

Abstract—At present the major issues in searching digital

collections are (a) topic diffusion: results returned by a keyword

based search, fall into multiple topic areas, which are not

interested to users; (b) there is no effective scoring mechanism;

so the users are forced to scan a large result set, which leads

them to miss the important ones. In order to help the users, we

propose a technique, NCBS (New Context Based Search). This

approach uses the data structures such as B+-Tree and an

inverted list. The extensive study shows that the proposed

approach effectively controls the diversity of output topics,

reduces the size of the search results, and has better

performance than the existing method.

Index Terms— Context–Based Search (CBS), digital library,

b+-tree, inverted list, digital collection.

I. INTRODUCTION

The web is rapidly growing and becoming a huge

repository of information, with several billion pages and more

than 300 million of users globally [1]. This information

volume causes many problems that relate to difficulty of

finding, organizing, accessing, and maintaining the required

information by users.

There are two major issues encountered, while searching in

a digital collection. First issue is topic diffusion. Results

returned by a search query often fall into multiple topic areas,

which diffuses the topic, not all of which are of interest to

users. Second issue is relevance. Relevance depends on how

well retrieved documents satisfy the user needs. In order to

avoid the problems mentioned, a specific searching

mechanisms to be established.

The digital library is an electronic library where the

information is acquired, stored and retrieved in digital form.

Digital libraries provide instant access to all information, for

all sectors of society, from anywhere in the world. For a given

query, it may return huge number of results. It is obvious that

very few results are relevant to the user needs out of the huge

set of results. Thus, we need an effective searching

mechanism in digital collection, to produce the best result.

The remainder of the paper is organized as follows: Section

II is devoted to the issues relevant to searching. In Section III,

we describe the architecture for NCBS. Section IV shows our

performance evaluation result. Finally, in Section V we

present conclusion.

Manuscript received February 15, 2013; revised June 18, 2013.

The authors are with Department of Computer Science, Madurai Kamaraj

University, Madurai, TN, India (e-mail: thangarajmku@yahoo.com,

gayathrivengatmku@yahoo.com).

II. RELATED WORK

There are many digital collection search systems, such as

Google Scholar, IEEE Xplore, and etc., available online.

These systems produce results based on the relevancy to the

query term and/or the importance of the papers. They do not

use contexts to organize search results.

A number of categorization techniques have been proposed

to make search results more understandable. Two

widely-used categorization techniques are clustering and

classification. Clustering creates categories (or contexts) by

grouping similar documents together while classification

assigns documents to a set of predefined categories [2].

Clustering can also be further classified as flat clustering

and hierarchical clustering [3]. Even though more techniques

are available, still we have some problems in the retrieval. In

an algorithm named Semantic Forests [4] uses an electronic

dictionary to make a tree for each word in a text document.

The root of the tree is the word from the document, the first

branches are the words in the definition of the root word, and

the next branches are the words in the definitions of the words

in the first branches, and so on.

Finally, the trees are merged into a scored list of words. The

premise is that words in common between trees will be

reinforced and represent “topics” present in the document.

The main drawback here is, it passes twice, to produce the

desired result. In which, the first pass could be made to get all

documents which match the desired topics and a second pass

made to eliminate the ones which discuss unwanted aspects of

the topic. There is no effective technique/method to extract

the desired information from a dictionary or thesaurus; and

finally it doesn’t provide the relevant words.

In CoFS [5]-[7], users in this system use tags to describe

files or resources of special interest. A set of tags assigned to a

file by a user is called a tag-based context. For each user, his

interesting files are organized into the appropriate contexts. A

directed acyclic graph of tags is created for each user to help

him navigate from one context to another to retrieve his files.
Instead a common directed acyclic graph with an inverted

index is enough. Thus, it leads overhead of more number of

directed acyclic graphs which is poor in updating.

Similarly in Context Based Search (CBS) [8], during

pre-querying, publications are assigned into pre-specified

ontology-based contexts, and query-independent context

scores are attached to papers with respect to the assigned

contexts. When a query is posed, relevant contexts are

selected, search is performed within the selected contexts,

context scores of publications are revised into relevancy

scores with respect to the query at hand and the context that

they are in, and query outputs are ranked within each relevant

An Effective Technique for Context – Based Digital

Collection Search

M. Thangaraj, Member, IACSIT and V. Gayathri

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

372DOI: 10.7763/IJMLC.2013.V3.341

context. The major drawback in this system is that for

searching within each selected context, all the publications in

the database are verified linearly. Thus it takes more number

of comparisons, and retrieval time.

III. PROPOSED WORK

In this work, we propose a technique named NCBS, which

effectively retrieves the relevant document from the

collection. It has two major segments such as pre–processing

the digital collection and the query evaluation. The following

steps are used in the pre-processing phase:

1) Pattern Extraction: From the data set, patterns are

extracted to organize the documents in the digital

collection.

2) Constructing Searching Structure: Documents in the

digital collection, which are matched to the extracted

patterns, are mapped to the searching structure.

Note that pattern extraction and construction of searching

structure are pre-executed and not dependent on queries. The

following steps are used in the query evaluation:

1) Processing the query: checks whether the given query is

in the structure of the pattern, and extracts the pattern

from the given input text.

2) Identification of Context: The context relevant to the

query pattern is extracted using the searching structure.

3) Synonyms Selection: The relevant synonyms for the

identified context are also extracted.

The architecture of this model is given in Fig. 1. The data

set is nothing but the information in the digital collection

pertaining to multiple topics. Using the pre-processing phase,

the documents in the digital collection are classified based on

the context extracted (using pattern extraction technique).

When a query is specified, the relevant pattern is extracted

from the collection of patterns. Pattern matching is performed

in the searching structure with the extracted query pattern.

The relevant context is identified, then searching in the list to

retrieve the synonyms and return the result along with its

synonyms.

Fig. 1. NCBS architecture.

A. Pattern Extraction

This section presents a pattern extraction technique that

constructs patterns from a context’s data set. The constructed

patterns are then used to assign documents to contexts:

Significant terms (phrases), which are terms related to a

context, are constructed from frequent terms (phrases) located

in the documents.

Patterns are constructed from significant terms as follows.

A pattern consists of three tuples: <Left> <Middle> <Right>,

where each tuple is a set of words. Significant words (i.e.,

words in the significant terms) appearing in the data set are

assigned to <Middle> tuple. Words surrounding the

significant words are assigned to <Left> and <Right> tuples.

The number of words for <Left> and <Right> tuples are

determined by a window size. The <Middle> tuple represents

the <context> tuple, and the <Left> <Right> tuples denotes

the <Prefix> and <Suffix> tuples.

B. Constructing Searching Structure

The earlier section has described how the digital

collections are classified into contexts using pattern

extraction based technique. In this section mapping of

classified contexts into a searching structure are discussed.

The searching structure is a composition of a B
+
-tree and

inverted list. The B
+
-tree is organized based on the context

with its prefix and suffix terms. The leaf node has the Context

and a pointer to the relevant document. Every leaf node of a

B
+
-tree points to an inverted list. The inverted list has the set

of synonyms for the given context.

Each pattern is considered as a separate context. Each

context is mapped into the B
+
-tree (Context Tree) as an

individual bucket element. Patterns that are extracted by

virtually walking from one to another are considered as the

descendant patterns. These descendants are mapped into the

tree as a child to the context of the pattern, from which these

descendants are extracted.

In the internal nodes of the Context tree, it has only the

Context, that is, pattern with the three tuples <prefix>

<context> <suffix>. But, the leaf node has Context and a

pointer to a list that holds synonyms. The synonyms of the

context are mapped into an inverted list (synonyms list).

And also each element in the leaf node has a pointer to the

document in the data set, which actually represents the

relevant Context. Using this pointer, the document related to

the specified context can be retrieved efficiently. The

searching architecture with B+-Tree and inverted list are

shown in Fig. 2.

Fig. 2. Overview of searching structure.

......

……

…..

…

….…

..

…….

....

......

……

…..

…

….…

..

…….

....

......

……

…..

…

….…

..

…….

....

......

……

…..

…

….…

..

…….

....

B
+
-Tree

…

Root

Node

Internal

Node

Leaf

Node

Inverte

d

List

… …

Pattern

Extraction

Constructing

Searching

Structure
Pre Processing

Query Query

Processing

Identifying Query

Context

Synonyms Selection

O/P

I/P

Query Evaluation

Data Set

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

373

Fig. 3. Context tree leaf record structure.

The structure of a record (bucket element) in the leaf node

of the Context Tree is shown in Fig. 3. The leaf node in the

Context tree has structure containing pattern details such as

prefix, context, suffix, pointer to the document relevant to the

context, and pointer to the synonyms list. The remaining node

of the Context tree contains only the pattern details such as

prefix, context, suffix, and a pointer to its children.

C. Identification of Context

The searching structure is searched against the query

pattern to identify the relevant context. Initially, NCBS search

for the left tuple: if it is available, then the subsequent tuples

are searched in its sub tree; otherwise, searching is performed

with the next tuple. Similarly each tuple is considered for

searching, when it is found, then the further searching is done

at its sub tree; otherwise searching continues with the next

tuple.

Fig. 4. Searching against the contexts of the contexts.

Fig. 5. Searching against the prefixes of the contexts.

When a query tuple is searched in the tree, it may appear at

the <prefix> tuple or at the <context> tuple of the node in the

tree. Mostly it appears at the <context> tuple. Thus searching

starts with the <context> tuple of the node, if it matches with

the query tuple, then the subsequent tuples are searched in its

sub tree (Fig. 4). In contrast, if the query tuple doesn’t match

with <context> tuple, then it is compared with the <prefix>

tuple of the same node (Fig. 5). Suppose, the query tuple

matched with the <prefix>, then the searching for the next

tuple is done with the <context> tuple of the same node. Then,

the searching mechanism repeats the searching in the same

fashion to retrieve the required information.

When searching is stopped without getting the exact

context as in the query, then the Context, up to which the

search mechanism found its match with the query context, is

returned as a result. When there is no match occurs, then the

Contexts in the root of the Context tree are returned as a

suggestion for the user’s reference. Instead of getting out with

empty result set, the user can get some information to make

improvement in their searching query task.

D. Synonyms Selection

When a context is identified in the leaf node, then it has to

return the result, along with its synonyms. Each leaf node

record has a link to an inverted list, which contains the

synonyms of that context. The searching mechanism follows

the link to retrieve the synonyms. The list holding synonyms

are traversed to fetch all the synonyms relevant to the context.

As the leaf node has a pointer to the list, it is very effective for

immediate retrieval of synonyms.

IV. PERFORMANCE ANALYSIS

This NCBS approach has been implemented using C++.

The set of experiment explores the effects of data and query

parameters on performance. All experiments reported in this

section are done on Pentium 4 2.x GHz with 256MB RAM

and 80 GB of secondary storage, running Windows 2000. In

order to test the model and to find the performance, about

5000 documents have been created and various queries have

been implemented.

From the experiments performed, it’s come to know that

the traditional method has the lowest storage cost. In

particular, the CBS approach has less storage cost when

compared to the NCBS approach. However, the storage costs

may not be crucial, since large capacity storage devices are

available for lowest cost. Therefore, it may be preferable to

design models that provide good performance, even if they

have large storage requirements.

Comparisons during Searching

0

100

200

300

400

500

600

100 200 300 400 500

Data Size

N
o

 o
f

C
o

m
p

a
ri

s
o

n
s

NCBS

CBS

Fig. 6. Comparisons during searching.

The Fig. 6 shows the amount of comparisons needed during

searching to identify the context. The NCBS needs only less

number of comparisons, because it searches only to the

relevant items using searching structure. But, the CBS

approach has to scan through the entire collection in a linear

order.

The Fig. 7 illustrates the comparison of the context

retrieval performance of the two approaches. The time

overheads are measured for retrieving the context to the given

query. The time to retrieve the context in CBS approach is

 Prefix Context Suffix
Pointer

to the

Document

Pointer to

Synonyms

List

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

374

drastically increased because, it searches linearly. The graph

in Fig. 8 compares the synonyms retrieval performance of the

two approaches. The synonyms are retrieved for the given

query and the time overheads are measured.

The main goal of these experiments is to study the retrieval

performance of the NCBS approach. The result of the study

shows that NCBS approach performance is better than the

CBS approach.

Context Retrieval Time

0

20

40

60

80

100

120

1000 2000 3000 4000 5000

Data Size

R
e

tr
ie

v
a

l
T

im
e

 (
in

 m
s

)

NCBS

CBS

Fig. 7. Context retrieval time.

Synonyms Retrieval Time

0

20

40

60

80

100

120

140

1000 2000 3000 4000 5000

Data Size

R
e
tr

ie
v
a
l
T

im
e
 (

in
 m

s
)

NCBS

CBS

Fig. 8. Synonyms retrieval time.

V. CONCLUSION AND FUTURE WORK

The existing algorithms and methods are having problems

of retrieving the document with topic diffusion and large

result set that are not match with the user’s interest. The

NCBS approach effectively controls the diversity of output

topics and reduces the size of the search results.

The results of this study indicate the importance of the

searching structure used in NCBS approach which improves

the performance of searching in the digital collection. The

same work may be further extended by applying some training

algorithm for effective retrieval of data.

ACKNOWLEDGMENT

The authors wish to express their sincere appreciation to

Prof. G. Arumugam, M. K. University, for his invaluable

comments and feedback, and also thank the anonymous

reviewers of ICMLC’11 for their significant comments.

REFERENCES

[1] Survey on information explosion by netcraft secure survey upto.

August 2012. [Online]. Available:

http://news.netcraft.com/archieves/web_server_survey.html

[2] M. Kaki, “Findex: search results categories help users when document

ranking fails,” in Proc. ACM SIGCHI Conf. Human Factors in

Computing Systems, New York, USA, 2005, pp. 131-140.

[3] P. Ferragina and A. Gulli, "A personalized search engine based on

Web-snippet hierarchical clustering,” in Proc. ACM WWW'05 Special

Interest Tracks and posters of the 14th International Conf. on World

Wide Web, New York, USA, 2005, pp. 801-810.

[4] G. D. Henderson, P. Schone, and T. H. Crystal, “Text Retrieval via

Semantic Forests,” in Proc. Text Retrieval Conf. (TREC)-7,

Gaithersburg, Maryland, 1998, pp. 583-594.

[5] H. B. Ngo, F. S. Chaussumier, and C. Bac, “A Context-based System

for personal file retrieval,” ACM, 2009.

[6] W. H. Cheng and D. Gotz, “Context–based page unit recommendation

for web–based sensemaking tasks,” in Proc. The 14th international

Conf. on Intelligent User Interfaces, IUI '09, ACM, New York, NY,

USA, 2009, pp. 107-116.

[7] C. A. N. Soules and G. R. Ganger, “Connections: using context to

enhance file search,” in Proc. SIGOPS Oper. Syst. Rev., 2005, vol. 39,

no. 5, pp. 119 -132.

[8] N. Ratprasartporn, J. Po, A. Cakmak, S. B. Ahmad, and G. Ozsoyoglu,

“Context-based literature digital collection search,” The VLDB Journal,

vol. 18, pp. 277–301, 2009.

M. Thangaraj received his post-graduate degree in

Computer Science from Alagappa University,

Karaikudi, M.Tech. degree in Computer Science

from Pondicherry University and Ph.D. degree in

Computer Science from Madurai Kamaraj

University, Madurai, TN, South India in 2006.

He is now an associate professor of Computer

Science Department at M. K. University. He is an

active researcher in Web mining, Semantic Web and

Information Retrieval and he has published more than 60 papers in Journals

and Conference Proceedings. He is a senior member of IACSIT. He has

served as a program chair and program committee member of many

international conferences held in India for about one decade.

V. Gayathri received her post-graduate degree in

Computer Science in 2008 and M.Phil. degree in

Computer Science in 2010 from Madurai Kamaraj

University, Madurai, TN, India. She is currently a

Ph.D. scholar in Dept. of Computer Science, M. K.

University, Madurai, TN, India. Her research

interests include context-based search, information

retrieval and semantic web.

Author’s formal

photo

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

375

