
  

  
Abstract—In this paper, a new smoothing technique on linear 

programming TWSVM formulation is proposed whose solution 
is obtained by solving a pair of dual exterior penalty problems 
as unconstrained minimization problems using Newton method. 
Our approach has the advantage that a pair of matrix equation 
of order equals to the number of input examples is solved at 
each iteration of the algorithm and can be easily implemented in 
MATLAB without using any optimization toolbox. 
Computational comparisons of our proposed method against 
original TWSVM, GEPSVM and SVM indicate that our 
method is not only fast, but also shows good generalization 
performance. 
  

Index Terms—Linear programming, 1-norm support vector 
machines, Smoothing technique, Newton method, Twin support 
vector machines 
 

I. INTRODUCTION 
Support Vector Machine (SVM), introduced by Vapnik 

and coworkers [1], [2], [3], [4] is an excellent kernel based 
tool for binary data classification problems. SVM has played 
an important role in solving problems emerged in pattern 
recognition and machine learning community over the past 
decades because of its novel state of art technique.  

Different from SVMs with two different hyper planes, 
some non hyper planes classifiers such as the generalized 
Eigen value proximal support vector machine (GEPSVM) [5] 
and Twin support vector machine (TWSVM) [6] have been 
proposed recently. TWSVM generates two nonparallel hyper 
planes such that each plane is closest to one of the classes and 
as far as possible from the other class. A fundamental 
difference between TWSVM and SVM is that TWSVM 
solves two small QPPs rather than solving one large QPP as 
in SVM. In terms of generalizations, TWSVM favorably 
compare with SVM and GEPSVM. Recently, some 
extensions have been proposed that includes the least square 
TWSVM [7]-[8], Smooth TWSVM [9], improvements on 
TWSVM (TBSVM) [10], TPMSVM [11], TSVR [12] and 
LTSVR [13]. Finally, on the recent study of 1-norm TWSVM 
the interested reader is referred to [14], [15]. 

To the best of our knowledge, 2-norm distance of residuals 
is sensitive to large errors and therefore less robust in 
comparison to 1-norm, many methods exist in the literature to 
solve 2-norm SVM formulated as a QPP but very little on 
1-norm linear programming SVM. Motivated by the study of 
1-norm SVM problem formulated as a linear programming 
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optimization problem [16] and Smooth TWSVM [9], we 
propose in this work smooth linear programming twin 
support vector machines (SLPTSVM) whose solution is 
obtained, by solving a pair of exterior penalty problems in 
dual as unconstrained optimization problems using 
Newton-Armijo algorithm. To demonstrate the effectiveness 
of the proposed method, we performed numerical 
experiments on a number of interesting real-world datasets 
and compared their results with other SVMs. 

In this work, all vectors are taken as column vectors. The 
inner product of two vectors yx,  in the −n dimensional 

real space nR  will be denoted by: yxt , where tx is the 
transpose of x . Whenever x  is orthogonal to y , we 

write yx ⊥ . For nt
n Rxxx ∈= ),...,( 1 , the plus function 

+x  is defined as:  =+ ix )(  },0max{ ix , where ni ,...,1= . 

The 2-norm of a vector x  and a matrix Q  will be denoted 

by |||| x  and |||| Q  respectively. We denote the vector of 
one’s of dimension m  by e  and the identity matrix of 
appropriate size by I.  

The paper is organized as follows. Section II gives the 
formulation of TWSVM and then gives the proposed 
formulation SLPTSVM problem whose solution is obtained 
by solving a pair of exterior penalty problems in dual as 
unconstrained optimization problems using Newton-Armijo 
algorithm. Numerical experiments have been performed on a 
number of interesting datasets and their results are compared 
with SVM, GEPSVM and TWSVM in Section III. 

 

II. LINEAR PROGRAMMING TWIN SUPPORT VECTOR 
MACHINES 

A. Twin Support Vector Machines 
Suppose that all the data points in class +1 are denoted by a 

matrix nmRA ×∈ 1 , where the thi row n
i RA ∈  and the 

matrix nmRB ×∈ 2 represent the data points of class -1. 
Unlike SVM, the linear TWSVM [6] seeks a pair of 
nonparallel hyper planes: 

     111 )( bxwxf t +=  and 222 )( bxwxf t +=          (1) 

Such that each hyper plane is proximal to the data points of 
one class and far from the data points of other class, where 

RbRwRw nn ∈∈∈ 121 ,,  and Rb ∈2 . The formulation of 
TWSVM can be written as follows: 
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where 0, 21 >CC  are parameters and 21,ee are vectors of 
one’s of appropriate dimensions. It is evident that the idea in 
TWSVM is to solve two QPPs (2) and (3). Each of the QPPs 
in the TWSVM pair is a typical SVM formulation, except 
that not all data points appear in the constraints of either 
problem [6].  

Thus the nonparallel proximal hyper planes are obtained 
from the dual of (2) and (3) by 
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B. Proposed Smoothing Technique on Linear 
Programming Twin Support Vector Machine (SLPTSVM) 
Motivation from the works on exact 1-norm SVMs [16], 

TWSVM [6] and Smooth TWSVM [9], we propose a new 
linear programming TWSVM using smoothing technique by 
formulating a pair of unconstrained minimization problems 
whose solutions can be obtained using fast Newton method. 

For this purpose, first let us consider the linear TWSVM 
problem defined in 1-norm as a pair of minimization 
problems of the form: 
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where A  and B are matrices of sizes nm ×1  and 

nm ×2 respectively, 1e and 2e are the vectors of one’s of 

sizes 1m and 2m respectively. 
Following the approach of Mangasarian [16], we will 

obtain the solutions of the 1-norm TWSVM (5) and (6) by 
converting them into a pair of linear programming problems 
(LPPs) in primal and solving the exterior penalty functions of 
their duals for a finite value of a penalty parameter .θ  

Let ]1[ eAG = , ]2[ eBH = be two augmented matrices 

of sizes )1(1 +× nm and ( )12 +× nm  respectively. Then, 
by setting 
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1
2211 ,;,,, mn RsrRqpqp ∈∈ + and 2

22 , mRsr ∈  
satisfying the non-negativity constraints  

       0,,,,,,, 22112211 ≥srsrqpqp  

The above pair of problems (5) and (6) can be converted 
into the following pair of linear programming twin support 
vector machine (LPTSVM) problems of the form: 
respectively, where e  is the vector of one’s of size ( )1+n . 
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The method of converting the 1-norm linear TWSVM 
formulation defined by (5) and (6) into LPP formulations can 
be extended similarly to its nonlinear version.  

Now we focus on the method of obtaining the solutions for 
both the linear and nonlinear TSVM defined by (7) and (8). 

Using Theorem 1[16], the pair of unconstrained dual 
exterior penalty problems with penalty parameter ,0>θ  
corresponding to the linear problems (7) and (8), defined by 
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are solvable for all 0>θ and further there exists 0>θ such 

that for any ( ]θθ ,0∈  we have: hold, where ),( 11 vu and 

),( 22 vu are the solutions of the minimization problems (9) 
and (10) respectively. 
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For solving the unconstrained minimization problems (9) 
and (10) using Newton-Armijo algorithm, the gradient vector 
and the Hessian matrix of (.,.)kL  should be known. 

However, since the gradient of (.,.)kL  for 2,1=k , which 
can be from (9) and (10) is not differentiable and therefore 
the Hessian matrix of second order partial derivatives of 

(.,.)kL  does not exist in the usual sense. To overcome this 
problem, a generalized Hessian in the sense of [17] may be 
used and the pair of problems (9) and (10) can be solved by 
Newton-Armijo algorithm. 

    In this work we employ smoothing technique where the 
function +x  appearing in (9) and (10) is replaced by an 
infinitely differentiable smooth approximation 
function ),( ηxp , defined by [18]:                                                                            

)),exp(1log(1),( xxxp η
η

η −++=  

In which 0>η  is a parameter, so that the gradient 
vectors and the Hessian matrices of the modified objective 
functions exist and hence Newton-Armijo algorithm can be 
applied. 

Notice that kL2∇ is positive semi-definite matrix of 
order m . Since it is possible that the matrix may be ill 

conditioned and therefore we will use 12 )( −∇+ kLIδ in 

place of inverse of kL2∇ where the regularization parameter 

δ is taken as a very small positive number. 
 

III. ANALYSIS OF EXPERIMENTAL RESULTS  
In order to demonstrate the effectiveness of the proposed 

method, it is tested on cross-plane dataset, David Musicant’s 
NDC Data generator [19] datasets as examples of large 
synthetic datasets and several well-known, publicly available, 
benchmark datasets. We compared their results with SVM, 
GEPSVM and TWSVM. All the experiments were 
performed in MATLAB R2010a environment on a PC 
running on Windows XP OS with 2.27 GHz Intel(R) Xeon(R) 
processor having 3 GB of RAM. The standard SVM was 
solved by LIBSVM [20]. For GEPSVM and TWSVM, 
however, we used the optimization toolbox of MATLAB. In 
all the examples considered, the Gaussian kernel function 

with parameter 0>μ , defined by: for mRxx ∈21,  

)||||exp(),( 2
2121 xxxxk −−= μ , 

is taken. The classification accuracy of each algorithm was 
computed using the well-known tenfold cross-validation 
methodology [21]. 

The optimal values of the parameters were determined by 
performing 10-fold cross-validation on the training dataset, 
where the regularization parameter values CCC == 21  
and the kernel parameter value μ  were allowed to vary from 

the sets }10,...,10,10{ 545 −−  and }2,...,2,2{ 10910 −−  

respectively. Further, we set 5
21 10−==ηη and the penalty 

parameter 1.0=θ . For GEPSVM, the range of δ  was 

allowed to vary from the set }2,...,2,2{ 767 −− . Finally, 
choosing these optimal values, the classification accuracy on 
the test dataset was calculated. 

First, we consider a simple two dimensional “Cross 
Planes” dataset as an example of synthetic dataset. It was 
generated by perturbing the points of two intersecting lines. 
The linear classifiers obtained by our SLPTSVM and the 
standard SVM along with the input data are shown in Fig. 1(a) 
and Fig. 1(b) respectively.  Also we computed the 
classification accuracy for nonlinear classifiers of each 
algorithm for “Cross Planes” and summarized them in Table I. 
The results clearly demonstrate the superiority of 
multi-plane/surface classifiers over the standard SVM. 

Next, we experimented with NDC datasets, generated 
using David Musicant NDC Data generator [19] to get a clear 
representation of how all these algorithms scale with respect 
to number of data points. In all the examples considered, the 
original data is normalized with mean zero and standard 
deviation equals to 1. For experiments with all NDC datasets, 
we fixed penalty parameters of all algorithms to be as 
(i.e., 4

21 2,1,1 −=== μCC ).  
Furthermore, we performed numerical experiments on 

benchmark datasets from UCI repository [22] and compared 
their classifier accuracy with GEPSVM, TWSVM and SVM. 

In all the real-world examples considered, each attribute of 
the original data is normalized as follows: 

     minmax

min

jj

jij
ij xx

xx
x

−
−

=  

where ijx is the (i,j)-th element of the input matrix A , ijx  is 

its corresponding normalized value and 
)(min 1

min
ij

m
ij xx ==  and )(max 1

max
ij

m
ij xx ==  denote the 

minimum and maximum values, respectively, of the j-th 
column of A .  

The size of training and test data, the number of attributes, 
the training time and the accuracy of each algorithm for 
nonlinear classifiers are summarized in Table I. Clearly one 
can observe from Table I, our method SLPTSVM shows 
either better or comparable generalization performance in 
comparison to SVM, GEPSVM and TWSVM. The empirical 
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results further reveal that our proposed iterative algorithm, 
whose solutions are obtained by solving system of linear 
equations, show better generalization performance than 
TWSVM. It is also worth mentioning that our proposed 
algorithm do not require any special optimization packages. 
Our results clearly demonstrate that proposed algorithm is a 
powerful method of solution for classification problems. 

 
TABLE I:  PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH 

SVM, GEPSVM AND TWSVM. TEST ACCURACY AND TRAINING TIME 
WERE USED FOR COMPARISON. GAUSSIAN KERNEL WAS EMPLOYED. BOLD 

TYPE SHOWS THE BEST RESULTS. 

Datasets 
(Train size, Test size) 

SVM 
Time 

),( μC  

GEPSVM 
Time 

),( δμ  

TSVM 
Time 

),21( μCC =  

SLPTSVM 
Time 

),21( μCC =

Cross Planes 
(90×2,40×2) 

97.50 
1.2474 
( )72 2,10  

90.00 
0.1782 
( )59 2,2 −  

97.50 
0.4094 

( )95 2,10−  

97.50 
0.0187 

( )61 2,10−  

     

Ionosphere 
(246×34,105×34) 

93.33 
0.6064 
( )31 2,10 −  

73.33 
1.4843 
( )73 2,2 −  

94.28 
0.1290 
( )13 2,10−  

95.23 
0.1287 

( )15 2,10 −−
 

 

Bupa 
(241×6,104×6) 

64.42 
0.5156 

( )34 2,10 −  

46.15 
1.125 

( )56 2,2−  

64.42 
0.1799 
( )15 2,10−  

71.15 
0.0922 

( )41 2,10 −−
 

 

Votes 
(306×16,129×16) 

96.90 
0.5781 
( )41 2,10 −  

93.02 
1.734 

( )14 2,2 −−  

96.90 
0.1812 

( )75 2,10 −−  

96.90 
0.9234 
( )71 2,10 −  

 

CMC 
(1000×9,473×9) 

75.05 
2.8594 

( )54 2,10 −  

75.05 
40.234 

( )47 2,2 −  

 

74.63 
20.020 

( )25 2,10 −−  

74.84 
5.4641 

( )01 2,10  

Pima 
(537×8,231×8) 

78.78 
0.7031 

( )95 2,10 −  

77.48 
5.7623 
( )51 2,2−  

73.16 
1.6562 
( )01 2,10  

79.22 
4.1232 

( )40 2,10 −  
     

Australian 
(540×14,150×14) 

89.33 
1.6401 

( )51 2,10 −−  

89.33 
5.7812 
( )70 2,2 −  

76.00 
0.8016 

( )45 2,10 −−  

89.33 
4.0654 
( )71 2,10 −  

 

NDC-500 
(500×32,50×32) 

94.00 
0.5407 

( )40 2,10 −  

95.00 
6.2033 

( )43 2,2 −−  

94.00 
0.3139 

( )40 2,10 −  

96.00 
1.0818 

( )40 2,10 −  
     

NDC-1k 
(1000×32,100×32

) 

95.00 
1.3366 

( )40 2,10 −  

97.00 
8.543 

( )43 2,2 −−  

97.00 
2.1347 

( )40 2,10 −  

97.00 
1.9940 

( )40 2,10 −  

 

 
(a) 

 
(b) 

Fig. 1. Classification results of (a) SLPTSVM and (b) SVM for “Cross planes” 
datasets 

IV. CONCLUSION 
In this paper, we propose a new smooth approach for linear 

programming twin support vector machines (SLPTSVM) 
whose solution is obtained, by solving a pair of exterior 
penalty problems in dual as unconstrained optimization 
problems using Newton-Armijo algorithm. The experimental 
results show the generalization of our method is better than 
TWSVM, GEPSVM and SVM. Our SLPTSVM is 
significantly faster than TWSVM in most of the datasets. 
Also, our approach has the advantage that a pair of matrix 
equation of order equals to the number of input examples is 
solved at each iteration of the algorithm and can be easily 
implemented in MATLAB without using commands of 
optimization toolbox. The efficiency of the proposed method 
is demonstrated by experimental results on a number of 
interesting synthetic and real-world datasets.  
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