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Abstract—An ensemble method produces diverse classifiers 

and combines their decisions for ensemble’s decision. A number 

of methods have been investigated for constructing ensemble in 

which some of them train classifiers with the generated patterns. 

This study investigates a new technique of training pattern 

generation that is easy and effective for ensemble construction. 

The method modifies feature values of some patterns with the 

values of other patterns to generate different patterns for 

different classifiers. The ensemble of decision trees based on the 

proposed technique was evaluated using a suite of 30 

benchmark classification problems, and was found to achieve 

performance better than or competitive with related 

conventional methods. Furthermore, two different hybrid 

ensemble methods have been investigated incorporating the 

proposed technique of pattern generation with two popular 

ensemble methods bagging and random subspace method 

(RSM). It is found that the performance of bagging and RSM 

algorithms can be improved by incorporating feature values 

modification with their training processes. Experimental 

investigation of different types of modification techniques finds 

that feature values modification with pattern values in the same 

class is better for generalization. 

 
Index Terms—Decision tree ensemble, diversity, feature 

values modification, generalization, pattern generation. 

 

I. INTRODUCTION 

The goal of ensemble construction with several classifiers 

is to achieve better generalization ability over individual 

classifiers. The inspiration for building an ensemble is the 

same as for establishing a committee of people: each member 

of the committee should be as competent as possible, but the 

members should be complementary to one another. If the 

members are not complementary, i.e., if they always agree, 

the committee is unnecessary as any one member could 

perform the task of the committee. If the members are 

complementary, then when one or a few members make an 

error, there is a high probability that the remaining members 

can correct his error. Thus, for ensemble construction, proper 

diversity among classifiers (also called base classifiers) is 

considered to be an important parameter so that the failure of 

one may be compensated by others [1], [2]. 

An ensemble method produces diverse classifiers and 

combines their decisions for ensemble’s decision. As a base 
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classifier, decision trees (DTs) are one of the most commonly 

used methods because they are efficient [3], [4]. 

Considerable work has been done to determine the effective 

ways for constructing diverse DTs so that the benefit of 

ensemble construction could be achieved. There are many 

ways, such as using different training sets and learning 

methods, one can adopt to construct diverse DTs. It is argued 

that DTs construction using different data is likely to 

maintain more diversity than other approaches [4]-[6] 

because function that a DT determines approximates from the 

training data. A number of methods have also been 

investigated to create different data sets for proper diversity. 

Among them some manipulate original training data only 

[5]-[9]; other methods generate some training patterns and a 

particular classifier is trained with the generated patterns 

along with the original patterns [10]-[12]. Recently, a number 

of hybrid ensemble methods have also been investigated 

incorporating and updating popular methods [13]-[17]. 

Bagging [5] and boosting [6], the pioneer and popular 

ensemble methods, sample training patterns from the original 

patterns to create training sets for different classifiers [6]-[8]. 

A particular pattern in a particular training set is a copy of a 

pattern from the original training set that has been selected 

probabilistically. Bagging creates a training set from an 

original training set using the bootstrap sampling technique. 

For a training set, patterns are randomly picked from the 

original training set with replacement. Due to random 

selection, each created training set contains many patterns 

appearing multiple times while others are left out [5]. The 

boosting algorithm also follows the bootstrap technique to 

create a training set for a DT. However, the distribution of 

patterns changes after training each DT. Training patterns 

that were predicted incorrectly by previous component DT(s) 

are chosen more often than patterns that were correctly 

predicted.  

The prominent methods those use generated or modified 

patterns to promote diversity are Random Subspace Method 

(RSM)[11], Class Label Switching (CLS)[12], and Diverse 

Ensemble Creation by Oppositional Relabeling of Artificial 

Training Examples (DECORATE)[10]. RSM constructs a 

classifier with sampled feature subset of original features of 

the problem. It uses the bootstrap sampling technique to 

select features for a classifier and the number of features is 

considered as half of original in general. Due to bootstrap sampling, a 

particular training set contains a different arrangement of 

features; and therefore RSM may produce poor DTs when 

some important features are missing in their training sets.  

To prepare a training set for a particular DT, CLS [12] 

randomly changes the original class definition of some 

patterns to different ones. Class label alteration gives new 

generated patterns in the training set and the generated 

patterns may conflict with other patterns due to random 
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alteration. In short, CLS may define different class 

definitions into different training sets for a particular feature 

set. It may also show the same class label for training patterns 

with dissimilar feature sets in a particular training set. Both 

these problems may give rise to ambiguity in training and 

return poor DTs. Therefore, it has been suggested that the 

class label should change for a small fraction of examples, 

leaving a majority of examples with the correct class label 

[18]. 

DECORATE[10] randomly creates a set of patterns, called 

diversity set, for each classifier and it trains a classifier with 

the union of the original training set and the diversity set. It 

follows a two-step process to create a pattern: 1) it generates 

feature values randomly (for continuous feature) and 

probabilistically (for discrete feature), and 2) it defines the 

class label of the generated feature set opposite of the class 

probability response of the existing ensemble. The generated 

patterns may conflict with original patterns, and therefore, 

may return poor classifier. To overcome this, it produces a 

relatively large number of classifiers and selects a subset of 

classifiers for the final ensemble. The method seems 

complicated and its computational cost is relatively high due 

to several steps for pattern generation, relatively large 

number of classifiers creation and selection of classifiers 

[18].   

With the above discussed DT based ensemble methods, a 

number of ensemble methods have also been investigated 

with neural network (NN) as base classifier [7], [18]. Some 

NN based ensemble methods share similar techniques of DT 

ensembles and some other are only for NN, such as, negative 

correlation learning [18], [19]. Recently an ensemble of NN, 

called EIVA, has been investigated through alteration of 

preprocessed numeric input values of NN [20]. EIVA does 

not create training patterns like DECORATE but it 

manipulates preprocessed numeric input values of some 

training patterns. The method is shown competitive to the 

other methods.  

The objective of this study is to investigate a best suited 

pattern generation mechanism for DT ensemble construction 

that emphasizes both accuracy and diversity among 

individual DT classifiers. The technique which follows this 

study is simple and effective: it creates a pattern from an 

original available pattern modifying some of its feature 

values with that of another pattern. The DT ensemble 

construction through the proposed pattern generation seems 

an easy and effective method. Moreover, this study also 

investigates hybrid ensemble methods incorporating such 

feature values modification technique with other existing 

methods. The experimental results on a large number of 

benchmark problems reveal the effectiveness of generated 

patterns using the proposed technique in DT ensemble 

construction.  

The rest of this paper is organized as follows. Section II 

describes the proposed feature values modification for 

pattern generation and explains ensemble of decision tree 

construction with the generated patterns. Section III explores 

hybrid ensemble methods incorporating proposed feature 

values modification with two popular methods. Section IV is 

for experimental study. Finally, the paper concludes with a 

few remarks in Section V. 

II. PATTERN GENERATION THROUGH FEATURE VALUES 

MODIFICATION AND DECISION TREE ENSEMBLE 

CONSTRUCTION 

This section explains proposed pattern generation 

modifying feature values and a Decision Tree Ensemble 

(DTE) method based on this technique. The basic aim of 

pattern generation is the creation of different training sets for 

different classifiers to promote diversity in an ensemble. 

Pattern generation seems inefficient in the existing methods 

to maintain proper diversity for better generalization. Some 

of them (e.g., DECORATE) follow several steps to create 

patterns and are computationally heavy. Some of them (e.g., 

CLS) produce very different patterns and, therefore, may 

return poor classifier due to ambiguity in training. It is 

reported that one may get very good diversity producing very 

different patterns from any of the existing methods, but 

achieving a good generalization is not easy [2], [18]. For 

better generalization, classifiers should be accurate as well as 

diverse. Accordingly, this study investigates a pattern 

generation mechanism that uses existing patterns to produce 

different but related patterns, and may maintain the accuracy 

of individual classifier to deliver proper diversity. Fig. 1 

shows the algorithm for the proposed Feature Values 

Modification (FVM) that introduces some generated patterns 

in a particular training set and explains the important points 

here after. 

 

Function FVM (T, Td, MF)  

{ // T and Td are the original training set and the training set for a 

particular DT, respectively.  

//MF is the Modification Factor.  

1. Number of patterns to be modified M=S*MF // Here S is the size of T 

or Td 

Prepare Pattern Index List PIndex with values 1 to S.  

SIndex= S    // Size of Pattern Index List is equal to S 

2. For m = 1 to M {    

a. Select a random number I between 1 and  SIndex 

b. Select Pattern Index m from Ith location of PIndex 

c. Delete Ith location of PIndex   // SIndex= SIndex -1 

d. Select mth pattern Pm in Td that would be modified 

e. Select a pattern Po (Po ≠ Pm) in T having same class label of Pm 

f. Modify some feature values of Pm using corresponding values from 

Po } 

} 

Fig. 1. Feature Values Modification (FVM) in a Given Training Set. 

 

FVM of Fig. 1 takes original training set (T) and training 

set for a particular DT (Td), and modifies feature values of 

some patterns in Td with help of patterns of T to induce 

generated patterns. The number of patterns to be modified/ 

generated depends on the parameter Modification Factor (MF) 

that values may define between 0.0 and 1.0. To select a 

pattern for modification only once, a pattern index list (PIndex) 

is used and the index of a pattern is deleted after selection 

(Step 2. c). A pattern would be modified (Pm) is selected 

randomly through generating a random number of pattern 

index I in between 1 and current size of PIndex (Step 2. a and 

Step 2. b). To produce a new pattern FVM alters some feature 
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values of a pattern Pm of Td with corresponding values of 

another selected pattern Po from the original training set T. 

The pattern Po is considered from T to increase versatility of 

selection in feature and feature values. In general, Po will 

have same class label of Pm so that generated patterns will be 

different but related to original patterns. However it will be 

possible to generate a pattern modifying its feature values 

with a pattern having a different class label. Next important 

points are how many feature values will be changed among 

the total features (f) and what will be the procedure for it. A 

crossover like technique is employed in this study for this 

purpose: randomly select a point (cp) in between 1 and f-1; 

and then feature values from cp+1 to f of Pm is changed with 

that of Po. 

The feature values modification technique may produce a 

large number of patterns from the existing patterns. Consider 

a particular problem to classify N patterns into c different 

classes based on f input feature values and each class have Nc 

(i.e., Nc = N/c) patterns. In such a case, a pattern may consider 

other (Nc-1) patterns to modify its feature values and may 

produce (f-1) different patterns for each of individual pattern 

selecting cp value in between 1 and f-1. Therefore, the 

possible total number of generated patterns (Gpsc) modifying 

a pattern with another same class label pattern is: 

 

Gpsc = cNc(Nc-1)(f-1) = N(Nc-1)(f-1).              (1) 

 

Similarly, a pattern may consider (N-Nc) different patterns 

for modification with different class label patterns and in 

such a case all f feature values modification also give new 

patterns. The possible number of generated patterns (Gpdc) 

for modification with different class label pattern is:  

 

Gpdc = cNc(cNc-Nc)f = cNcNc(c-1)f = NcN(c-1)f      (2) 

 

On the other hand, CLS may produce c-1 different patterns 

from an original pattern changing its class label to one of 

remaining c-1 classes. For a two class problem, CLS may 

produce only one pattern from an original one. The possible 

total number of generated patterns in CLS may be: 

 

GpCLS=cNc(c-1)=N(c-1).                         (3) 

 

Thus, FVM technique may produce more patterns than 

CLS. Moreover, FVM technique may generate patterns like 

CLS modifying all f feature values with a different class label 

pattern.   

The way of pattern generation modifying feature values in 

FVM is easy and seems to be cost effective. FVM changes 

some feature values of a pattern with that of another pattern. 

This easy technique is applicable for any feature type and no 

need to check whether the feature is numeric or discrete. On 

the other hand, DECORATE follows different ways to 

generate feature values for different feature types and incurs a 

separate step to define class label for the generated feature 

set.  

Another benefit of FVM is its simplicity. The parameters 

used in it are easily understandable and the selection of their 

values is also simple. The parameter MF determines the 

number of patterns to be generated. The higher value of MF 

may give more diversity than its lower value due to the larger 

number of different generated patterns in the training sets. 

Moreover, the technique of pattern generation of FVM can be 

hybridized with other training schemes like the one used in 

the bagging and RSM. This issue will be explored in Section 

III. 

 

1. Take the original training set T = {P1…,PN} each pattern belongs 

feature values from feature set F = {1, 2,…, f} and class label cp C = 

{1, 2,…,c} // Problem to classify N patterns into c different classes based 

on f input feature values.  

Let D be the number of DTs to be constructed and  

MF be the Modification Factor  

2. For d = 1 to D { 

a. Td = T // Take original training set 

b. FVM (T, Td, MF) // Call Function FVM  

c. Construct decision tree DTd with Td} 

3. Ensemble decision from D decision trees. 
 

Fig. 2. Ensemble based on Feature Values Modification (EFVM). 

 

Fig. 2 shows the algorithm for the proposed ensemble of 

decision trees conceiving the pattern generation of FVM 

described in Fig.1 and the new ensemble method is called as 

Ensemble with Feature Values Modification (EFVM). To 

create a different training set for a particular DT, EFVM first 

takes the original training set (Step 2. a) and then call FVM 

(Step 2. b) to alter some of its patterns with newly generated 

patterns. EFVM constructs several DTs with different 

training set each of which contains some generated patterns 

through FVM and considers all the produced DTs for an 

ensemble. EFVM does not require DT selection like 

DECORATE that produces a relatively large number of DTs 

and consider a subset of them for final ensemble [10]. 

The number of patterns to be generated in the training set 

of a particular DT in EFVM is specified by the Modification 

Factor (MF). The value of MF may set anywhere between 0.0 

and 1.0. No pattern will be changed and all the DTs will be 

trained on T for MF = 0.0; for MF = 1.0 all the patterns are 

updated, and there might be no pattern common in between 

the original training set (T) and the training set of a particular 

DT (Td). 

 

III. HYBRID ENSEMBLE CONSTRUCTION INCORPORATING 

FEATURE VALUES MODIFICATION 

This section explains hybrid ensemble construction 

methods incorporating the technique of pattern generation of 

FVM with other data sampling techniques. From various 

existing methods, bagging and random subspace method 

(RSM) have been considered due to their popularity as well 

as effectiveness. Bagging creates a separate training set for 

each DT in the ensemble using resampling technique from 

the original training data. On the other hand, RSM also 

produces different training sets for different DTs but a 

particular training set contains a sampled subset of original 

feature set. The aim of separate training set creation using 

sampling data in bagging and feature in RSM is to produce 

diverse DTs so that ensemble with them achieves better 

generalization. Due to random selection from the original 

training set, each created training set in bagging contains on 

average 63.2% unique patterns from the original training set, 
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with many patterns appearing multiple times while others are 

left out [5]. This means diversity produces by bagging might 

not be so precise, and it could be made more precise 

introducing FVM in bagging. Similarly, the incorporation of 

FVM may improve RSM since training sets of it may contain 

common feature subset. 

 

1. Take the original training set T= {P1…,PN} each pattern belongs 

feature values from feature set F = {1, 2,…, f} and class label cp C = 

{1, 2,…,c}  // Problem to classify N patterns into c different classes based 

on f input feature values. 

Let D be the number of DTs to be constructed and  

MF be the Modification Factor  

2. For d = 1 to D { 

a. Make a new training set, Td by sampling N patterns uniformly at 

random with replacement from T.   

b. FVM (T, Td, MF) // Call Function FVM  

c. Construct decision tree DTd with Td} 

3. Ensemble decision from D decision trees. 
 

Fig. 3. Hybrid Ensemble: Bagging with Feature Values Modification 
(BFVM). 

 

Fig. 3 shows the pseudo code of hybrid ensemble method 

incorporating FVM with bagging and the new method is 

called Bagging with Feature Values Modification (BFVM). 

The bold-face line in the figure (Step 2.b) indicates the 

modifications/additions over standard bagging algorithm. 

The hybrid BFVM method first prepare sampled training set 

for particular DT (Td) as of bagging (Step 2.a) and then call 

FVM (Step 2.b) to alter some of its patterns with newly 

generated patterns. Step 2.b is only addition to the standard 

bagging method to hybridize the feature values modification. 

The difference between BFMV and EFVM (Fig. 2) is that 

BFVM considers bagging like sampled training set for 

feature values modification whereas EFVM takes a copy of 

original training set (Ti=T).  

 

1. Take the original training set T= {P1…,PN} each pattern 

belongs feature values from feature set F = {1, 2,…, f} and class 

label cp C= {1, 2,…,c}  // Problem to classify N patterns into c 

different classes based on f input feature values.  

Let D be the number of DTs to be constructed and  

MF be the Modification Factor  

2. For d=1 to D { 

a. Td = T   // Take original training set 

b. FVM (T, Td, MF)   // Call Function FVM  

c. Make a sampled feature subset Fd from original feature set F.  

d. Update Td removing features that is not in Fd  

e. Construct decision tree DTd with Td}  

3. Ensemble decision from D decision trees. 
 

Fig. 4. Hybrid Ensemble: Random Subspace with Feature Values 

Modification (RFVM). 

 

Similarly, Fig. 4 is the pseudo code of hybrid ensemble 

method of RSM with Feature Values Modification (RFVM) 

incorporating FVM with RSM. The bold-face line in the 

figure (Step 2. b) indicates the modifications/additions over 

standard RSM algorithm. Since RSM requires different 

feature subsets for different DTs, the feature values 

modification (Step 2. b) is done on the copy of original 

training set (Td=T) (Step 2. a) before feature sampling for 

simplicity. A particular training set for a particular DT is 

prepared considering sampled feature subset of Td that 

already contains some generated patterns. In RFVM, Step 2.b 

is the only addition over standard RSM to hybridize FVM 

with RSM. The difference between EFVM (Fig. 2) and the 

hybrid RFVM is that RFVM uses a sampled feature subset 

whereas EFVM uses all the features for a particular DT. 

 

IV. EXPERIMENTAL STUDIES 

This section experimentally investigates the proficiency of 

proposed feature values modification based pattern 

generation for DT ensemble construction. A set of 

benchmark problems were chosen as a test bed and the 

performance were compared to that of other ensemble 

methods:  bagging, Random Subspace Method (RSM), Class 

Label Switching (CLS) and DECORATE. For fair 

comparison, the experimental methodology was chosen 

carefully. Finally, an experimental analysis is given to 

observe the variation effect of MF value on diversity and 

generalization of an ensemble. 

A. Benchmark Problems and General Experimental 

Methodology 

 
TABLE I: CHARACTERISTICS OF BENCHMARK DATASETS 

Sl. Dataset 
Exam-

ple 
Class 

Input Feature 

Cont. Disc. 

1 Australian Credit Card 690 2 6 9 

2 Auto (ATO) 205 6 16 10 

3 Breast Cancer Wisconsin (BCW) 699 2 9 - 

4 BUPA Liver Disorders (BLD) 345 2 6 - 

5 Diabetes (DBT) 768 2 8 - 

6 Ecoli (ECL) 336 4 7 - 

7 German Credit Card (GCC) 1000 2 7 13 

8 Glass (GLS) 214 6 9 - 

9 Heart Disease Cleveland (HDC) 303 2 6 7 

10 Hepatitis (HPT) 155 2 6 13 

11 Hypothyroid (HTR) 7200 3 6 15 

12 Ionosphere (INS) 351 2 34 - 

13 Iris Plants (IRP) 150 3 4 - 

14 King+Rook vs King+Pawn (KRP) 3196 2 - 34 

15 Lymphography (LMP) 148 4 - 18 

16 Lung Cancer (LNG) 32 3 - 56 

17 Lenses (LNS) 24 3 - 4 

18 Letter (LTR) 20000 26 16 - 

19 
Optical Rec.of Handwritten 

Digits (OPT) 
5620 10 64 - 

20 Page Blocks (PGB) 5473 5 10 - 

21 Phoneme (PHN) 5404 2 5 - 

22 Postoperative (PST) 90 3 1 7 

23 Soybean (SBN) 683 19 - 35 

24 Sonar (SNR) 208 2 60 - 

25 Splice (SPL) 3175 3 - 60 

26 Vehicle (VHC) 846 4 18 - 

27 Wine (WIN) 178 3 13 - 

28 Waveform (WVF) 5000 3 21 - 

29 Yeast (YST) 1484 10 8 - 

30 Zoo (ZOO) 101 7 15 1 
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Thirty real world classification problems were employed 

in this study. The origin of these problems is the machine 

learning benchmark repository at the University of California, 

Irvine (UCI); detailed descriptions are available at the UCI 

website [21]. Table I shows the characteristics of the 

problems which show a considerable variety in the number of 

examples, input features, and classes. Thus, these problems 

provide a suitable experimental test bed. 

In order to evaluate the performance of an ensemble, 

generalization was measured on a testing set that was 

reserved from available data and not used by any DT in an 

ensemble. The testing error rate (TER) is the common 

measure of generalization: the lower its value, the better is the 

generalization. Note that the aim of any ensemble method is 

to minimize the TER. It can be seen that the TER may vary 

due to the variation of the testing data, even if the size of the 

data set remains the same. Therefore, standard 10-fold cross 

validations have been used for result presentation [7]-[12]. In 

the cross validation, initially available training patterns were 

partitioned into 10 equal or nearly equal sets, and for each 

turn, one set was reserved as a testing set, while the remaining 

nine sets were used for constructing DTs. However, different 

sizes of training and testing set partitions may give different 

results.  

We followed a common general experimental setup that 

does not favor any particular method. Variation of built-in 

parameter values to achieve better result from an ensemble 

method is very common. DECORATE was tested varying 

RSize values from 0.25 to 0.75; CLS was tested with SFraction 

values from 0.1 to 0.3; and EFVM considered MF values 

from 0.4 to 0.8. Although RSM has found effective with one 

half of total features [11], we also tested with 75% features to 

increase chance to get better result with RSM. The best result 

for a method varying the above parameters was used to 

compare with the other methods. The algorithms are 

implemented on Visual C++ of Visual Studio 2010 with 

Weka, the popular free machine learning tool. The 

experiments have been done on a PC (Intel Core i3-2100 

@3.10 GHz CPU, 2GB RAM) with Windows 7 OS. A fixed 

number of 10 DTs were constructed for an ensemble, except 

for DECORATE. Previous studies have revealed that 

ensemble with this number of classifiers is able to show good 

generalization [7], [18], [19]. To be comparable to the other 

methods, the maximum number of DTs per ensemble in 

DECORATE was defined as 10 and the maximum number of 

trial DTs was 15. 

B. Managing Weka for Base Classifier Construction  

This study investigates efficiency of pattern generation 

through feature values modification for ensemble 

construction and therefore the method of base classifier (i.e., 

DT) construction was common for all the ensemble methods 

for proper understanding. We used in this study Weka 

(Waikato Environment for Knowledge Analysis), the popular 

suite of machine learning free software developed at the 

University of Waikato, New Zealand [22], [23]. From various 

models in Weka we employed j48 model for DT construction 

based on C4.5 [24] algorithm. C4.5 is the well known and 

popular DT building algorithm and many of previous studies 

employed it [11], [12]. Instead of implementing C4.5 or any 

other algorithm by ourselves, the use of a third party standard 

method for constructing DT seems more appreciative to 

justify the efficiency of an ensemble building technique. 

Such technique also helps in easy implementation of 

ensemble methods. 

We managed Weka3.7.3, a latest version of Waka, for base 

DT construction. We setup Weka3.7.3 and copied the 

weka.jar file to our working application folder for easier 

operation. A number of DTs are constructed using Weka for 

an ensemble but we provided different training sets for 

different DTs.  Since Weka only considers arrf file type, we 

produced and saved training set (TrnData.arrf) and testing 

set (TstData.arrf) in specified arrf file format in a defined 

Path location. Then Statement 1 is executed to build a DT 

model on the TrnData.arrf and store in the model for later use 

in the defined location. In the statement –t specifies the 

training file; and –no-cv-d is for no cross validation and 

model will be saved as the specified location and name. It is 

notable that the cross validation matter has been managed 

from the upper level and outside Weka. Finally, Statement 2 

is executed to test the DT model on the TstData.arrf and store 

the output as TstOutput.txt file in the specified location. In the 

statement, –T specifies the test file; -l is to load previously 

saved model; and –p 0 > defines output file format. For 

ensemble construction with 10 DTs, 10 DT models will be 

produced from 10 different training sets (i.e., TrnData.arff 

files) and ensemble performance (i.e., generalization) will be 

measured incorporating 10 different TstOutput.txt files. 
 

Statement 1: To create a model from the training data 

java -classpath weka. jar weka. classifiers. trees. J48 -t 

Path/TrnData.arff -no-cv-d Path/ModelName.model  

 

Statement 2: To evaluate the created model on testing data  

java -classpath weka. jar weka. classifiers. trees. J48 -T 

Path/TstData.arff -l Path/ ModelName.model -p 0 > 

Path/TstOutput.txt 
 

C. Performance of EFVM and Comparison with 

Conventional Methods 

This section evaluates the performance of EFVM, the 

ensemble method based on feature values modification 

(FVM), compares with bagging, RSM, CLS and 

DECORATE ensemble methods. The experimental results of 

hybrid ensembles incorporating the feature values 

modification are also presented in this section. For 

generalization comparison, results presented are the average 

TERs over five standard 10-fold cross-validation (i.e., 5 × 10 

= 50) runs. 

Table II presents TERs achieved by bagging, RSM, CLS, 

DECORATE and EFVM where the best TER among the five 

ensemble methods is shown in bold-face type and worst one 

in italic-underlined for each problem. A pair two tailed t-test 

was conducted between EFVM and other ensemble methods 

individually to determine the significance in the variation of 

results for each problem. If TER of an EFVM method is 

found significantly better than the method by t-test, it is 

marked with a plus (+) sign. On the other hand, a minus (-) 

sign indicates that the TER of EFVM is significantly worse 

than the conventional method for a particular problem. A 

single plus/minus means that the TER difference is 

statistically significant with 95% confidence interval and a 

double plus/minus is for 99% confidence interval. 
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Table II clearly shows the proficiency of EFVM, the DT 

ensemble with generated pattern through feature values 

modification technique. EFVM is shown to achieve the 

lowest average TER of 0.1616; the average TERs for bagging, 

RSM, CLS and DECORATE are 0.1703, 0.1738, 0.1674 and 

0.1699, respectively.  Although RSM is shown the worst 

among the ensemble methods on the basis of average TER, it 

is shown best for six cases. In general, RSM performed well 

for the problems having a sufficient number features (e.g., 

SPL, OPT) since it uses sampled features for constructing 

DTs. And, when all the features are important for a problem, 

RSM might perform worse for that problem. This might be 

the reason to show the worst TERs for several cases such as 

LNS, VWL and PHN. On the other hand, EFVM uses all the 

features but promote diversity through generated patterns and 

performs better than RSM for 19 cases out of 30 cases in 

which the results are found significant by t-test for 14 

problems. 

From Table II it is also recognized that bagging performs 

well for problems having large number of patterns (e.g., 

BCW, PHN) since bootstrap sampling is efficient for larger 

training set. On the other hand, bagging may perform worse 

for problems having limited number of patterns (such as WIN, 

SNR) because in such small sized problem each individual 

training pattern is important and bootstrap left some original 

patterns in a training set. On the other hand, EFVM uses all 

the original training patterns in a training set but a portion of 

some patterns are altered modifying feature values. Therefore, 

it is seen from Win/Draw/Lose comparison of Table II that 

EFVM outperformed bagging for 25 cases out of 30 cases in 

which the results are found significant by t-test for 11 

problems. 

CLS changes class label that may introduce very different 

patterns in a training set and therefore perform well for only 

few problems. DECORATE generates examples that are 

different from the original patterns and has been found to be 

good for problems with limited numbers of examples, such as 

ECL, HPT and SNR. On the other hand, EFVM generates 

patterns from original patterns modifying feature values and 

might be difficult to produce patterns for better performance 

when the problem contains a very limited number of patterns 

as well as features. Therefore, EFVM has the worst TERs for 

some small-sized problems with few features such as HPT, 

IRP and WIN. At a glance, EFVM outperformed CLS and 

DECORATE for 21 and 18 cases, respectively in which the 

results are found significant by t-test for several cases. EFVM 

is also shown to achieve best TERs for 12 cases; whereas 

bagging, RSM, CLS and DECORATE are shown best for 2, 6, 

TABLE II: TER COMPARISONS OF EFVM WITH BAGGING, RSM, CLS AND DECORATE OVER FIVE STANDARD 10-FOLD CROSS-VALIDATION RUNS. A 

PLUS (OR MINUS) SIGN INDICATES THAT TER OF EFVM IS FOUND SIGNIFICANTLY BETTER (OR WORSE) THAN SNNE BY T-TEST. A SINGLE AND DOUBLE 

PLUS/MINUS IS FOR 95% AND 99% CONFIDENCE INTERVAL, RESPECTIVELY. THE BOTTOM OF THE TABLE CONTAINS A RESULTS SUMMARY OF INDIVIDUAL 

METHODS AND COMPARISON OF EFVM WITH OTHER METHODS. 

Sl. Problem 
TERs achieved by conventional ensemble methods TER of 

EFVM 

t-test of EFVM with conventional 
methods 

Bagging RSM CLS DECOR. Bagg. RSM CLS DEC. 

1 ACC 0.142 0.1423 0.1371 0.1449 0.1345  +  + 

2 ATO 0.234 0.202 0.197 0.19 0.209 +    

3 BCW 0.0409 0.0403 0.0409 0.042 0.042     

4 BLD 0.29 0.3647 0.2876 0.3376 0.28  ++  ++ 

5 DBT 0.2434 0.2416 0.2455 0.2458 0.2311 +  + + 

6 ECL 0.0945 0.1006 0.0891 0.0867 0.0885  ++   

7 GCC 0.256 0.2598 0.2524 0.2644 0.2514  +  ++ 

8 GLS 0.3019 0.3257 0.3105 0.3314 0.2886  +  ++ 

9 HDC 0.2193 0.222 0.2027 0.208 0.19 ++ ++  + 

10 HPT 0.184 0.196 0.168 0.1613 0.1747  +   

11 HTR 0.0039 0.0037 0.004 0.0033 0.0032 ++  ++  

12 INS 0.0983 0.072 0.0994 0.084 0.0937  −−   

13 IRP 0.048 0.044 0.0467 0.04 0.0493     

14 KRP 0.0201 0.0781 0.0218 0.0212 0.0203  ++   

15 LMP 0.1929 0.2086 0.2 0.2014 0.1886     

16 LNG 0.4867 0.5267 0.5467 0.4733 0.4933     

17 LNS 0.15 0.17 0.15 0.16 0.11 + + + + 

18 LTR 0.0766 0.0628 0.0769 0.1174 0.0754  ++  ++ 

19 OPT 0.058 0.0391 0.067 0.0967 0.0546 + −− ++ ++ 

20 PGB 0.028 0.0293 0.0278 0.0284 0.026 ++ ++ ++ ++ 

21 PHN 0.1088 0.1409 0.1386 0.1271 0.1277 −− ++ ++ −− 

22 PST 0.3289 0.2889 0.2956 0.3067 0.2933 ++    

23 SBN 0.0797 0.0765 0.0747 0.0724 0.0776     

24 SNR 0.241 0.184 0.21 0.178 0.206 ++   − 

25 SPL 0.0567 0.0536 0.0551 0.0593 0.0558    + 

26 VWL 0.3949 0.4214 0.3749 0.4042 0.3945  + −  

27 WIN 0.0835 0.0682 0.0659 0.0329 0.0659 ++   −− 

28 WVF 0.1818 0.1763 0.1878 0.1888 0.1752 ++  ++ ++ 

29 YST 0.398 0.4203 0.4015 0.437 0.3922  ++ + ++ 

30 ZOO 0.068 0.056 0.048 0.054 0.056     

Average TER 0.1703 0.1738 0.1674 0.1699 0.1616     

Best/Worst TER 2/6 6/10 2/3 8/12 12/2     

Win/Draw/Lose and t-test 

Better/Worse of EFVM 
25/0/5 19/1/10 21/1/8 18/1/11 - 11/1 14/2 8/1 13/3 
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2, and 8 cases, respectively. On the other hand, EFVM is 

shown the worst TERs for only two cases; whereas bagging, 

RSM, CLS and DECORATE are shown the worst for 6, 10, 3, 

and 12 cases, respectively. Overall, EFVM is shown to be a 

good ensemble construction method, generating different 

patterns for different DTs through feature values 

modification. 

D. Performance of Hybrid Ensembles Incorporating 

Feature Values Modification 

This section presents experimental results of two hybrid 

ensemble methods BFVM and RFVM, incorporating feature 

values modification (FVM) technique with bagging and RSM, 

described in Section III. Table III presents average TERs 

over five standard 10-fold cross-validation (i.e., 5 × 10 = 50) 

runs of BFVM and RFVM for 20 problems. The results for 

standard bagging and RSM have been taken from Table II. 

Between a standard and a hybrid method, the better TER is 

marked as bold-face type and a star sign with TER of a hybrid 

method indicates that TER is better than TER of any 

individual methods of Table II. 

The results presented in Table III clearly indicate the 

benefit of hybrid ensembles incorporating feature values 

modification with bagging and RSM. The performance of 

bagging relies on the diversity due to bootstrap sampling of 

patterns and it does not have any other parameter to tune. 

Therefore, when data sampling does not give proper diversity 

for better generalization for a problem, FVM may help to 

reach at better generalization position. Out of 20 cases, 

BFVM outperformed bagging for 19 cases and incorporation 

of FVM is found ineffective for only for WIN. It is already 

discussed in the previous section that FVM operation is not 

suitable for WIN. 

better generalization when feature sampling does not give 

proper diversity for better generalization for a problem. Out 

of 20 cases, RFVM outperformed bagging for 15 cases and 

incorporation of FVM is found ineffective for rest five cases. 

For the five cases RSM has already shown best or good TER 

as of Table II (e.g., INS, DBT and SNR) or FVM is not 

suitable for it (e.g., WIN). Moreover, both BFVM and RFVM 

are shown better average TERs than corresponding standard 

methods i.e., bagging and RSM, respectively. 

It is also interesting to observe from the Table III that 

hybrid methods achieved best TERs for some cases when 

compared with the other methods in Table II. It is seen from 

Table II that the best TER achieved (i.e., 0.1886) for LMP 

problem by EFVM. For the same problem bagging and RSM 

are shown TERs 0.1929 and 0.2086, respectively. 

Incorporating FVM with bagging and RSM, BFVM and 

RFVM are shown to achieve TERs 0.1857 and 0.1843, 

respectively; these values are better than any individual 

standard method. Comparing results of hybrid methods in 

Table III with results of Table II it is found that BFVM and 

RFVM are shown better TERs than the best TERs of Table II 

for four and seven cases out of tested 20 cases. RSM was the 

best individual method for SPL problem as of Table II 

showing TER 0.0536; and FVM incorporation improved its 

TER to 0.0524. On the other hand, RSM was the worst for 

HPT problem with TER 0.196 but RFVM is shown to achieve 

TER 0.1467 that is even better than the best TER (i.e., 0.1613 

by EFVM) for individual method. This explanation clearly 

indentifies the effectiveness of incorporation of FVM with 

bagging and RSM. 

E. Experimental Analysis 

This section describes experimental results to explore the 

effects on diversity and TER of varying parameter values. 

Three problems were selected for analysis, based on 

variations in the number of available examples, input features, 

and output classes. For example, the German Credit Card 

(GCC) problem contains both continuous and discrete 

features, whereas the Diabetes (DBT) problem has only 

continuous features and the Lymphography (LMP) problem 

has only discrete features. 

The diversity indicates how predictions differ among 

component classifiers (i.e., DTs) on the testing set. To 

measure diversity, we employed the most commonly used 

pairwise plain disagreement measure technique [25]. The 

plain disagreement diversity for a networks pair i and j is 

given by  

 

.

1
( ( ), ( )),

1
i j i j

N
div Diff C n C n

nN
 


          (4) 

 

where N is the number of examples in the testing set, Ci(xk) is 

the class assigned by DT i to example k, and Diff(a,b) = 0 if a 

= b, otherwise Diff (a,b) = 1. The total ensemble diversity is 

the average for all DT pairs in the ensemble. 

It is already mentioned that the feature values modification 

(FVM) of a pattern is done with another pattern with same 

class label and the modification with different class label 

pattern might give more diversity. The matter explores in this 

section through experimental results with a modified version 

of EFVM, called different class EFVM (dcEFVM), where 

 
TABLE III: TER COMPARISONS AMONG STANDARD BAGGING, STANDARD 

RSM, WITH BFVM AND RFVM OVER FIVE STANDARD 10-FOLD 

CROSS-VALIDATION RUNS. A STAR SIGN INDICATES THAT TER OF THE 

HYBRID METHOD IS BETTER THAN ANY INDIVIDUAL METHODS. 

Sl. Problem 
TER achieved by standard and hybrid ensemble methods 

Bagging 
BFVM 

(Bagg.+FVM) 
RSM 

RFVM 

(RSM+FVM) 

1 ACC 0.142 0.1362 0.1423 0.1345 

2 BCW 0.0409 0.0397* 0.0403 0.0365* 

3 BLD 0.29 0.2882 0.3647 0.3135 

4 DBT 0.2434 0.2355 0.2416 0.245 

5 ECL 0.0945 0.0879 0.1006 0.0806* 

6 GCC 0.256 0.246* 0.2598 0.255 

7 HDC 0.2193 0.206 0.222 0.1993 

8 HPT 0.184 0.176 0.196 0.1467* 

9 INS 0.0983 0.0926 0.072 0.0783 

10 IRP 0.048 0.0453 0.044 0.0533 

11 LMP 0.1929 0.1857* 0.2086 0.1843* 

12 LNG 0.4867 0.44* 0.5267 0.4533* 

13 LNS 0.15 0.12 0.17 0.12 

14 PGB 0.028 0.0265 0.0293 0.0273 

15 SBN 0.0797 0.0738 0.0765 0.0729 

16 SNR 0.241 0.218 0.184 0.2 

17 SPL 0.0567 0.0543 0.0536 0.0524* 

18 WIN 0.0835 0.0859 0.0682 0.0729 

19 WVF 0.1818 0.1757 0.1763 0.1706* 

20 ZOO 0.068 0.058 0.056 0.048 

Average TER 0.1592 0.1496 0.1616 0.1472 

 

Similarly, RSM only relies on feature sampling and 

incorporation of FVM may help to tune diversity to give 
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modification is done with different class label pattern. 

Similarly, different class BFVM (dcBFVM) and different 

class RFVM (dcRFVM) are also considered to observe 

feature values modification with different class label pattern 

on hybrid ensemble methods. 

Fig. 5 shows TER and diversity achieved by EFVM and 

dcEFVM over five standard 10-fold cross-validation runs 

varying modification factor (MF). It is already mentioned 

that the user-defined value of MF indicates the number of 

patterns to be considered to modify the feature values. At 

  

Fig. 5.  Effects of the variation of Modification Factor (MF) on TER and Diversity on EFVM and dcEFVM. 

 

  
Fig. 6.  Effects of the variation of Modification Factor (MF) on TER and Diversity on BFVM and dcBFVM. 

 

  

Fig. 7.  Effects of the variation of Modification Factor (MF) on TER and Diversity on RFVM and dcRFVM. 
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MF=0.0, no pattern were considered to modify and all the 

DTs are constructed on same original training set. Therefore, 

for MF=0.0, with zero diversity the ensemble act like single 

DT and achieved worst TER for any problem in general. As 

an example, TERs at MF=0.0 for GCC and LMP problems 

are 0.285 and 0.2214, respectively; the values are worst 

among the presented results. On the other hand, diversity 

increases with MF for any problem as can be seen in the 

figure. And diversity improvement is more visible for 

dcEFVM than EFVM for any problem. In dcEFVM, the 

feature values of a pattern are modified with the values from 

another pattern with a different class label, and this may give 

a completely different pattern for training. 

Completely different pattern is good for diversity, but 

obtaining decisions from highly diverse DTs is not easy [18]. 

Therefore, very high diversity is not good for better 

generalization (i.e., reducing TER) and there is a tradeoff 

between diversity and TER [26]. This is why performance 

degraded (i.e., TER increased) rapidly with respect to MF for 

dcEFVM after a certain MF value in Fig. 5. On the other hand, 

FVM with same class pattern is shown to be more effective in 

achieving better generalization (i.e., lower TER). Feature 

values modification using patterns from the same class 

generates similar patterns and does not give so much of the 

diversity that is not good for TER. From the figure it can be 

clearly seen that diversity improves smoothly with MF for 

FVM and reduces TER in most of the cases. As an example, 

for LMP problem TER decreased with diversity 

improvement when MF values are increased from 0.0 and 

best TER (i.e., 0.1871) achieved at MF=1.0. Thus, pattern 

generation by replacing feature values of patterns with those 

from other patterns in the same class is a good approach for 

ensemble construction. 

Fig. 6 shows TER and diversity achieved by BFVM and 

dcBFVM over five standard 10-fold cross-validation runs 

varying MF values. The value of MF=0.0 in the figure 

indicates standard bagging algorithm and the diversity is 

shown at this point due to data sampling. It is noticeable from 

Figs. 5(b) and 6(b) that for same MF value BFVM and 

dcBFVM in Fig. 6(b) is shown greater diversity than EFVM 

and dcEFVM in Fig. 5(b) in most of the cases. This is 

reasonable because incorporation of FVM may enhance the 

diversity of bagging. However, rapid diversity improvement 

in dcBFVM does not shown to improve TER at all. On the 

other hand, BFVM is shown to achieve better TER than 

bagging (MF=0.0) in general, although some cases diversity 

slightly reduces in BFVM for larger MF value. For GCC 

problem, the TER was 0.2592 for bagging (at MF=0.0) 

whereas BFVM achieved TER of 0.2466 at MF=0.7, the 

value is also better than any value EFVM of Fig. 5(a). Thus, 

MF parameter of FVM may help to tune proper diversity for 

better TER in bagging, and BFMV is an effective hybrid 

ensemble method. 

Fig. 7 shows TER and diversity achieved by RFVM and 

dcRFVM over five standard 10-fold cross-validation runs 

varying modification factor (MF). The value of MF=0.0 in 

the figure indicates standard RSM algorithm and the diversity 

is shown at this point due to feature sampling. Like BFVM, 

RFVM also shows better TERs than EFVM (Fig. 5(a)) for a 

value of MF. Moreover, with smooth diversity improvement 

with respect to MF, RFVM is shown to achieve better TER 

than RSM and dcRFVM, in general. Thus, RFVM may give 

better generalization tuning diversity of RSM with feature 

values modification and it is shown to achieve best TERs for 

some cases. As an example, for LMP problem, the TER for 

RSM (MF=0.0) was 0.2071, and RFVM is shown to achieve 

TER 0.1771 at MF=0.8. The achieved TER is also the best 

considering EFVM and BFVM too. 

 

V. CONCLUSIONS 

Data sampling or different training data for different 

classifiers is considered to be the most effective technique for 

ensemble construction. Some of the popular ensemble 

methods manipulate available training patterns and some 

others induce generated new patterns to prepare a different 

training set for a particular classifier. This study investigates 

a new pattern generation method that modifies feature values 

of some original patterns with that of other patterns. The 

method is easy to understand and implement, and it is seem 

computationally economical. Extensive experiments have 

been carried out in this work to understand the proficiency of 

the proposed pattern generation method in ensemble 

construction. A suit of 30 benchmark classification problems 

was used for experimental studies. In many cases, it is found 

that the decision trees construction based on proposed pattern 

generation is beneficial for the performance of ensembles. 

The incorporation of proposed pattern generation method in 

bagging and RSM algorithms indicates that it can improve 

the performance of bagging and RSM algorithms. 
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