

Abstract—Timetabling is the task of creating a schedule

while satisfying some constraints. This problem is an NP-

Complete problem, so solving it needs some heuristics. There

are many types of timetabling; we mainly focused on university

course timetabling. There have been many efforts in literature,

but most of them have used some limiting assumptions that

cause their approach to be unusable in real situations. We've

used an evolutionary approach based on genetic algorithm to

solve this problem in real situation and in a reasonable amount

of time. We've used real data from our department in the

university and our approach could solve the problem in about

15 minutes, while manually timetabling may take three days.

Index Terms—Timetabling, university timetabling, genetic

algorithm.

I. INTRODUCTION

University timetabling is the task of creating a timetable

for courses and satisfying some constraints. There are

basically two types of constraints, soft constraints and hard

constraints. Soft constraints are those if we violate them in

scheduling, the output is still valid, but hard constraints are

those which if we violate them, the schedule is no longer

valid. This problem is believed to be a NP-Complete

problem [1], [2], thus an optimal solution cannot be found in

a reasonable amount of time. That is why heuristics should

be used. Many efforts have been made in the literature for

solving timetabling problems. These efforts use genetic

algorithms, Tabu search, simulated annealing, ant colony

and constraint satisfaction. The main goal of timetabling is

to create a feasible and valid timetable concerning the needs

of both professors and students.

The search space of a timetabling problem is too huge,

many solutions exist in the search space and most of them

are not feasible. Feasible solutions here mean those which

do not violate hard constraints. We need to choose the most

appropriate one from feasible solutions. Most appropriate

ones here mean those which do not violate soft constraints

too much.

There is a great variety of constraints assumptions in

different works, but most of them [3], [4] have under

estimated the constraints. We can see some solutions which

do not violate assumed soft constraints, but they are not

good from a user's point of view. This case happens in most

of the existing works (including [5]-[11]) [1], [3], [4], [12].

The problem arises from the matter that there is no widely

Manuscript received September 10, 2012; revised April 1, 2013.
Mortaza Doulaty is with the Department of Computer Science,

University of Sheffield, Sheffield, UK (e-mail: m.doulaty@dcs.shef.ac.uk).

Mohammad-Reza Feizi-Derakhshi is with the Department of Computer
Science, University of Tabriz, Tabriz, Iran (e-mail: mfeizi@tabrizu.ac.ir).

Mehrdad Abdi is with the Amirkabir University of Tehran, Tehran, Iran

(e-mail: m.abdi@aut.ac.ir).

accepted soft constraints between academical institutes.

Furthermore, most of the existing approaches only have a

minimal set of soft constraints (this is mainly caused by the

fact that they wanted to have an easy to implement and

quick solution [3], [12]. For those which does not have a

minimal set of soft constraints and used genetic approach,

this problem is mainly related to their Fitness function [3].

But our approach is quite different from other works (as will

be shown in next sections). We've assumed a large set of

constraints, both hard and soft. This causes our method to be

some how complicated, but the results are very promising.

The wide variety of constraints in our approach makes it

easy to be used among different universities.

II. TIMETABLING PROBLEM DEFINITION

Timetabling can both be used in schools and universities.

Creating a timetable for school is easier than creating a

timetable for university. A survey which has been done in

Britain [3], concluded that manually creating a good

timetable for a school takes at most one day, while manually

creating a timetable for university may take up to four days.

After creating a timetable, if some small changes are needed,

re-creating the timetable is still a hard and time consuming

task. Timetabling not only can be used for course, but also it

can be used for exam scheduling as well. Up to here we used

time timetabling for scheduling courses, but in general,

according to Wikipedia, “timetabling is an organized list,

usually set out in tabular form, providing information about

a series of arranged events: in particular, the time at which it

is planned these events will take place”. General use of

timetable may include the following ones.

1) School timetable, a table for coordinating these four

elements.

2) University timetable, quite different from school

timetables (discussed earlier).

3) Workplace schedule, a list of employees who are

working on any given day, week or month in a

workplace.

4) Airline timetable, booklets that many airlines

worldwide use to inform passengers of several

different things, such as schedules, fleet, security, in-

flight entertainment, food menu, restriction and phone

contact information.

5) Public transport timetable, a listing of the times that

public transport services arrive and depart specified

locations.

6) Sport events timetable, a listing of the times that

different sport teams will play with each other as a part

of a league or series of matches.

In this paper we mainly focused on university timetabling.

However, with some minor changes, our approach can be

used for any of the other timetabling tasks.

Timetabling: A State-of-the-Art Evolutionary Approach

M. Doulaty, M. R. Feizi Derakhshi, and M. Abdi

International Journal of Machine Learning and Computing, Vol. 3, No. 3, June 2013

255DOI: 10.7763/IJMLC.2013.V3.314

A. Constraints

As mentioned above, there are two types of constraints,

hard constraints and soft constraints.

B. Hard Constraints

Keeping in mind all of related works, a set of hard

constraints can be concluded as the following list.

1) There shouldn’t be more than one scheduled course to

be held in one class at the same time (class

interference).

2) A professor cannot have two different courses at the

same time (professor interference).

3) Some facilities are required by some courses, these

critical facilities should not be violated. E.g. some

courses needs to take place in some special classes,

such as labs.

4) Groups of students which are in the same semester

should not have two courses simultaneously.

5) Classes have a limited count of seats.

6) Professors cannot attend classes at some predefined

times.

7) Classes should not be used in some pre-defined times.

There is not a global agreement about hard constraints in

literature, while some works assume some constraint to be

hard constraint, others may assume it soft. But the above list

is assumed to be the list of hard constraints in our approach.

C. Soft Constraints

A comprehensive list of soft constraints can be concluded

as the following list.

1) Minimizing the time-gaps in each professors timetable.

2) Minimizing the time-gaps in student groups timetable.

3) Minimizing or maximizing the count of days students

attend university. (This policy differs between

universities.)

4) Minimizing or maximizing the count of days

professors attend university. (This policy differs

between universities.)

5) Maximum and minimum hours a professor can teach

different courses in a single day.

6) Maximum and minimum hours that a student can have

courses in a single day.

7) Some professors prefer not to have classes in some

certain hours (if possible and not obligatory).

8) Some courses prefer to have some facilities in classes

(such as video/data projectors) if possible (and not

obligatory).

III. RELATED WORK

Creating a feasible timetable can be done in a number of

ways which can be grouped as following [1], [3], [4], [12].

1) Graph coloring

2) Clustering methods

3) Constraint based methods (e. g. integer programming)

4) Meta heuristic methods (e. g. genetic algorithms,

simulated annealing, Tabu search and ants colony)

Most of the approaches have limited the constraints to

gain a quick and good result. Although their approach is fast

and easy to implement, but cannot be used is real situation

where there are too many constraints that in some cases are

very different from one university to another. Some of the

approaches are discussed below.

A. Genetic Algorithm

In [6], [7], [13], [14] each day of week is divided into six

90 minutes gaps. Each week has five working days. The

day/time gaps are enumerated as:

mon1, mon2, …, mon6, tue1, tue2, …, fri6

Classes are defined by symbol C and cC maximum

number of students is defined. Set T is the set of all

professors and set R is the set of all classrooms. L denotes

the set of courses and lL, course type, professor and class

type is defined. To make things easier, only a few hard and

soft constraints are defined in most of the approaches [6],

[7], [13], [14].

B. Chromosome Representation

f (c, t, l, r, p) = 1 if and only if for class c, professor t and

course l, class r and date/time gap p is a feasible schedule.

Each gene in this chromosome can be an element of a 5D

matrix than can hold values 0 and 1 (false and true

respectively).

Almost all of other genetic based approaches used the

same chromosome representation while having only a small

subset of constraints [6], [7], [13], [14], [15].

C. Initial Population

Generating initial population is done by selecting an

random course from course list, then trying to assign it to a

class in a random day/time gap (the professor is already

defined in the course) [6], [7], [13], [14]. In this case only

hard constraint is checked and all of the soft constraints are

ignored.

In different works, different initial population size is

defined. But most of them are between 10 and 40 [12].

D. Fitness Function

Evaluation of a chromosome's fitness value is done by

using something similar to this function [6], [7], [13], [14]:

𝑒𝑣𝑎𝑙 𝑓 =
1

1 + 𝑐𝑜𝑠𝑡 𝑓

where cost(f) is the values of violating soft constraints and is

calculated as:

𝑐𝑜𝑠𝑡 𝑓 = 𝑛𝑖 𝑓 × 𝑤𝑖

𝑡

𝑖=1

where t is the count of soft constraints, ni(f) is the penalty of

violating soft constraint i and wi is its weight.

E. Mutation

For mutation, a timetable named f is selected, an integer

number m and a set   P containing m day/time gap is

selected randomly and set L (f; ) is created. Mutated

timetable f’ is created with assigning new day/time gaps or

classrooms to  cutout.

International Journal of Machine Learning and Computing, Vol. 3, No. 3, June 2013

256

In these approaches [6], [7], [13], [14] each chromosome

is represented as:

f: C  T  L  R  P  {0, 1}

F. Cross-Over

Two timetables f and g are selected as parents and their

child is created as: each course, day/time and class is

selected from its parent, cC there exists a set c  P from

day/time gaps, for which its timetable is described as below:

𝑕 𝑐, 𝑙, 𝑟, 𝑝 =
𝑓 𝑐, 𝑙, 𝑟, 𝑝 𝑖𝑖𝑓 𝑝 ∈ 𝜋𝑐

𝑔 𝑐, 𝑙, 𝑟, 𝑝 𝑒𝑙𝑠𝑒

G. Selection

Tournament and elitism are preferred over other selection

methods. Elitism ensures that the best timetable will survive

in each generation.

IV. PROPOSED APPROACH

As mentioned earlier, other approaches have some

limiting assumptions that makes those approaches unusable

in real situations where there are too many different (and

sometimes opposite) constraints being held among different

universities. So a good approach which satisfies different

needs of different universities does not exist. Our aim is to

create a state-of-the-art method for timetabling university

courses, having a robust and flexible algorithm which

satisfies different (and sometimes opposite) needs of

different universities.

A. Chromose Representation

Our chromosome has a simple implementation. Each gene

is consisted of four fields: Course ID which identifies the

course and its professor is the main member of the gene; the

other three remaining fields are class ID, day and time ID.

These three fields are filled after timetabling task is done.

To clarify things, we divided each day of week into different

time gaps, which has a day ID and a time ID.

B. Initial Population

Our approach for creating the initial population includes

these steps. First we order the list of the professors, busiest

professors at top of the list. Then we start by selecting the

busiest professor, choose courses which should be offered

by him. For each course which should be offered by him, we

select a list of classes that meets the facilities required by

that course. Then we randomly select a day and time for this

course. After selecting class, day and time, we check the

hard constraints so that we do not violate them. If this gene

is okay, we continue with the next course of the current

professor and continue this task until all of the professors in

the list are visited. If, at any stage of this process, we find

out that we cannot continue, we simply discard and continue

from the beginning. Using this method, we create an initial

population of size 20 which are all feasible timetables.

C. Cross Over

For cross-over we used a PMX operator. First we select

two chromosomes as parents, then select two random cross

points, genes between two cross points remain the same in

each chromosome, others which does not create an invalid

chromo- some are swapped between chromosomes, and

those which causes the chromosome to be invalid, are not

swapped. Up to here we may have two complete

chromosomes or may be some chromosomes which all of

the genes are not present. For missing genes, we fill the

values of class ID, day and time ID using the method

discusses in previous section (busiest professor first). After

doing this step, we have two off-springs. We add them to

our population.

D. Mutation

A chromosome is randomly selected as the candidate for

mutation. Then one of its gene's is selected randomly and

the value of class ID, day and time ID is cleared for this

gene. Then we re-schedule this gene (course).

E. Fitness Function

Our fitness function is as below:

𝑓𝑚𝑖𝑛 𝐶 = 𝑊𝑖 × 𝑉𝑖(𝐶)

𝑛

𝑖=1

where n is the number of soft constraints and Wi is some

constant weights that serve as a kind of penalty for violating

soft constraints and their values are tuned after different

experiments. Vi () is the function for evaluating the value of

violating penalty from soft constraint i.

F. Selection

We used tournament and elitism as selection method.

Elitism ensures that each elite chromo- some in different

generations will survive in the next generation. The size of

our population does not change during the evaluation

process. As said earlier, during each step of the evaluation

process, all of the chromosomes are valid and feasible ones.

If, for any reason, during each of the steps described above,

a chromosome becomes invalid, the process is interrupted

and restarted from the beginning. If this cycle continues

more than three times for an individual chromosome, the

process is restarted from the very beginning. This has a very

great impact on our approach as will be shown in the results

section.

V. EXPERIMENTS AND RESULTS

Working with real data in real situation was our goal. So

we used the real data from the Department of Computer

Science, Faculty of Mathematical Sciences, University of

Tabriz. We've entered the raw data for two semesters

(courses being offered with their corresponding professors).

Our implementation which is developed in C# used a forge

NET framework for representing chromosomes, generations

and processing the evolution. We ran our tests on a dual

core 2 GHz CPU with 2 GB of RAM.

The total number of courses to be scheduled was 52.

Manually timetabling these courses takes about three days.

When we applied our evolutionary method for solving this

problem, the results are as shown in Table I. We ran our

tests ten times and have the average results written. This

causes to have a minimal error rate.

The results show that an initial population of count 20 is

enough to create a reasonable timetable. About generations

count, 1000 seems to be just fine. The run time for creating

1000 generations from initial population of count 20 is about

17 minutes. Which is very good, compared to manually

timetabling which normally takes three days.

International Journal of Machine Learning and Computing, Vol. 3, No. 3, June 2013

257

VI. CONCLUSION AND FUTURE WORK

As is shown in Table II, an evolutionary method for

timetabling university courses has been proposed. Other

approaches used different techniques, varying from Tabu

search, genetic algorithms and ant colony to constraint

satisfaction. We've based our approach on evolutionary

computing. We've created a genetic algorithm for solving

timetabling problem. We've mainly focused on university

timetabling; however, our approach can be used in other

timetabling problems as well. Unlike other approaches

appeared in literature, we've used a wide variety of both

hard and soft constraints. From the very beginning, we kept

in our minds that this method will be used in real situation

serving different needs of different universities. So unlike

others, we did not have any limiting assumptions.

We've used C# and together with Forge .NET framework

to develop our application. We've used real data of our

department in university to test the method and see how well

it is working. 17 minutes for creating 1000 generations of

initial population count 20 is a very promising result (when

compared to manually timetabling which takes about three

days).

Our future work will be parallelizing this approach to

benefit from other cores of multi-core processors. This will

certainly shorten the run-time of this method. Parallel

genetic algorithms will be used in our next implementations.

Also we’re working to have other termination criteria,

maybe a compound method concerning generations count

and something else.

ACKNOWLEDGEMENT

The authors would like to express their cordial thanks to

Pazhoohesh Afzar Farda Co. (PAFCO) for providing real

data and test bed.

REFERENCES

[1] E. Burke, K. Jackson, J. Kingston, and R. Weare, “Automated

university timetabling: the state of the art,” The Computer Journal,

vol. 40, pp. 565-571, 1997.

[2] T. Cooper and J. Kingston, “The complexity of timetable construction
problems,” Practice and Theory of Automated Timetabling, vol. 1153,

pp. 281-295, 2006.

[3] E. Burke, J. Newall, and R. Weare, “A memetic algorithm for
university exam timetabling,” Practice and Theory of Automated

Timetabling, vol. 1153, pp. 241-250, 1996.

[4] K. Socha, M. Sampels, and M. Manfrin, “Ant algorithms for the
university course timetabling problem with regard to the state-of-the-

art,” Applications of Evolutionary Computing, vol. 2611, pp. 334-345,
2003.

[5] S. Abdennadher and M. Marte, “University course timetabling using

constraint handling rules,” Journal of Applied Artificial Intelligence,
Special Issue on Constraint Handling Rules, 2000.

[6] D. Abramson and J. Abela, “A parallel genetic algorithm for solving

the school timetabling problem,” in Proc. 15th Australian Computer

Science Conf., 2002.

[7] E. Burke, J. Newall, and R. Weare, “A memetic algorithm for

university exam timetabling,” Practice and Theory of Automated
Timetabling, vol. 1153, pp. 241-250, 1996.

[8] E. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for

timetabling problems,” Journal of Scheduling, vol. 9, pp. 115-132,
2006.

[9] E. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu, “A

graph-based hyper-heuristic for educational timetabling problems,”
European Journal of Operational Research, vol. 176, pp. 177-192,

2007.

[10] E. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic
for timetabling and rostering,” Journal of Heuristics, vol. 9, pp. 451-

470, 2003.

Mohammad-Reza Feizi-Derakhshi was born in 1975, in Tabriz, Iran. He

received his B.Sc. (Hons) in Computer Engineering from University of
Isfahan, Isfahan, Iran in 1997, and received his M.Sc. in Computer

Engineering and Ph.D. in Computer Engineering, Artificial Intelligence

from Iran University of Science and Technology, Tehran, in 2000 and 2007,

respectively. He is currently an associate professor in University of Tabriz,

Iran. His research interests include natural language processing, text and

speech summarization, optimization algorithms and databases. He has
published over 90 papers in difference conferences and journals.

Mortaza Doulaty was born in 1986, in Tabriz, Iran. He is a computer
science Ph.D. student at the Department of Computer Science, University

of Sheffield, UK. He received his B.Sc. (Hons) and M.Sc. (Hons) in

Computer Science, Intelligent Systems from the University of Tabriz,
Tabriz, Iran in 2009 and 2011, respectively. His broad research interests

include machine learning, evolutionary computing and signal processing.

Mehrdad Abdi was born in 1987, in Ardabil, Iran. He received his B.Sc.

degree in Information Technology Engineering from University of Tabriz,
Tabriz, Iran in 2011 and currently he is a M.Sc. student in Information

Security in Amirkabir University of Tehran (Tehran Polytechnic), Tehran,

Iran. His research interests are in security focusing on software
security,vulnerability analysis and Security testing, formal methods in

security and also artificial intelligence and its applications in computing.

International Journal of Machine Learning and Computing, Vol. 3, No. 3, June 2013

258

TABLE I: RESULTS

Pop. Count Generations Time

20 10 10 Sec.

30 10 16 Sec.

40 10 21 Sec.

20 100 101 Sec.

30 100 164 Sec.

40 100 220 Sec.

20 1000 17 Min.

30 1000 27 Min.

40 1000 36 Min.

TABLE II: COMPARISON WITH OTHER APPROACHES

Method Soft Const. C. Hard Const. C.

[7] 5 3

[14] 7 4

[13] 3 4

[6] 11 4

Our 19 7

[11] K. Socha, J. Knowles, and M. Sampels, “A max-min ant system for
the university course timetabling problem,” Ant Algorithms, 2002.

[12] E. Burke and S. Petrovic, “Recent research directions in automated

timetabling,” European Journal of Operational Research, vol. 140,
pp. 266-280, 2002.

[13] D. Corne, P. Ross, and H. Fang, “Fast practical evolutionary

timetabling,” In Evolutionary Computing, vol. 865, pp. 250-263, 2004.
[14] E. Burke, R. Weare and D. Elliman, “A hybrid genetic algorithm for

highly constrained timetabling problems,” in Proc. 6-th Int. Conf.

Genetic Algorithms (ICGA'5), 2005.
[15] L. Gaspero and A. Schaerf, “Tabu search techniques for examination

timetabling,” Practice and Theory of Automated Timetabling III, vol.

2079, pp. 104-117, 2001.

