

Abstract—Sequence alignment is one of the methods widely

used to determine string similarity. It computes similarity by
aligning the component characters a string, and summing the
similarity scores of pairs of matched characters. Using an
appropriate character similarity measure is important when
performing the alignment-based similarity calculation, since the
string similarity is highly depending on the character similarity.
In this paper, we focus on the character similarity learning
process for string classification, particularly for when one set of
strings that belong to the same class is given. Our method uses
the matching frequency to calculate the character similarity.
The performance of the method is also demonstrated by
experimental evaluation.

Index Terms—Character similarity, string classification,
sequence alignment, scoring matrix.

I. INTRODUCTION
In information processing, it has been a challenge dealing

with errors possibly included in given data [1], [2].
Particularly with strings, errors usually arise by typos and
misspellings [3]. In character or speech recognition,
misrecognized results occur due to the system accuracy [4].
Moreover, swear filters [5], spam filters, and plagiarism
detection [6], [7] should consider even intentional errors
generated to avoid such systems.

Measuring the similarity is important for dealing with such
errors in data. We can calculate the similarity between a
given input and strings in a pre-existing database. We can
make the system robust to errors by replacing the input with
the most similar example from the database.

In this sense, sequence alignment can be used for
measuring the similarity of strings [8]. It was originally
developed to find similar biological sequences, and it gives a
score and its corresponding arrangements of two strings.
Moreover, it can be directly applied to general strings, since
biological sequences belong to one specific type of strings.
Thus, we can use the sequence alignment to measure the
string similarity, and to determine whether given strings are
identical to each other by checking the score returned from
the sequence alignment.

Sequence alignment is a general scheme for measuring
string similarity, and is instantiated by the scoring scheme. A

Manuscript received October 15, 2012; revised December 29, 2012. This

work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MEST) (No.2012-0005518).
Corresponding should be addressed to Hwan-Gue Cho
(hgcho@pusan.ac.kr).

Sung-Hwan Kim, Chang-Seok Ock and Hwan-Gue Cho are with Dept. of
Computer Engineering, Pusan National University, Busan, South Korea
(e-mail: sunghwan@pusan.ac.kr; csock@pusan.ac.kr; hgcho@pusan.ac.kr).

scoring scheme is an objective function, and is usually
defined by a matrix whose rows and columns indicate each
character, with elements of matched scores of corresponding
characters. This character similarity of the scoring scheme
indicates which characters are very similar and
interchangeable, and is directly connected to the string
similarity. Therefore, it is important to choose a scoring
scheme that has appropriate character similarities, in order to
properly determine the string similarity.

However, manual setting character similarities involves
substantial effort as the size of the alphabet over which
strings are defined increases. Moreover, manual setting may
lead to an insufficient scoring scheme that does not
sufficiently reflect the actual character similarity.

In this paper, we present a learning method for character
similarity, which takes a set of similar strings and gives a
matrix that has an appropriate character similarity scheme.
Our method counts the relative frequency of matched
characters to distinguish interchangeable character pairs and
assign high scores to them. We also show the performance of
our proposed method empirically.

II. SEQUENCE ALIGNMENT
Sequence alignment is an arrangement of strings used to

maximize the value of the objective function, which is
usually defined by the sum of pairs of the corresponding
characters derived from the arrangement. Fig. 1-(a) shows an
example of sequence alignment where the objective function
is defined by the character similarity in Fig. 1-(b).

Fig. 1. An example of sequence alignment.

The sequence alignment of two strings may not be unique.

As depicted in Fig. 1, there can be more than one
arrangement that maximizes the value derived from the
objective function. Nevertheless, the similarity score is
unique, so we can use it as a similarity measure without any
problems.

Sequence alignment can be represented in a recursive form,

Construction of Adaptive Scoring Matrix Using Similar
Strings as a Training Set

Sung-Hwan Kim, Chang-Seok Ock, Jong Kyu Seo, and Hwan-Gue Cho

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

112DOI: 10.7763/IJMLC.2013.V3.283

and it can be derived by solving the following dynamic
programming equation:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

++
+
+

=

⋅+=

⋅+=

=

−

−

−−

−

−

),(
),,(

),,(
max

),(
),(

0

1,

,1

1,1

,

1,0,0

0,10,

0,0

jji

iji

iiji

ji

jjj

iii

yM
xM

yxM
M

yjMM
xiMM

M

εσ
εσ

σ

εσ
εσ

 (1)

where ε is the gap character and σ is the character similarity
function.

Fig. 2 shows the dynamic programming matrix for the
sequence alignment of two strings, "aaabb" and "aab," with
σ(α,β)=1 if α=β, and -1 otherwise . The similarity score is the
value in the last column of the last row. The corresponding
arrangements can be obtained by back-tracking the paths that
earn the scores making the final value.

Fig. 2. Dynamic programming matrix for sequence alignment.

III. RELATED WORK
As mentioned in Section II, the similarity score obtained

from the sequence alignment is highly dependent on the
given character similarity, which is used for the unit score of
the objective function. Therefore, defining a good character
similarity scheme is an important task for the similarity
calculation using the sequence alignment to derive an
appropriate similarity relationship between strings.

In bioinformatics, several scoring schemes have been
addressed to identify similar biological objects such as DNA
and protein sequences [8]. For example, PAM is one of the
representative examples for the character similarity schemes.
It takes a parameter k as the number of evolution units, which
represents the evolutionary distance between sequences. For
example, from a PAM matrix with k=1, the character
similarity is calculated as follows:

∑ ∑
≠

⋅=

i ij
fpp

f

)(
),()()(100

),(log10),(
βαβα

βαβασ (2)

where p(α) is the probability that character α appears, and
f(α,β) is the frequency that characters α and β match each
other.

However, this scoring scheme is specialized for biological
sequences, and uses input data obtained from the ungapped
local alignment, which finds similar substrings without gaps,
from relatively long sequences. When dealing with words in
natural languages, gaps are so essential that these methods
cannot be directly applied.

IV. MATCHING FREQUENCY
As mentioned above, our method computes the character

similarity from the relative frequency of matched character
pairs. Higher scores are assigned to characters that match
very frequently in the sequence alignment. The matching
frequency is obtained by aligning all pairs of strings in the
given database for learning. Thus, in this section, we discuss
how to count the matching frequency from an alignment of
two strings.

Backtracking on the dynamic programming matrix is a
straightforward solution to count the frequency of character
matches. Fig. 3 shows this method. From the last column of
the last row, we can trace the path to the first column of the
first row and update the count table for character matches for
each visited node on the path.

Fig. 3. Counting character matches with backtracking the matrix.

However, when we use the backtracking method, we have

to consider the case that more than one arrangement exists. In
this case, we have to enumerate all possible paths and count
every pair of matched characters that appear on each path
with an equal weight. Moreover, if there are consecutive gaps
and mismatches, as described in Fig. 4, a number of possible
arrangements are involved. In such cases, backtracking
becomes time-consuming and costly.

Fig. 4. An example of a case that involves a number of possible arrangements

as the result of sequence alignment.

To accumulate the matching frequency on the alignment

matrix without backtracking, which is possibly a very
substantial task, we use a combinatorial approach. First, we
construct a graph, the vertices of which correspond to each
element of the alignment matrix, with each edge representing
a match, mismatch, or gap. Two vertices are connected only
if there is a match, mismatch, or gap. The start vertex is
defined by the one associated with the first column of the first
row, and the end vertex is the one associated with the last
column of the last row of the matrix. Fig. 5 shows a graph
representation of the sequence alignment matrix used in Fig.
4. The graph is direct, and the orientations of edges
correspond to how the sequence alignment proceeds.
Additionally, each edge indicates a (mis)match or gap

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

113

according to its direction.

Fig. 5. Graph representation of sequence alignment matrix in Fig 4.

Then, for each vertex, we can compute the number of paths

from the start vertex to the end vertex that pass the node. The
ratio of this number to the total number of paths represents
the portion of the characters that the corresponding vertices
occupy.

To compute the number of paths that pass a specific vertex,
we separately calculate the number of paths from the start
vertex to the target vertex (referred to as forward paths), and
those from the target vertex to the end vertex (referred to as
backward paths). The product of these numbers is the same as
the number of paths that we finally want to obtain.

Before presenting a more detailed explanation of the
calculation process, we define the relation a→b of two
vertices if there is an edge from vertex a to vertex b.

Fig. 6. Calculation of the number of forward paths.

Fig. 6 shows the process to calculate the number of

forward paths from the start vertex to the target vertex.
Starting with assigning 1 to the start vertex, for each vertex v,
the values of all u such that u→v are accumulated. More
formally, the number of forward paths for vertex v is defined
as follows:

1)(=sF (3)

∑
→

=
vu

uFvF)()((4)

where s is the start vertex.
Similarly, the number of backward paths from the target

vertex to the end vertex is computed as described in Fig. 7.
Starting by assigning 1 to the end vertex, the values of all the
connected vertices are accumulated, but in this time, we sum
the values of all u such that v→u to obtain the value for vertex

1)(=eB (5)

∑
→

=
uv

uBvB)()((6)

where e is the end vertex.

Fig. 7. Calculation of the number of backward paths.

Note that the number of forward paths of the end vertex is

the same as that of the backward paths of the start vertex.
This is also exactly the same as the number of possible
optimal arrangements for the sequence alignment. We denote
this total number of paths from the start vertex to the end
vertex by T:

)()(sBeFT == (7)

To accumulate the matching count of characters α and β,

we first have to compute the number of paths that pass a
specific edge (u,v) that indicates (mis)match of the characters
α and β. We denote this by N(u,v), which is directly
calculated from the product of the number of forward paths
for u and that of backward paths for v:

)()(),(vBuFvuN ⋅= (8)

Fig. 8. Edges that indicate character match A(a,a).

Let A(α, β) be the set of all edges that represent the

(mis)match of characters α and β (see Fig. 8). To compute the
matching frequency m(α, β) for characters α and β, we take
the sum of N(v) for all (u,v)∈A(α, β) as m(α, β):

∑
∈

=
),(),(

),(),(
βα

βα
Avu

vuNm (9)

Now we have the probability p(α, β) that characters α and

β match as the ratio of the matching frequency m(α, β) to the
total number of paths T:

T
mp),(),(βαβα = (10)

In other words, p(α, β) is the frequency of matches

between characters α and β for a given pair of strings. In the
following section, we use this to compute the final character
similarity of α and β.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

114

V. SIMILARITY CALCULATION
In this section, we derive the character similarity using the

results of the previous section. As mentioned above, the
sequence alignment finds the arrangements that maximize the
score of the objective function. This maximum score is the
similarity score, and it is usually defined by the sum of the
character similarity σ(α, β). If we rewrite σ(α, β) as the
logarithm of another function τ(α, β), finding the optimal
alignment can be interpreted as the maximization of the
product of τ(α, β).

Under the assumption that each edit operation is performed
independently, including insertion, deletion, and substitution
of a character, the product of τ(α, β) can give the odds for the
whole sequences if τ(α, β) gives the odds that α and β match
in strings in the same class with that in any randomly selected
strings. Therefore, it is reasonable to use the character
similarity σ(α, β) as the logarithm of the odds of matching
events.

Let pS(α, β) be the probability that characters α and β match
when we align two strings in set S. This can be obtained by
parameterization of p(α, β) such that it takes two strings x and
y. We denote the parameterized p(α, β) by p(α, β; x, y), where
x and y are given strings. It represents the probability that
characters α and β match when strings x and y are aligned.
We can then define pS(α, β) more formally as follows:

∑
∈

=
Syx

S yxp
S

p
,

2),;,(1),(βαβα (11)

Finally, we have the similarity of characters α and β as the

logarithm of the ratio of the probability pS(α, β) that the
characters match between strings in the set S of similar
strings to the random chance φ(α, β):

C
CpS

+
+

=
),(
),(

log),(
βαϕ
βαβασ (12)

The constant term C is a small positive number, in order to

avoid both dividing by zero and taking the logarithm of zero.
For the efficiency of computation in the sequence alignment,
the character similarity can be scaled and subjected to the
floor function to make it an integer.

The random chance φ(α, β) that characters α and β match
can be computed by a combinatorial method or Monte Carlo
simulation. In the experiments of the following section, we
use the latter for an intuitive and simple implementation,
which is equivalent to pR(α, β) where R is the random strings.

VI. EXPERIMENTAL EVALUATION
The dataset used in the experiments is synthetic string sets

generated by the following steps: (i) a string is chosen as the
seed in a random manner and inserted into the dataset; (ii) a
random symmetric matrix is generated, each of whose
elements indicate the substitution probability between its
corresponding character pair; and (iii) choosing a string from
the dataset is repeated in a random manner and a random edit
operation is performed according to the probability matrix.

(a) Levenshtein distance matrix

(b) Scoring matrix derived from the proposed method

Fig. 9. Distribution of the maximum similarity scores with respect to two

different scoring matrices and different sets.

We generate two sets of 1K strings from the same seed.

One set is used for training, the other for evaluation. We also
use the randomly generated sets without any skewed
probability setting to obtain φ(α, β) and evaluate the
performance.

We determine whether a given string is included in the
pre-determined class by checking the maximum similarity
score against the set of known strings. Fig. 9 depicts the
distribution of the maximum similarity scores with respect to
the scoring matrix and string sets. Dashed lines indicate the
score distribution for the random set, and solid lines represent
that for the set of strings in the class.

The Levenshtein distance can be represented as a matrix in
which all elements are -1, but those on the diagonal are 0.
Sequence alignment using this matrix returns the
Levenshtein distance with a negative sign. Fig. 9-(a) shows
the distribution of the Levenshtein distance. We can easily
observe that the range is too narrow and the overlapped area
is substantial. In contrast, the distribution derived from our
proposed scheme has a wider variance and relatively small
overlapped portion. This means that our method would
perform well for string classification.

We also evaluate the performance of our proposed method
for string classification in terms of the sensitivity and
specificity, which are defined as follows:

TPFN
TPySensitivit
+

= (14)

TNFP
TNySpecificit
+

= (15)

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

115

 Fig. 10. The performance comparison between the proposed method and the

levenshtein distance for classification.

Fig. 10 shows the performance of our method comparing
against the Levenshtein distance. It is observed that our
method outperforms the Levenshtein distance for string
classification. When the sensitivity is 90%, the specificity of
our method is above 0.92, while that of the Levenshtein
distance is only 0.671.

VII. CONCLUSIONS
We have presented a new construction method of the

scoring scheme for sequence alignment. Our method counts
the relative frequency of matched characters relative to
random chance, and computes the similarity score as its
logarithm. We have demonstrated the performance of our
method by comparing against the Levenstein distance in
terms of sensitivity and specificity. The notable contributions
of our study are summarized as follows:

• We have presented several combinatorial methods to
calculate the number of paths on the sequence
alignment matrix. It is useful to compute the matching
frequencies of characters.
• Based on this, we have also presented a probabilistic

model to construct the scoring matrix from a given set
of strings that are included in the same class.
• Our method outperforms the Levenshtein distance by

about 0.3 in terms of the specificity when the
sensitivity is 0.9.

We have also observed several aspects to be further
improved upon as follows:

• More extensive experiments on real datasets and other
synthetic datasets with various configurations are
necessary.
• We used a set of random strings to obtain φ(α, β), the

random chance that characters match. We will
discover various cases where additional
characteristics are imbued on the string set.
• We expect that our method can be extended to much

more general cases with complex character sets. If
possible, it can be applied to much broader fields,
such as information retrieval and data compression.

• We used only the global sequence alignment that
arranges the whole strings. Local sequence alignment
that finds similar substrings can be considered as an
extension of our method.

REFERENCES
[1] G. Navarro, “A guided tour to approximate string matching,” ACM

Computing Surveys, vol. 33, no.1, pp. 31-88, 2001.
[2] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marroquin,

“Searching in metric spaces,” ACM Computing Surveys, vol.33, no.3,
2001.

[3] H. Duan and B.-J. Hsu, “Online spelling correction for query
completion,” in Proc. of WWW, 2011, pp.117-126.

[4] J. Droppo and A. Acero, “Context dependent phonetic string edit
distance for automatic speech recognition,” in Proc. of IEEE ICASSP,
2010, pp. 4358-4361.

[5] T.-J. Yoon, S.-Y. Park, and H.-G. Cho, “A smart filtering system for
newly coined profanities by using approximate string alignment,” in
Proc. of IEEE CIT, 2010, pp. 643-650.

[6] J. P. Kumar and P. Govindarajulu, “Duplicate and near duplicate
documents detection,” Journal of Discrete Algorithms, vol. 13, pp.
32-46, 2012.

[7] S.-Y. Park, S.-Y. Kim, S.-H. Kim, and H.-G. Cho, “A global dictionary
based approach to fast similar text search in document repository,” in
Proc. IEEE CIT, 2011, pp. 526-532.

[8] J. Setubal and J. Meidanis, Introduction to Computational Molecular
Biology, PWS Publishing Company, 1997.

Sung-Hwan Kim is a M.S student in Pusan National
University. He received the B.S. degree from Pusan
National University. His research interests are
information retrieval and string processing.

Chang-Seok Ock is a M.S. student in Pusan National
University. He received the B.S. degree from Pusan
National University. His research interests are
information retrieval, human-computer interaction, and
computer graphics.

Jong Kyu Seo is a M.S student in Pusan National
University. He received the B.S degree from Pusan
National University. His research interests are
information retrieval and string processing.

Hwan-Gue Cho is a Professor in Pusan National
University. He received the B.S. degree from Seoul
National University, Korea, and the M.S and Ph.D.
degrees from Korea Advanced Institute of Science and
Technology, Korea. His research interests are computer
algorithms and bioinformatics.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

116

