
 

 
Abstract—Timetabling is the task of creating a schedule 

while satisfying some constraints. This problem is an NP-

Complete problem, so solving it needs some heuristics. There 

are many types of timetabling; we mainly focused on university 

course timetabling. There have been many efforts in literature, 

but most of them have used some limiting assumptions that 

cause their approach to be unusable in real situations. We've 

used an evolutionary approach based on genetic algorithm to 

solve this problem in real situation and in a reasonable amount 

of time. We've used real data from our department in the 

university and our approach could solve the problem in about 

15 minutes, while manually timetabling may take three days. 

 
Index Terms—Timetabling, university timetabling, genetic 

algorithm. 

 

I. INTRODUCTION 

University timetabling is the task of creating a timetable 

for courses and satisfying some constraints. There are 

basically two types of constraints, soft constraints and hard 

constraints. Soft constraints are those if we violate them in 

scheduling, the output is still valid, but hard constraints are 

those which if we violate them, the schedule is no longer 

valid. This problem is believed to be a NP-Complete 

problem [1], [2], thus an optimal solution cannot be found in 

a reasonable amount of time. That is why heuristics should 

be used. Many efforts have been made in the literature for 

solving timetabling problems. These efforts use genetic 

algorithms, Tabu search, simulated annealing, ant colony 

and constraint satisfaction. The main goal of timetabling is 

to create a feasible and valid timetable concerning the needs 

of both professors and students. 

The search space of a timetabling problem is too huge, 

many solutions exist in the search space and most of them 

are not feasible. Feasible solutions here mean those which 

do not violate hard constraints. We need to choose the most 

appropriate one from feasible solutions. Most appropriate 

ones here mean those which do not violate soft constraints 

too much. 

There is a great variety of constraints assumptions in 

different works, but most of them [3], [4] have under 

estimated the constraints. We can see some solutions which 

do not violate assumed soft constraints, but they are not 

good from a user's point of view. This case happens in most 

of the existing works (including [5]-[11]) [1], [3], [4], [12]. 

The problem arises from the matter that there is no widely 
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accepted soft constraints between academical institutes.  

Furthermore, most of the existing approaches only have a 

minimal set of soft constraints (this is mainly caused by the 

fact that they wanted to have an easy to implement and 

quick solution [3], [12]. For those which does not have a 

minimal set of soft constraints and used genetic approach, 

this problem is mainly related to their Fitness function [3]. 

But our approach is quite different from other works (as will 

be shown in next sections). We've assumed a large set of 

constraints, both hard and soft. This causes our method to be 

some how complicated, but the results are very promising. 

The wide variety of constraints in our approach makes it 

easy to be used among different universities. 

 

II. TIMETABLING PROBLEM DEFINITION 

Timetabling can both be used in schools and universities. 

Creating a timetable for school is easier than creating a 

timetable for university. A survey which has been done in 

Britain [3], concluded that manually creating a good 

timetable for a school takes at most one day, while manually 

creating a timetable for university may take up to four days. 

After creating a timetable, if some small changes are needed, 

re-creating the timetable is still a hard and time consuming 

task. Timetabling not only can be used for course, but also it 

can be used for exam scheduling as well. Up to here we used 

time timetabling for scheduling courses, but in general, 

according to Wikipedia, “timetabling is an organized list, 

usually set out in tabular form, providing information about 

a series of arranged events: in particular, the time at which it 

is planned these events will take place”. General use of 

timetable may include the following ones. 

1) School timetable, a table for coordinating these four 

elements. 

2) University timetable, quite different from school 

timetables (discussed earlier). 

3) Workplace schedule, a list of employees who are 

working on any given day, week or month in a 

workplace. 

4) Airline timetable, booklets that many airlines 

worldwide use to inform passengers of several 

different things, such as schedules, fleet, security, in-

flight entertainment, food menu, restriction and phone 

contact information. 

5) Public transport timetable, a listing of the times that 

public transport services arrive and depart specified 

locations. 

6) Sport events timetable, a listing of the times that 

different sport teams will play with each other as a part 

of a league or series of matches. 

In this paper we mainly focused on university timetabling. 

However, with some minor changes, our approach can be 

used for any of the other timetabling tasks. 
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A. Constraints 

As mentioned above, there are two types of constraints, 

hard constraints and soft constraints. 

B. Hard Constraints 

Keeping in mind all of related works, a set of hard 

constraints can be concluded as the following list. 

1) There shouldn’t be more than one scheduled course to 

be held in one class at the same time (class 

interference). 

2) A professor cannot have two different courses at the 

same time (professor interference). 

3) Some facilities are required by some courses, these 

critical facilities should not be violated. E.g. some 

courses needs to take place in some special classes, 

such as labs. 

4) Groups of students which are in the same semester 

should not have two courses simultaneously. 

5) Classes have a limited count of seats. 

6) Professors cannot attend classes at some predefined 

times. 

7) Classes should not be used in some pre-defined times. 

There is not a global agreement about hard constraints in 

literature, while some works assume some constraint to be 

hard constraint, others may assume it soft. But the above list 

is assumed to be the list of hard constraints in our approach. 

C. Soft Constraints 

A comprehensive list of soft constraints can be concluded 

as the following list. 

1) Minimizing the time-gaps in each professors timetable. 

2) Minimizing the time-gaps in student groups timetable. 

3) Minimizing or maximizing the count of days students 

attend university. (This policy differs between 

universities.) 

4) Minimizing or maximizing the count of days 

professors attend university. (This policy differs 

between universities.) 

5) Maximum and minimum hours a professor can teach 

different courses in a single day. 

6) Maximum and minimum hours that a student can have 

courses in a single day. 

7) Some professors prefer not to have classes in some 

certain hours (if possible and not obligatory). 

8) Some courses prefer to have some facilities in classes 

(such as video/data projectors) if possible (and not 

obligatory). 

 

III. RELATED WORK 

Creating a feasible timetable can be done in a number of 

ways which can be grouped as following [1], [3], [4], [12]. 

1) Graph coloring 

2) Clustering  methods 

3) Constraint based methods (e. g. integer  programming) 

4) Meta heuristic methods (e. g. genetic algorithms, 

simulated annealing, Tabu search and ants colony) 

Most of the approaches have limited the constraints to 

gain a quick and good result. Although their approach is fast 

and easy to implement, but cannot be used is real situation 

where there are too many constraints that in some cases are 

very different from one university to another. Some of the 

approaches are discussed below. 

A.  Genetic Algorithm 

In [6], [7], [13], [14] each day of week is divided into six 

90 minutes gaps. Each week has five working days. The 

day/time gaps are enumerated as:  

mon1, mon2, …, mon6, tue1, tue2, …, fri6 

Classes are defined by symbol C and cC maximum 

number of students is defined. Set T is the set of all 

professors and set R is the set of all classrooms. L denotes 

the set of courses and lL, course type, professor and class 

type is defined. To make things easier, only a few hard and 

soft constraints are defined in most of the approaches [6], 

[7], [13], [14]. 

B. Chromosome Representation 

         

f (c, t, l, r, p) = 1 if and only if for class c, professor t and 

course l, class r and date/time gap p is a feasible schedule. 

Each gene in this chromosome can be an element of a 5D 

matrix than can hold values 0 and 1 (false and true 

respectively). 

Almost all of other genetic based approaches used the 

same chromosome representation while having only a small 

subset of constraints [6], [7], [13], [14], [15]. 

C. Initial Population 

Generating initial population is done by selecting an 

random course from course list, then trying to assign it to a 

class in a random day/time gap (the professor is already 

defined in the course) [6], [7], [13], [14]. In this case only 

hard constraint is checked and all of the soft constraints are 

ignored. 

In different works, different initial population size is 

defined. But most of them are between 10 and 40 [12]. 

D. Fitness Function 

Evaluation of a chromosome's fitness value is done by 

using something similar to this function [6], [7], [13], [14]: 

𝑒𝑣𝑎𝑙 𝑓 =  
1

1 + 𝑐𝑜𝑠𝑡 𝑓 
 

where cost(f) is the values of violating soft constraints and is 

calculated as: 

𝑐𝑜𝑠𝑡 𝑓 =  𝑛𝑖 𝑓 × 𝑤𝑖

𝑡

𝑖=1

 

where t is the count of soft constraints, ni(f) is the penalty of 

violating soft constraint i and wi is its weight. 

E. Mutation 

For mutation, a timetable named f is selected, an integer 

number m and a set   P containing m day/time gap is 

selected randomly and set L (f; ) is created. Mutated 

timetable f’ is created with assigning new day/time gaps or 

classrooms to  cutout. 
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In these approaches [6], [7], [13], [14] each chromosome 

is represented as:

f: C  T  L  R  P  {0, 1}



 

F. Cross-Over 

Two timetables f and g are selected as parents and their 

child is created as: each course, day/time and class is 

selected from its parent, cC there exists a set c  P from 

day/time gaps, for which its timetable is described as below: 

𝑕 𝑐, 𝑙, 𝑟, 𝑝 =   
𝑓 𝑐, 𝑙, 𝑟, 𝑝      𝑖𝑖𝑓 𝑝 ∈  𝜋𝑐

𝑔 𝑐, 𝑙, 𝑟, 𝑝                 𝑒𝑙𝑠𝑒
  

G. Selection 

Tournament and elitism are preferred over other selection 

methods. Elitism ensures that the best timetable will survive 

in each generation. 

 

IV. PROPOSED APPROACH 

As mentioned earlier, other approaches have some 

limiting assumptions that makes those approaches unusable 

in real situations where there are too many different (and 

sometimes opposite) constraints being held among different 

universities. So a good approach which satisfies different 

needs of different universities does not exist. Our aim is to 

create a state-of-the-art method for timetabling university 

courses, having a robust and flexible algorithm which 

satisfies different (and sometimes opposite) needs of 

different universities. 

A. Chromose Representation 

Our chromosome has a simple implementation. Each gene 

is consisted of four fields: Course ID which identifies the 

course and its professor is the main member of the gene; the 

other three remaining fields are class ID, day and time ID. 

These three fields are filled after timetabling task is done. 

To clarify things, we divided each day of week into different 

time gaps, which has a day ID and a time ID. 

B. Initial Population 

Our approach for creating the initial population includes 

these steps. First we order the list of the professors, busiest 

professors at top of the list. Then we start by selecting the 

busiest professor, choose courses which should be offered 

by him. For each course which should be offered by him, we 

select a list of classes that meets the facilities required by 

that course. Then we randomly select a day and time for this 

course. After selecting class, day and time, we check the 

hard constraints so that we do not violate them. If this gene 

is okay, we continue with the next course of the current 

professor and continue this task until all of the professors in 

the list are visited. If, at any stage of this process, we find 

out that we cannot continue, we simply discard and continue 

from the beginning. Using this method, we create an initial 

population of size 20 which are all feasible timetables. 

C. Cross Over 

For cross-over we used a PMX operator. First we select 

two chromosomes as parents, then select two random cross 

points, genes between two cross points remain the same in 

each chromosome, others which does not create an invalid 

chromo- some are swapped between chromosomes, and 

those which causes the chromosome to be invalid, are not 

swapped. Up to here we may have two complete 

chromosomes or may be some chromosomes which all of 

the genes are not present. For missing genes, we fill the 

values of class ID, day and time ID using the method 

discusses in previous section (busiest professor first). After 

doing this step, we have two off-springs. We add them to 

our population. 

D. Mutation 

A chromosome is randomly selected as the candidate for 

mutation. Then one of its gene's is selected randomly and 

the value of class ID, day and time ID is cleared for this 

gene. Then we re-schedule this gene (course). 

E. Fitness Function 

Our fitness function is as below: 

𝑓𝑚𝑖𝑛  𝐶 =   𝑊𝑖 × 𝑉𝑖(𝐶)

𝑛

𝑖=1

 

where n is the number of soft constraints and Wi is some 

constant weights that serve as a kind of penalty for violating 

soft constraints and their values are tuned after different 

experiments. Vi () is the function for evaluating the value of 

violating penalty from soft constraint i. 

F. Selection 

We used tournament and elitism as selection method. 

Elitism ensures that each elite chromo- some in different 

generations will survive in the next generation. The size of 

our population does not change during the evaluation 

process. As said earlier, during each step of the evaluation 

process, all of the chromosomes are valid and feasible ones. 

If, for any reason, during each of the steps described above, 

a chromosome becomes invalid, the process is interrupted 

and restarted from the beginning. If this cycle continues 

more than three times for an individual chromosome, the 

process is restarted from the very beginning. This has a very 

great impact on our approach as will be shown in the results 

section. 

 

V. EXPERIMENTS AND RESULTS 

Working with real data in real situation was our goal. So 

we used the real data from the Department of Computer 

Science, Faculty of Mathematical Sciences, University of 

Tabriz. We've entered the raw data for two semesters 

(courses being offered with their corresponding professors). 

Our implementation which is developed in C# used a forge 

NET framework for representing chromosomes, generations 

and processing the evolution. We ran our tests on a dual 

core 2 GHz CPU with 2 GB of RAM. 

The total number of courses to be scheduled was 52. 

Manually timetabling these courses takes about three days. 

When we applied our evolutionary method for solving this 

problem, the results are as shown in Table I. We ran our 

tests ten times and have the average results written. This 

causes to have a minimal error rate. 

The results show that an initial population of count 20 is 

enough to create a reasonable timetable. About generations 

count, 1000 seems to be just fine. The run time for creating 

1000 generations from initial population of count 20 is about 

17 minutes. Which is very good, compared to manually 

timetabling which normally takes three days. 
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VI. CONCLUSION AND FUTURE WORK 

As is shown in Table II, an evolutionary method for 

timetabling university courses has been proposed. Other 

approaches used different techniques, varying from Tabu 

search, genetic algorithms and ant colony to constraint 

satisfaction. We've based our approach on evolutionary 

computing. We've created a genetic algorithm for solving 

timetabling problem. We've mainly focused on university 

timetabling; however, our approach can be used in other 

timetabling problems as well. Unlike other approaches 

appeared in literature, we've used a wide variety of both 

hard and soft constraints. From the very beginning, we kept 

in our minds that this method will be used in real situation 

serving different needs of different universities. So unlike 

others, we did not have any limiting assumptions. 

We've used C# and together with Forge .NET framework 

to develop our application. We've used real data of our 

department in university to test the method and see how well 

it is working. 17 minutes for creating 1000 generations of 

initial population count 20 is a very promising result (when 

compared to manually timetabling which takes about three 

days). 

Our future work will be parallelizing this approach to 

benefit from other cores of multi-core processors. This will 

certainly shorten the run-time of this method. Parallel 

genetic algorithms will be used in our next implementations. 

Also we’re working to have other termination criteria, 

maybe a compound method concerning generations count 

and something else. 
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