implementation of 

this example can be represented as follows: 

     

 

2 2

1 1 1 1

5
2 2

1

, , ( ) ( )

( )

a

k k k k

k

L x f x h x

g x

    

  




   
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      (12) 

 
1 2 15

15

( , ,... )
1

objective : min ( ) ( )i i
x P P P

i

f x F P



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     (13) 

 
15

1

1

subject to : 0i d L

i

h P P P


             (14) 

       

150 185 225 305 335 420 450 455

1 2 2 2,1 2,1 2 2,2 2,2 2 2,3 2,3 2 2

105 180 200 260 335 390 420 470

2 5 5 5,1 5,1 5 5,2 5,2 5 5,3 5,3 5 5

135 230 255 365

3 6 6 6,1 6,1 6 6,2

: , , ,

: , , ,

: ,

g P P P or P P P or P P P or P P P

g P P P or P P P or P P P or P P P
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       
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6,2 6 6,3 6,3 6 6

20 30 55 65 75 80

4 12 12 12,1 12,1 12 12,2 12,2 12 12

15
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1

, ,

: , ,

: - 0R i

i

or P P P or P P P

g P P P or P P P or P P P

g S S


   
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                (15) 

TABLE III: COMPARED RESULTS WITHOUT LOSS OF THE PREVIOUS 

METHODS AND THE AIA-MU 

Items -  

[1] 

-  

[2] 

Hopfield 

 [3] 

Hopfield  

[4] 

AIA-MU 

P1 (MW) 

P2 (MW) 

P3 (MW) 

P4 (MW) 

P5 (MW) 

P6 (MW) 

P7 (MW) 

P8 (MW) 

P9 (MW) 

P10 (MW) 

P11 (MW) 

P12 (MW) 

P13 (MW) 

P14 (MW) 

P15 (MW) 

450 

450 

130 

130 

335 

455 

465 

60 

25 

20 

20 

55 

25 

15 

15 

450.0 

450.0 

130.0 

130.0 

335.0 

455.0 

465.0 

60.0 

25.0 

20.0 

20.0 

55.0 

25.0 

15.0 

15.0 

449.4 

450 

130 

130 

335 

455 

464.9 

60 

25 

20 

20 

55 

25 

15 

15 

454.6976 

454.6976 

129.3512 

129.3512 

244.9966 

459.6919 

464.6916 

60.0938 

25.0496 

89.1023 

20.0338 

63.1815 

25.0527 

15.0044 

15.0044 

449.9995 

450.0001 

130.0000 

130.0000 

335.0001 

455.0003 

465.0000 

60.0000 

25.0000 

20.0000 

20.0000 

55.0002 

25.0000 

15.0000 

15.0000 

TP (MW) 2650 2650 2649.3 2650.0002 2650.0000 

sum_Si (MW) 235 235.0 235.7 231.8996 235.0005 

TC ($/h) 32,549.8 32,544.99 32,538.4 32,568 32,544.9705 

CPU_time(s) - - - - 4.88 

TABLE IV: COMPARED RESULTS CONSIDERING LOSS OF THE PREVIOUS 

METHODS AND THE AIA-MU 

Items GA 

[17] 

SA 

[17] 

HDE 

[17] 

VSHDE 

[17] 

AIA-MU 

P1 (MW) 

P2 (MW) 

P3 (MW) 

P4 (MW) 

P5 (MW) 

P6 (MW) 

P7 (MW) 

P8 (MW) 

P9 (MW) 

P10 (MW) 

P11 (MW) 

P12 (MW) 

P13 (MW) 

P14 (MW) 

P15 (MW) 

415.85 

450.00 

111.87 

121.46 

340.84 

455.00 

333.78 

81.84 

115.48 

60.59 

31.78 

55.00 

70.39 

26.22 

36.34 

413.22 

167.67 

99.91 

21.36 

449.20 

296.28 

360.15 

287.99 

155.27 

138.81 

47.85 

76.97 

81.91 

52.94 

52.95 

455.00 

336.16 

128.39 

129.92 

420.00 

418.73 

443.03 

60.00 

41.42 

107.17 

20.00 

79.59 

36.98 

22.02 

15.00 

454.74 

424.96* 

129.87 

129.99 

397.36* 

500.00 

464.75 

60.00 

25.89 

20.75 

20.00 

75.86 

25.06 

15.13 

15.00 

455.0000 

450.0000 

130.0000 

130.0000 

335.0000 

460.0000 

430.1175 

60.0000 

25.0000 

84.5692 

20.0000 

80.0000 

25.0000 

15.0000 

15.0000 

TP (MW) 

PL(MW) 

2,704.46 

56.45 

2,702.49 

52.49 

2,713.40 

63.41 

2,719.35 

69.35 

2,714.6867 

64.6867 

sum_Si 

(MW) 

307.86 218.90 246.65 230.53 264.8825 

TC ($/h) 33,538.2

7 

34,174.4

5 

33,343.3

7 

33,282.17
# 

33,259.305

5 

CPU_time(s

) 

- - - - 5.02 

* An unit loading in a prohibited zone 
# An infeasible result
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This complex optimization problem contains one objective 

function with fifteen variable parameters, (P1, P2,…, P15), one 

equality constraint, (h1) and five inequality constraints, since 

four units have the POZ, (g1 to g4), and the spinning reserve 

constraint (g5).  

Table III lists five algorithms of this problem with POZ and 

spinning reserve constraints obtained by two - methods, 

two Hopfield methods and the proposed AIAE-MU. 

Computational results demonstrate that the proposed method 

is a little better than the two - methods and the Hopfield 

method. Even though the Hopfield method has a little less 

total cost than the proposed method, but its total generated 

power is 2649.3 MW, which is 0.7 MW less than the system 

load demand. In table III, the sum_Si and CPU_time stand the 

sum of spinning reserve and simulation time obtained from 

the method, respectively.  Table III reveals that the proposed 

AIA-MU not only has the lowest total cost (TC) of all 

methods tested, but also generates the exact total power (TP) 

for the system constraints of (14) and (15), showing that the 

proposed algorithm is more effective than other methods for 

the practical PED problem with POZ. 

Moreover, Table IV shows compared results obtained with 

the previous variable scaling HDE (VSHDE) [17], the GA 

[17], simulated annealing (SA) [17] and the propose AIA-MU 

for the system with the transmission loss. The result obtained 

by the VSHDE method is an infeasible solution, because 

generations of Unit 2 and Unit 5, (P2 and P5), are located in 

POZ, respectively. The proposed algorithm also yields better 

solution quality than other methods in the PED problem 

considering POZ. 

 

V.    CONCLUSIONS 

An efficient method for solving the optimal PED problem 

considering POZ was proposed. The proposed approach 

integrates the AIA and the MU, showing that the proposed 

algorithm has the following merits: 1) ease of implementation; 

2) applicability to non-convex fuel cost functions of the POZ; 

3) better effectiveness than the previous method, and 4) the 

need for only a small population. System simulations have 

shown that the proposed approach has the advantages 

mentioned above for solving optimal PED problems of the 

system with POZ.  
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