



Abstract—An ensemble method produces diverse classifiers

and combines their decisions for ensemble’s decision. A number

of methods have been investigated for constructing ensemble in

which some of them train classifiers with the generated patterns.

This study investigates a new technique of training pattern

generation that is easy and effective for ensemble construction.

The method modifies feature values of some patterns with the

values of other patterns to generate different patterns for

different classifiers. The ensemble of decision trees based on the

proposed technique was evaluated using a suite of 30

benchmark classification problems, and was found to achieve

performance better than or competitive with related

conventional methods. Furthermore, two different hybrid

ensemble methods have been investigated incorporating the

proposed technique of pattern generation with two popular

ensemble methods bagging and random subspace method

(RSM). It is found that the performance of bagging and RSM

algorithms can be improved by incorporating feature values

modification with their training processes. Experimental

investigation of different types of modification techniques finds

that feature values modification with pattern values in the same

class is better for generalization.

Index Terms—Decision tree ensemble, diversity, feature

values modification, generalization, pattern generation.

I. INTRODUCTION

The goal of ensemble construction with several classifiers

is to achieve better generalization ability over individual

classifiers. The inspiration for building an ensemble is the

same as for establishing a committee of people: each member

of the committee should be as competent as possible, but the

members should be complementary to one another. If the

members are not complementary, i.e., if they always agree,

the committee is unnecessary as any one member could

perform the task of the committee. If the members are

complementary, then when one or a few members make an

error, there is a high probability that the remaining members

can correct his error. Thus, for ensemble construction, proper

diversity among classifiers (also called base classifiers) is

considered to be an important parameter so that the failure of

one may be compensated by others [1], [2].

An ensemble method produces diverse classifiers and

combines their decisions for ensemble’s decision. As a base

Manuscript received December 23, 2012; revised June 1, 2013.

M. A. H. Akhand is with the Dept. of Computer Science and Engineering,
Khulna University of Engineering & Technology, Khulna-9203, Bangladesh

(e-mail: akhand@cse.kuet.ac.bd).

M. M. Hafizur Rahman is with Dept. of Computer Science, KICT,
International Islamic University Malaysia, Jalan Gombak, 50728 Selayang,

Selangor, Malaysia

(e-mail: hafizur@iium.edu.my).

K. Murase

is

with Graduate School of Engineering, University of Fukui,
3-9-1 Bunkyo, Fukui 910-8507, Japan

(e-mail: murase@u-fukui.ac.jp).

classifier, decision trees (DTs) are one of the most commonly

used methods because they are efficient [3], [4].

Considerable work has been done to determine the effective

ways for constructing diverse DTs so that the benefit of

ensemble construction could be achieved. There are many

ways, such as using different training sets and learning

methods, one can adopt to construct diverse DTs. It is argued

that DTs construction using different data is likely to

maintain more diversity than other approaches [4]-[6]

because function that a DT determines approximates from the

training data. A number of methods have also been

investigated to create different data sets for proper diversity.

Among them some manipulate original training data only

[5]-[9]; other methods generate some training patterns and a

particular classifier is trained with the generated patterns

along with the original patterns [10]-[12]. Recently, a number

of hybrid ensemble methods have also been investigated

incorporating and updating popular methods [13]-[17].

Bagging [5] and boosting [6], the pioneer and popular

ensemble methods, sample training patterns from the original

patterns to create training sets for different classifiers [6]-[8].

A particular pattern in a particular training set is a copy of a

pattern from the original training set that has been selected

probabilistically. Bagging creates a training set from an

original training set using the bootstrap sampling technique.

For a training set, patterns are randomly picked from the

original training set with replacement. Due to random

selection, each created training set contains many patterns

appearing multiple times while others are left out [5]. The

boosting algorithm also follows the bootstrap technique to

create a training set for a DT. However, the distribution of

patterns changes after training each DT. Training patterns

that were predicted incorrectly by previous component DT(s)

are chosen more often than patterns that were correctly

predicted.

The prominent methods those use generated or modified

patterns to promote diversity are Random Subspace Method

(RSM)[11], Class Label Switching (CLS)[12], and Diverse

Ensemble Creation by Oppositional Relabeling of Artificial

Training Examples (DECORATE)[10]. RSM constructs a

classifier with sampled feature subset of original features of

the problem. It uses the bootstrap sampling technique to

select features for a classifier and the number of features is

considered as half of original in general. Due to bootstrap sampling, a

particular training set contains a different arrangement of

features; and therefore RSM may produce poor DTs when

some important features are missing in their training sets.

To prepare a training set for a particular DT, CLS [12]

randomly changes the original class definition of some

patterns to different ones. Class label alteration gives new

generated patterns in the training set and the generated

patterns may conflict with other patterns due to random

Pattern Generation through Feature Values Modification

and Decision Tree Ensemble Construction

M. A. H. Akhand, Member IACSIT, M. M. Hafizur Rahman, and K. Murase

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

322DOI: 10.7763/IJMLC.2013.V3.331

alteration. In short, CLS may define different class

definitions into different training sets for a particular feature

set. It may also show the same class label for training patterns

with dissimilar feature sets in a particular training set. Both

these problems may give rise to ambiguity in training and

return poor DTs. Therefore, it has been suggested that the

class label should change for a small fraction of examples,

leaving a majority of examples with the correct class label

[18].

DECORATE[10] randomly creates a set of patterns, called

diversity set, for each classifier and it trains a classifier with

the union of the original training set and the diversity set. It

follows a two-step process to create a pattern: 1) it generates

feature values randomly (for continuous feature) and

probabilistically (for discrete feature), and 2) it defines the

class label of the generated feature set opposite of the class

probability response of the existing ensemble. The generated

patterns may conflict with original patterns, and therefore,

may return poor classifier. To overcome this, it produces a

relatively large number of classifiers and selects a subset of

classifiers for the final ensemble. The method seems

complicated and its computational cost is relatively high due

to several steps for pattern generation, relatively large

number of classifiers creation and selection of classifiers

[18].

With the above discussed DT based ensemble methods, a

number of ensemble methods have also been investigated

with neural network (NN) as base classifier [7], [18]. Some

NN based ensemble methods share similar techniques of DT

ensembles and some other are only for NN, such as, negative

correlation learning [18], [19]. Recently an ensemble of NN,

called EIVA, has been investigated through alteration of

preprocessed numeric input values of NN [20]. EIVA does

not create training patterns like DECORATE but it

manipulates preprocessed numeric input values of some

training patterns. The method is shown competitive to the

other methods.

The objective of this study is to investigate a best suited

pattern generation mechanism for DT ensemble construction

that emphasizes both accuracy and diversity among

individual DT classifiers. The technique which follows this

study is simple and effective: it creates a pattern from an

original available pattern modifying some of its feature

values with that of another pattern. The DT ensemble

construction through the proposed pattern generation seems

an easy and effective method. Moreover, this study also

investigates hybrid ensemble methods incorporating such

feature values modification technique with other existing

methods. The experimental results on a large number of

benchmark problems reveal the effectiveness of generated

patterns using the proposed technique in DT ensemble

construction.

The rest of this paper is organized as follows. Section II

describes the proposed feature values modification for

pattern generation and explains ensemble of decision tree

construction with the generated patterns. Section III explores

hybrid ensemble methods incorporating proposed feature

values modification with two popular methods. Section IV is

for experimental study. Finally, the paper concludes with a

few remarks in Section V.

II. PATTERN GENERATION THROUGH FEATURE VALUES

MODIFICATION AND DECISION TREE ENSEMBLE

CONSTRUCTION

This section explains proposed pattern generation

modifying feature values and a Decision Tree Ensemble

(DTE) method based on this technique. The basic aim of

pattern generation is the creation of different training sets for

different classifiers to promote diversity in an ensemble.

Pattern generation seems inefficient in the existing methods

to maintain proper diversity for better generalization. Some

of them (e.g., DECORATE) follow several steps to create

patterns and are computationally heavy. Some of them (e.g.,

CLS) produce very different patterns and, therefore, may

return poor classifier due to ambiguity in training. It is

reported that one may get very good diversity producing very

different patterns from any of the existing methods, but

achieving a good generalization is not easy [2], [18]. For

better generalization, classifiers should be accurate as well as

diverse. Accordingly, this study investigates a pattern

generation mechanism that uses existing patterns to produce

different but related patterns, and may maintain the accuracy

of individual classifier to deliver proper diversity. Fig. 1

shows the algorithm for the proposed Feature Values

Modification (FVM) that introduces some generated patterns

in a particular training set and explains the important points

here after.

Function FVM (T, Td, MF)

{ // T and Td are the original training set and the training set for a

particular DT, respectively.

//MF is the Modification Factor.

1. Number of patterns to be modified M=S*MF // Here S is the size of T

or Td

Prepare Pattern Index List PIndex with values 1 to S.

SIndex= S // Size of Pattern Index List is equal to S

2. For m = 1 to M {

a. Select a random number I between 1 and SIndex

b. Select Pattern Index m from Ith location of PIndex

c. Delete Ith location of PIndex // SIndex= SIndex -1

d. Select mth pattern Pm in Td that would be modified

e. Select a pattern Po (Po ≠ Pm) in T having same class label of Pm

f. Modify some feature values of Pm using corresponding values from

Po }

}

Fig. 1. Feature Values Modification (FVM) in a Given Training Set.

FVM of Fig. 1 takes original training set (T) and training

set for a particular DT (Td), and modifies feature values of

some patterns in Td with help of patterns of T to induce

generated patterns. The number of patterns to be modified/

generated depends on the parameter Modification Factor (MF)

that values may define between 0.0 and 1.0. To select a

pattern for modification only once, a pattern index list (PIndex)

is used and the index of a pattern is deleted after selection

(Step 2. c). A pattern would be modified (Pm) is selected

randomly through generating a random number of pattern

index I in between 1 and current size of PIndex (Step 2. a and

Step 2. b). To produce a new pattern FVM alters some feature

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

323

values of a pattern Pm of Td with corresponding values of

another selected pattern Po from the original training set T.

The pattern Po is considered from T to increase versatility of

selection in feature and feature values. In general, Po will

have same class label of Pm so that generated patterns will be

different but related to original patterns. However it will be

possible to generate a pattern modifying its feature values

with a pattern having a different class label. Next important

points are how many feature values will be changed among

the total features (f) and what will be the procedure for it. A

crossover like technique is employed in this study for this

purpose: randomly select a point (cp) in between 1 and f-1;

and then feature values from cp+1 to f of Pm is changed with

that of Po.

The feature values modification technique may produce a

large number of patterns from the existing patterns. Consider

a particular problem to classify N patterns into c different

classes based on f input feature values and each class have Nc

(i.e., Nc = N/c) patterns. In such a case, a pattern may consider

other (Nc-1) patterns to modify its feature values and may

produce (f-1) different patterns for each of individual pattern

selecting cp value in between 1 and f-1. Therefore, the

possible total number of generated patterns (Gpsc) modifying

a pattern with another same class label pattern is:

Gpsc = cNc(Nc-1)(f-1) = N(Nc-1)(f-1). (1)

Similarly, a pattern may consider (N-Nc) different patterns

for modification with different class label patterns and in

such a case all f feature values modification also give new

patterns. The possible number of generated patterns (Gpdc)

for modification with different class label pattern is:

Gpdc = cNc(cNc-Nc)f = cNcNc(c-1)f = NcN(c-1)f (2)

On the other hand, CLS may produce c-1 different patterns

from an original pattern changing its class label to one of

remaining c-1 classes. For a two class problem, CLS may

produce only one pattern from an original one. The possible

total number of generated patterns in CLS may be:

GpCLS=cNc(c-1)=N(c-1). (3)

Thus, FVM technique may produce more patterns than

CLS. Moreover, FVM technique may generate patterns like

CLS modifying all f feature values with a different class label

pattern.

The way of pattern generation modifying feature values in

FVM is easy and seems to be cost effective. FVM changes

some feature values of a pattern with that of another pattern.

This easy technique is applicable for any feature type and no

need to check whether the feature is numeric or discrete. On

the other hand, DECORATE follows different ways to

generate feature values for different feature types and incurs a

separate step to define class label for the generated feature

set.

Another benefit of FVM is its simplicity. The parameters

used in it are easily understandable and the selection of their

values is also simple. The parameter MF determines the

number of patterns to be generated. The higher value of MF

may give more diversity than its lower value due to the larger

number of different generated patterns in the training sets.

Moreover, the technique of pattern generation of FVM can be

hybridized with other training schemes like the one used in

the bagging and RSM. This issue will be explored in Section

III.

1. Take the original training set T = {P1…,PN} each pattern belongs

feature values from feature set F = {1, 2,…, f} and class label cp C =

{1, 2,…,c} // Problem to classify N patterns into c different classes based

on f input feature values.

Let D be the number of DTs to be constructed and

MF be the Modification Factor

2. For d = 1 to D {

a. Td = T // Take original training set

b. FVM (T, Td, MF) // Call Function FVM

c. Construct decision tree DTd with Td}

3. Ensemble decision from D decision trees.

Fig. 2. Ensemble based on Feature Values Modification (EFVM).

Fig. 2 shows the algorithm for the proposed ensemble of

decision trees conceiving the pattern generation of FVM

described in Fig.1 and the new ensemble method is called as

Ensemble with Feature Values Modification (EFVM). To

create a different training set for a particular DT, EFVM first

takes the original training set (Step 2. a) and then call FVM

(Step 2. b) to alter some of its patterns with newly generated

patterns. EFVM constructs several DTs with different

training set each of which contains some generated patterns

through FVM and considers all the produced DTs for an

ensemble. EFVM does not require DT selection like

DECORATE that produces a relatively large number of DTs

and consider a subset of them for final ensemble [10].

The number of patterns to be generated in the training set

of a particular DT in EFVM is specified by the Modification

Factor (MF). The value of MF may set anywhere between 0.0

and 1.0. No pattern will be changed and all the DTs will be

trained on T for MF = 0.0; for MF = 1.0 all the patterns are

updated, and there might be no pattern common in between

the original training set (T) and the training set of a particular

DT (Td).

III. HYBRID ENSEMBLE CONSTRUCTION INCORPORATING

FEATURE VALUES MODIFICATION

This section explains hybrid ensemble construction

methods incorporating the technique of pattern generation of

FVM with other data sampling techniques. From various

existing methods, bagging and random subspace method

(RSM) have been considered due to their popularity as well

as effectiveness. Bagging creates a separate training set for

each DT in the ensemble using resampling technique from

the original training data. On the other hand, RSM also

produces different training sets for different DTs but a

particular training set contains a sampled subset of original

feature set. The aim of separate training set creation using

sampling data in bagging and feature in RSM is to produce

diverse DTs so that ensemble with them achieves better

generalization. Due to random selection from the original

training set, each created training set in bagging contains on

average 63.2% unique patterns from the original training set,

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

324

with many patterns appearing multiple times while others are

left out [5]. This means diversity produces by bagging might

not be so precise, and it could be made more precise

introducing FVM in bagging. Similarly, the incorporation of

FVM may improve RSM since training sets of it may contain

common feature subset.

1. Take the original training set T= {P1…,PN} each pattern belongs

feature values from feature set F = {1, 2,…, f} and class label cp C =

{1, 2,…,c} // Problem to classify N patterns into c different classes based

on f input feature values.

Let D be the number of DTs to be constructed and

MF be the Modification Factor

2. For d = 1 to D {

a. Make a new training set, Td by sampling N patterns uniformly at

random with replacement from T.

b. FVM (T, Td, MF) // Call Function FVM

c. Construct decision tree DTd with Td}

3. Ensemble decision from D decision trees.

Fig. 3. Hybrid Ensemble: Bagging with Feature Values Modification
(BFVM).

Fig. 3 shows the pseudo code of hybrid ensemble method

incorporating FVM with bagging and the new method is

called Bagging with Feature Values Modification (BFVM).

The bold-face line in the figure (Step 2.b) indicates the

modifications/additions over standard bagging algorithm.

The hybrid BFVM method first prepare sampled training set

for particular DT (Td) as of bagging (Step 2.a) and then call

FVM (Step 2.b) to alter some of its patterns with newly

generated patterns. Step 2.b is only addition to the standard

bagging method to hybridize the feature values modification.

The difference between BFMV and EFVM (Fig. 2) is that

BFVM considers bagging like sampled training set for

feature values modification whereas EFVM takes a copy of

original training set (Ti=T).

1. Take the original training set T= {P1…,PN} each pattern

belongs feature values from feature set F = {1, 2,…, f} and class

label cp C= {1, 2,…,c} // Problem to classify N patterns into c

different classes based on f input feature values.

Let D be the number of DTs to be constructed and

MF be the Modification Factor

2. For d=1 to D {

a. Td = T // Take original training set

b. FVM (T, Td, MF) // Call Function FVM

c. Make a sampled feature subset Fd from original feature set F.

d. Update Td removing features that is not in Fd

e. Construct decision tree DTd with Td}

3. Ensemble decision from D decision trees.

Fig. 4. Hybrid Ensemble: Random Subspace with Feature Values

Modification (RFVM).

Similarly, Fig. 4 is the pseudo code of hybrid ensemble

method of RSM with Feature Values Modification (RFVM)

incorporating FVM with RSM. The bold-face line in the

figure (Step 2. b) indicates the modifications/additions over

standard RSM algorithm. Since RSM requires different

feature subsets for different DTs, the feature values

modification (Step 2. b) is done on the copy of original

training set (Td=T) (Step 2. a) before feature sampling for

simplicity. A particular training set for a particular DT is

prepared considering sampled feature subset of Td that

already contains some generated patterns. In RFVM, Step 2.b

is the only addition over standard RSM to hybridize FVM

with RSM. The difference between EFVM (Fig. 2) and the

hybrid RFVM is that RFVM uses a sampled feature subset

whereas EFVM uses all the features for a particular DT.

IV. EXPERIMENTAL STUDIES

This section experimentally investigates the proficiency of

proposed feature values modification based pattern

generation for DT ensemble construction. A set of

benchmark problems were chosen as a test bed and the

performance were compared to that of other ensemble

methods: bagging, Random Subspace Method (RSM), Class

Label Switching (CLS) and DECORATE. For fair

comparison, the experimental methodology was chosen

carefully. Finally, an experimental analysis is given to

observe the variation effect of MF value on diversity and

generalization of an ensemble.

A. Benchmark Problems and General Experimental

Methodology

TABLE I: CHARACTERISTICS OF BENCHMARK DATASETS

Sl. Dataset
Exam-

ple
Class

Input Feature

Cont. Disc.

1 Australian Credit Card 690 2 6 9

2 Auto (ATO) 205 6 16 10

3 Breast Cancer Wisconsin (BCW) 699 2 9 -

4 BUPA Liver Disorders (BLD) 345 2 6 -

5 Diabetes (DBT) 768 2 8 -

6 Ecoli (ECL) 336 4 7 -

7 German Credit Card (GCC) 1000 2 7 13

8 Glass (GLS) 214 6 9 -

9 Heart Disease Cleveland (HDC) 303 2 6 7

10 Hepatitis (HPT) 155 2 6 13

11 Hypothyroid (HTR) 7200 3 6 15

12 Ionosphere (INS) 351 2 34 -

13 Iris Plants (IRP) 150 3 4 -

14 King+Rook vs King+Pawn (KRP) 3196 2 - 34

15 Lymphography (LMP) 148 4 - 18

16 Lung Cancer (LNG) 32 3 - 56

17 Lenses (LNS) 24 3 - 4

18 Letter (LTR) 20000 26 16 -

19
Optical Rec.of Handwritten

Digits (OPT)
5620 10 64 -

20 Page Blocks (PGB) 5473 5 10 -

21 Phoneme (PHN) 5404 2 5 -

22 Postoperative (PST) 90 3 1 7

23 Soybean (SBN) 683 19 - 35

24 Sonar (SNR) 208 2 60 -

25 Splice (SPL) 3175 3 - 60

26 Vehicle (VHC) 846 4 18 -

27 Wine (WIN) 178 3 13 -

28 Waveform (WVF) 5000 3 21 -

29 Yeast (YST) 1484 10 8 -

30 Zoo (ZOO) 101 7 15 1

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

325

Thirty real world classification problems were employed

in this study. The origin of these problems is the machine

learning benchmark repository at the University of California,

Irvine (UCI); detailed descriptions are available at the UCI

website [21]. Table I shows the characteristics of the

problems which show a considerable variety in the number of

examples, input features, and classes. Thus, these problems

provide a suitable experimental test bed.

In order to evaluate the performance of an ensemble,

generalization was measured on a testing set that was

reserved from available data and not used by any DT in an

ensemble. The testing error rate (TER) is the common

measure of generalization: the lower its value, the better is the

generalization. Note that the aim of any ensemble method is

to minimize the TER. It can be seen that the TER may vary

due to the variation of the testing data, even if the size of the

data set remains the same. Therefore, standard 10-fold cross

validations have been used for result presentation [7]-[12]. In

the cross validation, initially available training patterns were

partitioned into 10 equal or nearly equal sets, and for each

turn, one set was reserved as a testing set, while the remaining

nine sets were used for constructing DTs. However, different

sizes of training and testing set partitions may give different

results.

We followed a common general experimental setup that

does not favor any particular method. Variation of built-in

parameter values to achieve better result from an ensemble

method is very common. DECORATE was tested varying

RSize values from 0.25 to 0.75; CLS was tested with SFraction

values from 0.1 to 0.3; and EFVM considered MF values

from 0.4 to 0.8. Although RSM has found effective with one

half of total features [11], we also tested with 75% features to

increase chance to get better result with RSM. The best result

for a method varying the above parameters was used to

compare with the other methods. The algorithms are

implemented on Visual C++ of Visual Studio 2010 with

Weka, the popular free machine learning tool. The

experiments have been done on a PC (Intel Core i3-2100

@3.10 GHz CPU, 2GB RAM) with Windows 7 OS. A fixed

number of 10 DTs were constructed for an ensemble, except

for DECORATE. Previous studies have revealed that

ensemble with this number of classifiers is able to show good

generalization [7], [18], [19]. To be comparable to the other

methods, the maximum number of DTs per ensemble in

DECORATE was defined as 10 and the maximum number of

trial DTs was 15.

B. Managing Weka for Base Classifier Construction

This study investigates efficiency of pattern generation

through feature values modification for ensemble

construction and therefore the method of base classifier (i.e.,

DT) construction was common for all the ensemble methods

for proper understanding. We used in this study Weka

(Waikato Environment for Knowledge Analysis), the popular

suite of machine learning free software developed at the

University of Waikato, New Zealand [22], [23]. From various

models in Weka we employed j48 model for DT construction

based on C4.5 [24] algorithm. C4.5 is the well known and

popular DT building algorithm and many of previous studies

employed it [11], [12]. Instead of implementing C4.5 or any

other algorithm by ourselves, the use of a third party standard

method for constructing DT seems more appreciative to

justify the efficiency of an ensemble building technique.

Such technique also helps in easy implementation of

ensemble methods.

We managed Weka3.7.3, a latest version of Waka, for base

DT construction. We setup Weka3.7.3 and copied the

weka.jar file to our working application folder for easier

operation. A number of DTs are constructed using Weka for

an ensemble but we provided different training sets for

different DTs. Since Weka only considers arrf file type, we

produced and saved training set (TrnData.arrf) and testing

set (TstData.arrf) in specified arrf file format in a defined

Path location. Then Statement 1 is executed to build a DT

model on the TrnData.arrf and store in the model for later use

in the defined location. In the statement –t specifies the

training file; and –no-cv-d is for no cross validation and

model will be saved as the specified location and name. It is

notable that the cross validation matter has been managed

from the upper level and outside Weka. Finally, Statement 2

is executed to test the DT model on the TstData.arrf and store

the output as TstOutput.txt file in the specified location. In the

statement, –T specifies the test file; -l is to load previously

saved model; and –p 0 > defines output file format. For

ensemble construction with 10 DTs, 10 DT models will be

produced from 10 different training sets (i.e., TrnData.arff

files) and ensemble performance (i.e., generalization) will be

measured incorporating 10 different TstOutput.txt files.

Statement 1: To create a model from the training data

java -classpath weka. jar weka. classifiers. trees. J48 -t

Path/TrnData.arff -no-cv-d Path/ModelName.model

Statement 2: To evaluate the created model on testing data

java -classpath weka. jar weka. classifiers. trees. J48 -T

Path/TstData.arff -l Path/ ModelName.model -p 0 >

Path/TstOutput.txt

C. Performance of EFVM and Comparison with

Conventional Methods

This section evaluates the performance of EFVM, the

ensemble method based on feature values modification

(FVM), compares with bagging, RSM, CLS and

DECORATE ensemble methods. The experimental results of

hybrid ensembles incorporating the feature values

modification are also presented in this section. For

generalization comparison, results presented are the average

TERs over five standard 10-fold cross-validation (i.e., 5 × 10

= 50) runs.

Table II presents TERs achieved by bagging, RSM, CLS,

DECORATE and EFVM where the best TER among the five

ensemble methods is shown in bold-face type and worst one

in italic-underlined for each problem. A pair two tailed t-test

was conducted between EFVM and other ensemble methods

individually to determine the significance in the variation of

results for each problem. If TER of an EFVM method is

found significantly better than the method by t-test, it is

marked with a plus (+) sign. On the other hand, a minus (-)

sign indicates that the TER of EFVM is significantly worse

than the conventional method for a particular problem. A

single plus/minus means that the TER difference is

statistically significant with 95% confidence interval and a

double plus/minus is for 99% confidence interval.

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

326

Table II clearly shows the proficiency of EFVM, the DT

ensemble with generated pattern through feature values

modification technique. EFVM is shown to achieve the

lowest average TER of 0.1616; the average TERs for bagging,

RSM, CLS and DECORATE are 0.1703, 0.1738, 0.1674 and

0.1699, respectively. Although RSM is shown the worst

among the ensemble methods on the basis of average TER, it

is shown best for six cases. In general, RSM performed well

for the problems having a sufficient number features (e.g.,

SPL, OPT) since it uses sampled features for constructing

DTs. And, when all the features are important for a problem,

RSM might perform worse for that problem. This might be

the reason to show the worst TERs for several cases such as

LNS, VWL and PHN. On the other hand, EFVM uses all the

features but promote diversity through generated patterns and

performs better than RSM for 19 cases out of 30 cases in

which the results are found significant by t-test for 14

problems.

From Table II it is also recognized that bagging performs

well for problems having large number of patterns (e.g.,

BCW, PHN) since bootstrap sampling is efficient for larger

training set. On the other hand, bagging may perform worse

for problems having limited number of patterns (such as WIN,

SNR) because in such small sized problem each individual

training pattern is important and bootstrap left some original

patterns in a training set. On the other hand, EFVM uses all

the original training patterns in a training set but a portion of

some patterns are altered modifying feature values. Therefore,

it is seen from Win/Draw/Lose comparison of Table II that

EFVM outperformed bagging for 25 cases out of 30 cases in

which the results are found significant by t-test for 11

problems.

CLS changes class label that may introduce very different

patterns in a training set and therefore perform well for only

few problems. DECORATE generates examples that are

different from the original patterns and has been found to be

good for problems with limited numbers of examples, such as

ECL, HPT and SNR. On the other hand, EFVM generates

patterns from original patterns modifying feature values and

might be difficult to produce patterns for better performance

when the problem contains a very limited number of patterns

as well as features. Therefore, EFVM has the worst TERs for

some small-sized problems with few features such as HPT,

IRP and WIN. At a glance, EFVM outperformed CLS and

DECORATE for 21 and 18 cases, respectively in which the

results are found significant by t-test for several cases. EFVM

is also shown to achieve best TERs for 12 cases; whereas

bagging, RSM, CLS and DECORATE are shown best for 2, 6,

TABLE II: TER COMPARISONS OF EFVM WITH BAGGING, RSM, CLS AND DECORATE OVER FIVE STANDARD 10-FOLD CROSS-VALIDATION RUNS. A

PLUS (OR MINUS) SIGN INDICATES THAT TER OF EFVM IS FOUND SIGNIFICANTLY BETTER (OR WORSE) THAN SNNE BY T-TEST. A SINGLE AND DOUBLE

PLUS/MINUS IS FOR 95% AND 99% CONFIDENCE INTERVAL, RESPECTIVELY. THE BOTTOM OF THE TABLE CONTAINS A RESULTS SUMMARY OF INDIVIDUAL

METHODS AND COMPARISON OF EFVM WITH OTHER METHODS.

Sl. Problem
TERs achieved by conventional ensemble methods TER of

EFVM

t-test of EFVM with conventional
methods

Bagging RSM CLS DECOR. Bagg. RSM CLS DEC.

1 ACC 0.142 0.1423 0.1371 0.1449 0.1345 + +

2 ATO 0.234 0.202 0.197 0.19 0.209 +

3 BCW 0.0409 0.0403 0.0409 0.042 0.042

4 BLD 0.29 0.3647 0.2876 0.3376 0.28 ++ ++

5 DBT 0.2434 0.2416 0.2455 0.2458 0.2311 + + +

6 ECL 0.0945 0.1006 0.0891 0.0867 0.0885 ++

7 GCC 0.256 0.2598 0.2524 0.2644 0.2514 + ++

8 GLS 0.3019 0.3257 0.3105 0.3314 0.2886 + ++

9 HDC 0.2193 0.222 0.2027 0.208 0.19 ++ ++ +

10 HPT 0.184 0.196 0.168 0.1613 0.1747 +

11 HTR 0.0039 0.0037 0.004 0.0033 0.0032 ++ ++

12 INS 0.0983 0.072 0.0994 0.084 0.0937 −−

13 IRP 0.048 0.044 0.0467 0.04 0.0493

14 KRP 0.0201 0.0781 0.0218 0.0212 0.0203 ++

15 LMP 0.1929 0.2086 0.2 0.2014 0.1886

16 LNG 0.4867 0.5267 0.5467 0.4733 0.4933

17 LNS 0.15 0.17 0.15 0.16 0.11 + + + +

18 LTR 0.0766 0.0628 0.0769 0.1174 0.0754 ++ ++

19 OPT 0.058 0.0391 0.067 0.0967 0.0546 + −− ++ ++

20 PGB 0.028 0.0293 0.0278 0.0284 0.026 ++ ++ ++ ++

21 PHN 0.1088 0.1409 0.1386 0.1271 0.1277 −− ++ ++ −−

22 PST 0.3289 0.2889 0.2956 0.3067 0.2933 ++

23 SBN 0.0797 0.0765 0.0747 0.0724 0.0776

24 SNR 0.241 0.184 0.21 0.178 0.206 ++ −

25 SPL 0.0567 0.0536 0.0551 0.0593 0.0558 +

26 VWL 0.3949 0.4214 0.3749 0.4042 0.3945 + −

27 WIN 0.0835 0.0682 0.0659 0.0329 0.0659 ++ −−

28 WVF 0.1818 0.1763 0.1878 0.1888 0.1752 ++ ++ ++

29 YST 0.398 0.4203 0.4015 0.437 0.3922 ++ + ++

30 ZOO 0.068 0.056 0.048 0.054 0.056

Average TER 0.1703 0.1738 0.1674 0.1699 0.1616

Best/Worst TER 2/6 6/10 2/3 8/12 12/2

Win/Draw/Lose and t-test

Better/Worse of EFVM
25/0/5 19/1/10 21/1/8 18/1/11 - 11/1 14/2 8/1 13/3

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

327

2, and 8 cases, respectively. On the other hand, EFVM is

shown the worst TERs for only two cases; whereas bagging,

RSM, CLS and DECORATE are shown the worst for 6, 10, 3,

and 12 cases, respectively. Overall, EFVM is shown to be a

good ensemble construction method, generating different

patterns for different DTs through feature values

modification.

D. Performance of Hybrid Ensembles Incorporating

Feature Values Modification

This section presents experimental results of two hybrid

ensemble methods BFVM and RFVM, incorporating feature

values modification (FVM) technique with bagging and RSM,

described in Section III. Table III presents average TERs

over five standard 10-fold cross-validation (i.e., 5 × 10 = 50)

runs of BFVM and RFVM for 20 problems. The results for

standard bagging and RSM have been taken from Table II.

Between a standard and a hybrid method, the better TER is

marked as bold-face type and a star sign with TER of a hybrid

method indicates that TER is better than TER of any

individual methods of Table II.

The results presented in Table III clearly indicate the

benefit of hybrid ensembles incorporating feature values

modification with bagging and RSM. The performance of

bagging relies on the diversity due to bootstrap sampling of

patterns and it does not have any other parameter to tune.

Therefore, when data sampling does not give proper diversity

for better generalization for a problem, FVM may help to

reach at better generalization position. Out of 20 cases,

BFVM outperformed bagging for 19 cases and incorporation

of FVM is found ineffective for only for WIN. It is already

discussed in the previous section that FVM operation is not

suitable for WIN.

better generalization when feature sampling does not give

proper diversity for better generalization for a problem. Out

of 20 cases, RFVM outperformed bagging for 15 cases and

incorporation of FVM is found ineffective for rest five cases.

For the five cases RSM has already shown best or good TER

as of Table II (e.g., INS, DBT and SNR) or FVM is not

suitable for it (e.g., WIN). Moreover, both BFVM and RFVM

are shown better average TERs than corresponding standard

methods i.e., bagging and RSM, respectively.

It is also interesting to observe from the Table III that

hybrid methods achieved best TERs for some cases when

compared with the other methods in Table II. It is seen from

Table II that the best TER achieved (i.e., 0.1886) for LMP

problem by EFVM. For the same problem bagging and RSM

are shown TERs 0.1929 and 0.2086, respectively.

Incorporating FVM with bagging and RSM, BFVM and

RFVM are shown to achieve TERs 0.1857 and 0.1843,

respectively; these values are better than any individual

standard method. Comparing results of hybrid methods in

Table III with results of Table II it is found that BFVM and

RFVM are shown better TERs than the best TERs of Table II

for four and seven cases out of tested 20 cases. RSM was the

best individual method for SPL problem as of Table II

showing TER 0.0536; and FVM incorporation improved its

TER to 0.0524. On the other hand, RSM was the worst for

HPT problem with TER 0.196 but RFVM is shown to achieve

TER 0.1467 that is even better than the best TER (i.e., 0.1613

by EFVM) for individual method. This explanation clearly

indentifies the effectiveness of incorporation of FVM with

bagging and RSM.

E. Experimental Analysis

This section describes experimental results to explore the

effects on diversity and TER of varying parameter values.

Three problems were selected for analysis, based on

variations in the number of available examples, input features,

and output classes. For example, the German Credit Card

(GCC) problem contains both continuous and discrete

features, whereas the Diabetes (DBT) problem has only

continuous features and the Lymphography (LMP) problem

has only discrete features.

The diversity indicates how predictions differ among

component classifiers (i.e., DTs) on the testing set. To

measure diversity, we employed the most commonly used

pairwise plain disagreement measure technique [25]. The

plain disagreement diversity for a networks pair i and j is

given by

.

1
((), ()),

1
i j i j

N
div Diff C n C n

nN
 


 (4)

where N is the number of examples in the testing set, Ci(xk) is

the class assigned by DT i to example k, and Diff(a,b) = 0 if a

= b, otherwise Diff (a,b) = 1. The total ensemble diversity is

the average for all DT pairs in the ensemble.

It is already mentioned that the feature values modification

(FVM) of a pattern is done with another pattern with same

class label and the modification with different class label

pattern might give more diversity. The matter explores in this

section through experimental results with a modified version

of EFVM, called different class EFVM (dcEFVM), where

TABLE III: TER COMPARISONS AMONG STANDARD BAGGING, STANDARD

RSM, WITH BFVM AND RFVM OVER FIVE STANDARD 10-FOLD

CROSS-VALIDATION RUNS. A STAR SIGN INDICATES THAT TER OF THE

HYBRID METHOD IS BETTER THAN ANY INDIVIDUAL METHODS.

Sl. Problem
TER achieved by standard and hybrid ensemble methods

Bagging
BFVM

(Bagg.+FVM)
RSM

RFVM

(RSM+FVM)

1 ACC 0.142 0.1362 0.1423 0.1345

2 BCW 0.0409 0.0397* 0.0403 0.0365*

3 BLD 0.29 0.2882 0.3647 0.3135

4 DBT 0.2434 0.2355 0.2416 0.245

5 ECL 0.0945 0.0879 0.1006 0.0806*

6 GCC 0.256 0.246* 0.2598 0.255

7 HDC 0.2193 0.206 0.222 0.1993

8 HPT 0.184 0.176 0.196 0.1467*

9 INS 0.0983 0.0926 0.072 0.0783

10 IRP 0.048 0.0453 0.044 0.0533

11 LMP 0.1929 0.1857* 0.2086 0.1843*

12 LNG 0.4867 0.44* 0.5267 0.4533*

13 LNS 0.15 0.12 0.17 0.12

14 PGB 0.028 0.0265 0.0293 0.0273

15 SBN 0.0797 0.0738 0.0765 0.0729

16 SNR 0.241 0.218 0.184 0.2

17 SPL 0.0567 0.0543 0.0536 0.0524*

18 WIN 0.0835 0.0859 0.0682 0.0729

19 WVF 0.1818 0.1757 0.1763 0.1706*

20 ZOO 0.068 0.058 0.056 0.048

Average TER 0.1592 0.1496 0.1616 0.1472

Similarly, RSM only relies on feature sampling and

incorporation of FVM may help to tune diversity to give

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

328

modification is done with different class label pattern.

Similarly, different class BFVM (dcBFVM) and different

class RFVM (dcRFVM) are also considered to observe

feature values modification with different class label pattern

on hybrid ensemble methods.

Fig. 5 shows TER and diversity achieved by EFVM and

dcEFVM over five standard 10-fold cross-validation runs

varying modification factor (MF). It is already mentioned

that the user-defined value of MF indicates the number of

patterns to be considered to modify the feature values. At

Fig. 5. Effects of the variation of Modification Factor (MF) on TER and Diversity on EFVM and dcEFVM.

Fig. 6. Effects of the variation of Modification Factor (MF) on TER and Diversity on BFVM and dcBFVM.

Fig. 7. Effects of the variation of Modification Factor (MF) on TER and Diversity on RFVM and dcRFVM.

0.15

0.25

0.35

0.45

0 0.2 0.4 0.6 0.8 1

EFVM (GCC)

EFVM (DBT)

EFVM (LMP)

dcEFVM (GCC)

dcEFVM(DBT)

dcEFVM(LMP)

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

0.15

0.25

0.35

0.45

0 0.2 0.4 0.6 0.8 1

BFVM (GCC)

BFVM (DBT)

BFVM (LMP)

dcBFVM (GCC)

dcBFVM (DBT)

dcBFVM (LMP)

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

0.15

0.25

0.35

0.45

0 0.2 0.4 0.6 0.8 1

RFVM (GCC)

RFVM (DBT)

RFVM (LMP)

dcRFVM (GCC)

dcRFVM (DBT)

dcRFVM (LMP)

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

T
E

R

D
iv

er
si

ty

MF MF

T
E

R

D
iv

er
si

ty

MF MF

T
E

R

D
iv

er
si

ty

MF MF

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

329

MF=0.0, no pattern were considered to modify and all the

DTs are constructed on same original training set. Therefore,

for MF=0.0, with zero diversity the ensemble act like single

DT and achieved worst TER for any problem in general. As

an example, TERs at MF=0.0 for GCC and LMP problems

are 0.285 and 0.2214, respectively; the values are worst

among the presented results. On the other hand, diversity

increases with MF for any problem as can be seen in the

figure. And diversity improvement is more visible for

dcEFVM than EFVM for any problem. In dcEFVM, the

feature values of a pattern are modified with the values from

another pattern with a different class label, and this may give

a completely different pattern for training.

Completely different pattern is good for diversity, but

obtaining decisions from highly diverse DTs is not easy [18].

Therefore, very high diversity is not good for better

generalization (i.e., reducing TER) and there is a tradeoff

between diversity and TER [26]. This is why performance

degraded (i.e., TER increased) rapidly with respect to MF for

dcEFVM after a certain MF value in Fig. 5. On the other hand,

FVM with same class pattern is shown to be more effective in

achieving better generalization (i.e., lower TER). Feature

values modification using patterns from the same class

generates similar patterns and does not give so much of the

diversity that is not good for TER. From the figure it can be

clearly seen that diversity improves smoothly with MF for

FVM and reduces TER in most of the cases. As an example,

for LMP problem TER decreased with diversity

improvement when MF values are increased from 0.0 and

best TER (i.e., 0.1871) achieved at MF=1.0. Thus, pattern

generation by replacing feature values of patterns with those

from other patterns in the same class is a good approach for

ensemble construction.

Fig. 6 shows TER and diversity achieved by BFVM and

dcBFVM over five standard 10-fold cross-validation runs

varying MF values. The value of MF=0.0 in the figure

indicates standard bagging algorithm and the diversity is

shown at this point due to data sampling. It is noticeable from

Figs. 5(b) and 6(b) that for same MF value BFVM and

dcBFVM in Fig. 6(b) is shown greater diversity than EFVM

and dcEFVM in Fig. 5(b) in most of the cases. This is

reasonable because incorporation of FVM may enhance the

diversity of bagging. However, rapid diversity improvement

in dcBFVM does not shown to improve TER at all. On the

other hand, BFVM is shown to achieve better TER than

bagging (MF=0.0) in general, although some cases diversity

slightly reduces in BFVM for larger MF value. For GCC

problem, the TER was 0.2592 for bagging (at MF=0.0)

whereas BFVM achieved TER of 0.2466 at MF=0.7, the

value is also better than any value EFVM of Fig. 5(a). Thus,

MF parameter of FVM may help to tune proper diversity for

better TER in bagging, and BFMV is an effective hybrid

ensemble method.

Fig. 7 shows TER and diversity achieved by RFVM and

dcRFVM over five standard 10-fold cross-validation runs

varying modification factor (MF). The value of MF=0.0 in

the figure indicates standard RSM algorithm and the diversity

is shown at this point due to feature sampling. Like BFVM,

RFVM also shows better TERs than EFVM (Fig. 5(a)) for a

value of MF. Moreover, with smooth diversity improvement

with respect to MF, RFVM is shown to achieve better TER

than RSM and dcRFVM, in general. Thus, RFVM may give

better generalization tuning diversity of RSM with feature

values modification and it is shown to achieve best TERs for

some cases. As an example, for LMP problem, the TER for

RSM (MF=0.0) was 0.2071, and RFVM is shown to achieve

TER 0.1771 at MF=0.8. The achieved TER is also the best

considering EFVM and BFVM too.

V. CONCLUSIONS

Data sampling or different training data for different

classifiers is considered to be the most effective technique for

ensemble construction. Some of the popular ensemble

methods manipulate available training patterns and some

others induce generated new patterns to prepare a different

training set for a particular classifier. This study investigates

a new pattern generation method that modifies feature values

of some original patterns with that of other patterns. The

method is easy to understand and implement, and it is seem

computationally economical. Extensive experiments have

been carried out in this work to understand the proficiency of

the proposed pattern generation method in ensemble

construction. A suit of 30 benchmark classification problems

was used for experimental studies. In many cases, it is found

that the decision trees construction based on proposed pattern

generation is beneficial for the performance of ensembles.

The incorporation of proposed pattern generation method in

bagging and RSM algorithms indicates that it can improve

the performance of bagging and RSM algorithms.

REFERENCES

[1] A. J. C. Sharkey, “On combining artificial neural nets,” Connection

Science, vol. 8, pp. 299-314, 1996.
[2] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation

methods: a survey and categorization,” Information Fusion, vol. 6, pp.

99-111, 2005.
[3] J. Maudes, J. J. Rodriguez, C. Garcia-Osorio, and N. Garcia-Pedrajas,

“Random feature weights for decision tree ensemble construction,”

Information Fusion, vol. 13, pp. 20-30, 2012.
[4] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A

comparison of decision tree ensemble creation techniques,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 29, pp.
173-180, 2007.

[5] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,

pp. 123-140, 1996.
[6] Y. Freund and R. E. Schapire, “Experiments with a new boosting

algorithm,” in Proc. the 13th International Conf. on Machine Learning,

Morgan kaufmann, 1996, pp. 148-156.
[7] D. W. Opitz and R. Maclin, “Popular ensemble methods: an empirical

study,” Journal of Artificial Intelligence Research, vol. 11, pp.

169-198, 1999.
[8] E. Bauter and R. Kohavi, “An empirical comparison of voting

classification algorithms: bagging, boosting, and variants,” Machine

Learning, vol. 36, pp. 105-142, 1999.
[9] R. Polikar, “Bootstrap inspired techniques in computational

intelligence,” IEEE Signal Processing Magazine, vol. 24, no. 4, pp.

59–72, 2007.
[10] P. Melville, and R. J. Mooney, “Creating diversity in ensembles using

artificial data,” Information Fusion, vol. 6, pp. 99-111, 2005.

[11] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 20, pp. 832-844, 1998.

[12] G. Martínez-Muñoz and A. Suárez, “Switching class labels to generate
classification ensembles,” Pattern Recognition, vol. 38, pp. 1483–1494,

2005.

[13] C. Zhang and J. Zhang, “Rotboost-a technique for combining rotation
forest and adaboost,” Pattern Recognition Letters, vol. 29, pp.

1524-1536, 2008.

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

330

[14] S. Kotsiantis, “Combining bagging, boosting, rotation forest and

random subspace methods,” Artif Intell Rev, vol. 35, pp. 223–240,

2011.

[15] F. Bellal, H. Elghazel, and A. Aussem, “A semi-supervised feature

ranking method with ensemble learning,” Pattern Recognition Letters,

vol. 33, pp. 1426-433, 2012.
[16] S. Bernard, S. Adam, and L. Heutte, “Dynamic random forests,”

Pattern Recognition Letters, vol. 33, pp. 1580-1586, 2012.

[17] D. Zhu, “A hybrid approach for efficient ensembles,” Decision Support
Systems, vol. 48, pp. 480–487, 2010.

[18] M. A. H. Akhand, M. M. Islam, and K. Murase, “A Comparative Study

of Data Sampling Techniques for Constructing Neural Network
Ensembles,” International Journal of Neural Systems, vol. 19, no. 2, pp.

67-89, 2009.

[19] Y. Liu and X. Yao, “Ensemble learning via negative correlation,”
Neural Networks, vol. 12, pp. 1399-1404, 1999.

[20] M. A. H. Akhand, and K. Murase, “Ensembles of Neural Networks

based on the alteration of input feature values,” International Journal
of Neural Systems, vol. 22, pp. 77-87, 2012.

[21] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, UCI Repository

of Machine Learning Databases, Dept. of Information and Computer
Sciences, University of California, Irvine, 1998.

[22] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools with Java Implementations, 2nd ed. Morgan Kaufmann, San
Francisco, 2005.

[23] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. J.

Cunningham, Weka: Practical Machine Learning Tools and
Techniques with Java Implementations, Dept. of CS, University of

Waikato, New Zeeland, 1999.

[24] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, 1993.

[25] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in search

strategies for ensemble feature selection,” Information Fusion, vol. 6,
pp. 83-98, 2005.

[26] A. Chandra, H. Chen, and X. Yao, “Trade-off between diversity and

accuracy in ensemble generation,” Studies in Computational
Intelligence (SCI), vol. 16, pp. 429–464, 2006.

M. A. H. Akhand received the B.Sc. degree in

Electrical and Electronic Engineering from Khulna

University of Engineering and Technology (KUET),
Bangladesh in 1999, the M.E. degree in Human and

Artificial Intelligent Systems in 2006, and the doctoral

degree in System Design Engineering in 2009 from
University of Fukui, Japan. He joined as a lecturer at

the Department of Computer Science and Engineering

at KUET in 2001, and is now an associate professor.
He is a member of Institution of Engineers, Bangladesh (IEB). His research

interest includes artificial neural networks, evolutionary computation, swarm

intelligence and other bio-inspired computing techniques.

 M. M. Hafizur Rahman

received his B.Sc.

degree in Electrical and Electronic Engineering

from Khulna University of Engineering and

Technology (KUET), Khulna, Bangladesh, in

1996. He received his M.Sc. and Ph.D. degree in
Information Science from the Japan Advanced

Institute of Science and Technology (JAIST) in

2003 and 2006, respectively. Rahman is now an
assistant professor

in the Dept. of Computer

Science, KICT, IIUM, Malaysia. Prior to join in

the IIUM, he was an associate professor in the
Dept. of CSE, KUET, Khulna, Bangladesh. He was also a visiting researcher

in the School of Information Science at JAIST and a JSPS postdoctoral

research fellow

at Research Center for Advanced Computing Infrastructure,

JAIST & Graduate School of Information Science (GSIS), Tohoku

University, Japan in 2008 and 2009 & 2010-2011, respectively. His current

researches

include

parallel and distributed computer architecture,
hierarchical interconnection networks, and optical switching networks.

Rahman is

a

member of IEICE of Japan and IEB

of Bangladesh.

 K. Murase

is a professor at the Graduate School

of Engineering, University of Fukui, Fukui,

Japan, since 1999. He received M.E.

in
Electrical Engineering from Nagoya University

in 1978, Ph.D.

in Biomedical Engineering from

Iowa State University in 1983. He Joined as a
research associate at Department of Information

Science of Toyohashi University of Technology

in 1984, and as an associate professor

at the

Department of Information Science of Fukui

University in 1988.

He

became the professor in

1992. He is a member of The Institute of
Electronics, Information and Communication Engineers (IEICE), The

Japanese Society for Medical and Biological Engineering (JSMBE), The

Japan Neuroscience Society (JSN), The International Neural Network
Society (INNS), and The Society for Neuroscience (SFN). He serves as a

board of directors

in Japan Neural Network Society (JNNS), a councilor of

Physiological Society of Japan (PSJ) and a councilor of Japanese
Association for the Study of Pain (JASP).

International Journal of Machine Learning and Computing, Vol. 3, No. 4, August 2013

331

http://http/www.worldscinet.com/ijns/22/2201/S0129065712003079.html
http://http/www.worldscinet.com/ijns/22/2201/S0129065712003079.html
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1644224
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1644224
http://citeseerx.ist.psu.edu/viewdoc/summary?cid=1644224
http://www.iebbd.org/

