
  

  
Abstract— Decision tree is a popular classification tool. To 

automatically construct a good decision tree, people have 
introduced entropy as a heuristic for attribute selection to deal 
with the intractable nature of finding an optimal solution with 
regard to the size of a tree. To solve a special kind of decision 
tree construction used in biological taxonomy, we need consider 
polymorphic attributes, against which a single instance may 
hold different values. To properly evaluate polymorphic 
attributes during tree construction, we propose the conditional 
form of a novel ‘entropy’ measure called ‘disconnectivity’ as the 
heuristic. In parallel to the theory of generalized entropy, 
‘disconnectivity’ is also generalized to a family of measures. 
 

Index Terms— cover, decision tree, entropy, polymorphic 
character  
 

I. MOTIVATION 
Our work was originated in trying to answer questions 

about identification key construction from taxonomy 
community. In the following, we will give a general 
background introduction of those specific problems. 

A taxonomist normally collects specimens from the field 
and annotates them afterward. If he considers a specimen as a 
newly found species, he must give it a name following 
internationally defined nomenclature standards [8] [10] [9], 
and must define properties (attribute-value pairs) that 
differentiate it from other species. Theoretically, others can 
use those attributes to identify biological entities in the field, 
laboratory, or classroom. Besides this, to allow users to 
efficiently identify species, a taxonomist or field biologist 
often constructs taxon-by-character matrices (often simply 
“character matrices”), and phylogenies (not our focus in this 
work) and keys based on those matrices. A 
taxon-by-character matrix is a table with columns marked 
with characters and rows marked with species, whose cells 
are the state of the species of the row against the character on 
the column. Identification keys or simply “keys” in fact are 
the decision trees of computer science, in which every 
internal node is a test on some character with each branch 
labeled with a possible state of that character, and every leaf 
marked as a taxon. In table 1 we may have the following 
species by character matrix, which is used as a running 
example in [6]. For this matrix, figure 1 is a possible key for 
those species in those rows. 
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TABLE I.  AN EXAMPLE OF A TAXON-CHARACTER MATRIX 

Species Primary Color Slender Long Bill

Murre White No No

Gray Jay Gray  Yes  No  

Egret  White  Yes  Yes  

Turkey Gray No No 

 
Although it is common for taxonomists to build keys by 

hand, computer-based taxonomic identification tools have 
been adopting well known decision tree induction algorithms 
from computer science since the 1970s with the goal of 
minimizing the average number of steps required to identify a 
taxon.  It has been proved that the problem of the optimal 
decision tree construction is NP-complete [5].  To cope with 
this difficulty, researchers have introduced several heuristic 
measurements to help to approximate the minimal tree, 
among which information gain and Gini index are widely 
used [4]. The idea is that we evaluate partitions of the set of 
taxa, where each partition is based on a character. The 
partition is defined by assigning to a set all the taxa that have 
the same state on that character.  Then we select the character, 
whose corresponding partition has the highest evaluation 
score using the heuristics mentioned above, as a new test 
node of the decision tree, which in turn divides the current set 
of taxa into several subsets, for each of which we can apply 
the same procedure recursively until subsets become 
singletons. 

 
However, for taxonomists there is still one problem that 

needs to be addressed: some taxa may have multiple possible 
values for a character.  Such a character is called 
“polymorphic” by taxonomists. Characters with either of 
those two problems divide the set of taxa under consideration, 
say S, not into partitions but into covers (possibly 
overlapping subsets whose union is S). On covers, a direct 
application of entropy or Gini index will make these two 
measures lose monotonicity with regard to the refinement 
relationship, which we will discuss in the next section. 
Consequently it makes information gain and Gini index not 
appropriate for evaluating those characters during the tree 
construction. To illustrate polymorphic characters, we can 
change the above matrix into the form shown in Table 2. 
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Figure 1.  An example of an identification key. 

 

 

TABLE II.  A TAXON-CHARACTER MATRIX WITH PLOYMORPHICAL 
CHARACTER 

Species Primary Color Slender Long Bill
Murre

Gray Jay 
Egret 
Turkey 

White/Gray 
Gray  
White  
Gray 

No 
Yes 
Yes 
No 

No
No 
Yes 
No 

 
Now ‘Primary color’ will generates two subset {Murre, 

Egret} and {Murre, Gray Jay, Turkey} with overlap 
{Murre}. 

II. POSSIBLE SOLUTIONS FOR POLYMORPHISM 
To discuss possible solutions for polymorphic attributes in 

decision tree construction, we give a real word 
taxon-character matrix in table 3, which shows a diagnostic 
table for 11 common British trees. 

 

TABLE III.  A TAXON-CHARACTER MATRIX FOR  11 COMMON BRITISH TREEFS FROM [11] 

  
Leaf 

Bark texture Flowers 
 
Sexual 
characteristics 

Pinnate, 
lobed, or 
neither 

No. of pairs of 
leaflets 
of leaves or  
per leaf 

Basic Shape 
 

Positions on 
stem 

Whether edges of 
leaves or leaflets 
toothed 

Ash Pinnate   
 

Opposite 
 

Toothed Smooth to 
rugged 

Polygamous 

Beech Neither - Pointed oval Alternate Not toothed Smooth Monoecious 
Birch Neither  Pointed oval 

to triangular 
Alternate Not toothed Smooth Monoecious 

Elder Pinnate 1,2,3,4 - Opposite Toothed Corky Bisexual 
Elm Neither - Pointed oval Alternate Toothed Rough Bisexual 
Lime Neither - Heart-shaped Alternate Toothed Scaling Monoecious 
Oak Lobed - Oblong Alternate Not toothed Rough Monoecious 
Plane Lobed - Heart-shaped Alternate Toothed Scaling Monoecious 
Rowan Pinnate 5,6,7 - Alternate Toothed Scored 

horizontally 
Bisexual 

Sweet 
chestnut 

Neither - Broad lanceolate Alternate Toothed Rough Monoecious 

Sycamore Lobed - Heart-shaped Opposite Toothed Scaling Monoecious 

 

In table 3, we can easily identify some polymorphic 
characters: number of pairs of leaflets per leaf, the texture of 
bark, sexual characteristics of flowers and basic shape of 
leaves. A coded diagnostic table is illustrated in Table 4. 

There are some possible treatments of polymorphic 
characters. One is to generate new states by combining states 
that one taxon may have. For example we can combine two 
states ‘smooth’ and ‘rugged’ to make a new state ‘smooth to 
rough’(the authors of Table3 named this ‘smooth to rugged’) 
for ‘bark texture’ and so Ash will have a distinctive state, 
which removes the overlap. However, in case where one 
taxon may have two or more states for some character as a 
whole, but each individual only presents one of them, the new 
state created by combination makes little sense for 
identification. Moreover, for continuous characters there is 
just no way to create a new state by combining states. So we 
do not think that combining states is a general treatment for 
polymorphic characters. 

The other method to reduce covers generated by a 

polymorphic character to partitions is to divide the taxon with 
multi-states into sub-taxa with a weighting scheme, where we 
associate taxa with values representing their occurrence 
frequency. In fact, people in the taxonomy community have 
been taken the taxon abundance data into account to give 
abundant taxa a short identification path in the constructed 
key [6], although this practice is still controversial. Here if a 
taxon T has n states for a character, we will divide it into n 
sub-taxa (with the same taxon label) and each sub-taxon is 
associated with one of those n states and a weight, which 
represents the appearance frequency of that sub-taxon inside 
taxon T. The main problem with this method is that it is hard 
and sometime impossible to estimate those weights. Another 
problem with this method occurs when a taxon is 
polymorphic on a relatively large number, say m, of 
independent characters, for which this method will generate 
at least 2m sub-taxa and very small weights, which in turn are 
big computational challenges. In the following sections, we 
will give a new method to deal with this problem by 
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introducing some entropy-like measures that are proper to be 
directly applied to covers, and at the end will show some 
experimental results. 

III. COVER AND DISCONNECTIVITY 
First we will formally introduce cover and disconnectivity, 

which will serve as the theoretical foundation of our 
approach. 

Let a universe U be a finite set. A cover Λ   of U is defined 
as a set of subsets of U such that 

{ }U Λ∈=   | CCU
 

A cover 1Λ is a refinement of cover 2Λ if each element 

of 1Λ  is a subset of some element of 2Λ  .  We say a cover 
Λ  is simple if for any two different elements C1 , C2  in Λ  
we don’t have C1  ⊆ C2  or C2  ⊆ C1 . Then we can define a 
partial order on simple covers of a universe by   1Λ   ≺ 2Λ  

iff  1Λ  is a refinement of 2Λ  . We denote all simple covers 
on the universe U as COVER(U ). 

TABLE IV.  TABLE 4: THE CODED TAXON-BY-CHARACTER MATRIX 
FROM [11] 

 
 A B C D E F G
Ash 3 3,4, 

5,6, 
7 

- 1 2 1,2 1,2

Beech 1 - 1 2 1 1 1
Brich 1 - 1,2 2 2 5 1
Elder 3 1,2, 

3,4 
- 1 2 3 2

Elm 1 - 1 2 2 2 2
Lime 1 - 3 2 2 1 2
Oak 2 - 4 2 1 2 1
Plane 2 - 3 2 2 5 1
Rowan 3 5,6, 

7 
- 2 2 4 2

Sweet 
Chestnut 

1 - 5 2 2 2 1

Sycamore 2 - 3 1 2 5 1

Code A 1=not pinnate or lobed, 2=lobed, 
3=pinnate 

C 1=pointed oval, 2=triangular, 
3=heart-shaped, 4=oblong, 5=broad 
lanceolate 

D 1=opposite,2=alternate 
E 1=not toothed,2=toothed 
F 1=smooth,2=rough, 3=corky,4=scored 

horizontally 
 
Definition  3.1. Let Λ  be a cover on U , we define redΛ   =   

Λ  -  {D|D Λ∈ , D ⊂ C f or some C Λ∈ } 

 

It is easy to see that redΛ  is always a simple cover on U. 
 
Definition 3.2. Let 1Λ  , ∈Λ2     COVER(U ), we define              

1Λ   ∧  2Λ   ={ 21 CC ∩  |C1 1Λ∈ , C2 2Λ∈  }
red

 

Theorem 3.3. Let 1Λ  , ∈Λ2  COVER(U ),  then      1Λ   ∧  

2Λ   is the maximal element of those in COVER(U ) that are 

refinements of  both 1Λ   and 2Λ  . 

Definition 3.4. Let 1Λ    ∈   COVER(S) and ∈Λ2 COVER(T), 

where φ=TS I , we define           1Λ  × 2Λ =

{ }221121 ,| Λ∈Λ∈× CCCC  

In the following sections ‘cover’ means simple cover. 

A. Disconnectivity 
 
Definition 3.5.  Let the universe be U, the intolerance set of a  

cover Λ  is defined as ι ( Λ )= {(a, b)|∀C ∈ Λ , a ∉ C or b 
∉  C}, which is composed of all the ordered pairs of  
elements of U that do not both belong to any single element 
of  Λ . 

Then we call |ι( Λ )| the disconnectivity of cover Λ  
(denoted by Disc( Λ )), which is the total number of pairs of 
elements of universe U that are not both contained by any 
member of C. In other words, if we form an undirected graph 
G(V, E) such that V is the universe U and E contains all pairs 
of elements of U that are both contained by some member of 
C, the disconnectivity of cover C is the total number of 0s in 
the corresponding adjacency matrix of G. 

Definition 3.6. We the denote the set {(a, b)|∃C ∈ Λ ,  a∈C 
and b∈C} as τ( Λ ). Then we have ι( Λ ) =U × U - τ( Λ ). 

Theorem  3.7.  Disconnectivity is anti-monotonic with regard 
the partial order ≺ on covers 

Proof: 

Let 1Λ  ≺ 2Λ   and (u1 , u2) be any pair of elements in 

τ( 1Λ ). So u1 a n d  u2 belong to some element C in 1Λ  . Because 

1Λ   is a refinement of 2Λ  , we have a member C0 of 2Λ   

such that C ⊆ C0  and so u1  and u2  are also both contained by 
C0 , which means (u1, u2 ) ∈  τ( 2Λ  ). Now we can conclude 

that τ( 1Λ  ) ⊆ τ( 2Λ ) and ι( 1Λ  ) ⊇ ι( 2Λ ), which means that 

Disc( 1Λ  ) is bigger than that of Disc( 2Λ  ) 

Definition 3.8. Let U be a universe, Λ  a cover on U. We 
define the normalized disconnectivity as NDisc( Λ )= 

2||
)(

U
Disc Λ

. 

B. Examples 
Let the universe be {1, 2, 3, 4, 5, 6} and C1 = {{1, 2, 3}, {3, 

4, 5}, {6}} a cover on it, then the disconnectivity of C1 is 18. 
The vertices of its graph G are {1, 2, 3, 4, 5, 6} and the edges 
are {(1, 2), (2, 3), (1, 3), (3, 4), (3, 5), (4, 5), (1, 1), (2, 2), (3, 
3), (4, 4), (5, 5), (6, 6)} and the adjacency matrix is 
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ۈۉ
ۇۈۈ

1 1 1 0 0 01 1 1 0 0 01 1 1 1 1 00 0 1 1 1 00 0 1 1 1 00 0 0 0 0 1 ۋی
 ۊۋۋ

 
Similarly for cover C2 = {{1, 2}, {3, 4, 5}, {6}}, its 

disconnectivity is 22. Its corresponding adjacency matrix 
looks like 

 

ۈۉ
ۇۈۈ

1 1 0 0 0 01 1 0 0 0 00 0 1 1 1 00 0 1 1 1 00 0 1 1 1 00 0 0 0 0 1 ۋی
 ۊۋۋ

C. Comparison between disconnectivity and GINI index 
Applying disconnectivity to partitions can also measure 

their evenness. Let the universe be {1, 2, 3, 4, 5, 6} and 
partition C1 be {{1, 2, 3}, {4, 5}, {6}}, then the 
disconnectivity of C1 is 22. Its adjacency matrix is 

 

ۈۉ
ۇۈۈ

1 1 1 0 0 01 1 1 0 0 01 1 1 0 0 00 0 0 1 1 00 0 0 1 1 00 0 0 0 0 1 ۋی
 ۊۋۋ

 

For partition C2 = {{1, 2}, {4, 5}, {3, 6}} its 
disconnectivity is 24, which is bigger than C1 because of its 
more even distribution of elements. Its adjacency matrix 

 

ۈۉ
ۇۈۈ

1 1 0 0 0 01 1 0 0 0 00 0 1 1 0 00 0 1 1 0 00 0 0 0 1 10 0 0 0 1 1 ۋی
 ۊۋۋ

 
Theorem 3.9 Let P be a partition of U, then normalized 
Disconnectivity on P is in fact the Gini-index of P. 

 

Proof: 

Let P={ ଵܲ ,   ଶܲ … , ௡ܲ }. Because there is no overlap 
between any two elements of P, we have 

Disc(P)= ∑ ∑ | ௜ܲ| ∗ | ௝ܲ|௡௝ୀଵ,௝ஷ௜௡௜ୀଵ  

=  ∑ | ௜ܲ௡௜ୀଵ |*∑ | ௝ܲ|௡௝ୀଵ  - ∑ | ௜ܲ|ଶ௡௜ୀଵ  

= |ܷ|ଶ- ∑ | ௜ܲ|ଶ௡௜ୀଵ  

 

So the normalized disconnectivity is 

஽௜௦௖(௉)|௎|మ  = 1 - ∑ ቀ|௉೔||௎| ቁଶ௡௜ୀଵ  

 

which is the Gini-inde of P. 

D. Generalized forms 
 
Theorem 3.10 Let  Λ  = { }nBBB ...,, 21 be a cover of S , we 

have  |τ ( Λ )| = 

2

1

122 ||)1(...|||| I
n

i
i

n
jii BBBB

=

+−+∩−∑∑  

 

It follows immediately from the above theorem that       
NDisc( Λ ) = 

2

1

22

||

||
)1...(

||
||

||
||

1
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∩
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛− =∑∑ S

B

S
BB

S
B

n

i
i

njii
I

 

Definition  3.11. With the above observation and the form of 
generalized entropy for partitions [1], we propose a 
generalized formula for cover: 

NDisc β ( Λ ) = 

 
 

When β = 1, we have 1 − 21−β = 0 and  

  

Calculating the limit when β → 1, we get  NDisc 1 ( Λ ) = 

 
To apply disconnectivity to decision tree induction we 

need its conditional form:  

Definition 3.12. Let 21 ,ΛΛ  be two covers in COVER(S), we 

define the conditional disconnectivity as NDiscβ( 21 | ΛΛ ) =     

NDiscβ( 1Λ ∧ 2Λ ) - NDiscβ( 2Λ ) 

It should be noticed that NDisc2 and NDisc1  become 
Gini-index and Shannon entropy respectively when they are 
applied on partitions. 
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IV. EXPERIMENT 

With normalized disconnectivity and its conditional form, 
we are ready to substitute Shannon entropy and conditional 
entropy with them respectively in evaluating (polymorphic) 
characters during decision tree construction.  

To compare those two methods, entropy-division 
(entropy-based key construction after dividing taxa on 
polymorphic characters in a taxon-by-character matrix) and 
NDsicβ method (disconnectivity-based key construction on 
the original matrix), we conducted experiments on three 
taxon-by-character matrices. Two of them are from research 
cited at www.hydrophiloidea.org. We designate these as 
Dataset1 and Dataset2, arising, respectively from [3] and [2].  
The third matrix, which we denote Dataset3 is from a study 
on www.nature.com, and is taken from a supplementary 
document of [1]. Table 5 shows some basic properties of 
those datasets 

For the entropy-division method, we first transformed 
those three matrices into matrices without polymorphism, 
which we take as input to Weka [7] to generate the key with 
J48 (the Java variant of the C45 algorithm). The comparison 
is focused on sizes of constructed keys, which is shown in 
Table 4.Here the tree size is measured by the sum of depths of 
its leaves and the average depth of those leaves. 

From Table 6 we can see that we got smaller keys for all 
three datasets by using Disconnectivity-based methods than 
by using entropy- division. An interesting observation is that 
the number of leaf nodes in keys generated by the 
entropy-division method is the same as the original number 
of taxa in all three cases.  In contrast, for Dataset1 and 
Dataset3 NDisc-based methods generate keys with more 
leaves than the corresponding original number of taxa. This 
means that N Disc-based methods use some polymorphic 
characters in those key constructions and result in smaller 
trees, but the entropy-division method doesn’t. This 
illustrates that N Disc-based methods can better identify good 
characters among a mix of polymorphic and 
non-polymorphic characters. To assess the evaluation ability 
of entropy division method among polymorphic characters, 
we removed 40 characters in Dataset1 to force the 
entropy-division method to use some polymorphic characters. 
The result is shown in Table 7 where NDisc-based methods 
still have clear advantage as measured by tree depth, but often 
at little or no cost of extra leaves and even though 
entropy-division is forced to use polymorphic characters. 

V. CONCLUSION 
In this paper, we have presented an entropy-like 

measurement, Disconnectivity, for covers and developed its 
theory in parallel to the theory of generalized entropy on 
partitions. Our advance, a generalized measure to covers, 
includes the representation as one parameter family of 
functions, and generalized conditional form. In the end, we 
have demonstrated the application of this measure on 
decision tree construction on polymorphic characters.  We 
believe that for problems, where cover is the natural model 
and refined statistical model is not available, disconnectivity 
and its derived form are valuable heuristics. 

TABLE V.  PROPERTIES  OF THE  EXPERIMENTAL D ATASETS 

 

TABLE VI.  COMPARISON OF THE DIVISION-BASED METHOD 
AND THE DISCONNECTIVITY-BASED METHOD 

 

TABLE VII.  COMPARISON OF THE DIVISION BASED METHOD AND THE 
DISCONNECTIVITY-BASED METHODS ON DATASET1 WITH REDUCED 

CHARACTERS 
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Measurement Tree Construction Method
Entropy-Division N Disc1 NDisc2

Sum of Depth 163 129 127
Average Depth 5.26 3.79 3.74
Number of Leaves 31 34 34

Measurement Dataset Tree Construction Method
Entropy-Division N Disc1 NDisc2

Sum of Depth
1 
2 
3 

156 
71 

289 

117 
56 

207 

123 
54 

228 

Average Depth
1 
2 
3 

5.03 
3.38 
5.56 

3.55
2.67
3.76

3.62
2.57
3.35

Number of 
Leaves 

1 
2 
3 

30 
21 
53 

33 
21 
55 

34 
21 
68 

 Dataset1 Dataset2 Dataset3
Original Number of taxa 
Number of Characters 
Number of Polymorphic Characters 
Number of taxa after the division 

30 
121 
36 
1041 

21 
157 

4 
158 

53 
218 
65 

17153 
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