
  

  
Abstract—Sequence alignment is one of the methods widely 

used to determine string similarity. It computes similarity by 
aligning the component characters a string, and summing the 
similarity scores of pairs of matched characters. Using an 
appropriate character similarity measure is important when 
performing the alignment-based similarity calculation, since the 
string similarity is highly depending on the character similarity. 
In this paper, we focus on the character similarity learning 
process for string classification, particularly for when one set of 
strings that belong to the same class is given. Our method uses 
the matching frequency to calculate the character similarity. 
The performance of the method is also demonstrated by 
experimental evaluation. 
 

Index Terms—Character similarity, string classification, 
sequence alignment, scoring matrix. 
 

I. INTRODUCTION 
In information processing, it has been a challenge dealing 

with errors possibly included in given data [1], [2]. 
Particularly with strings, errors usually arise by typos and 
misspellings [3]. In character or speech recognition, 
misrecognized results occur due to the system accuracy [4]. 
Moreover, swear filters [5], spam filters, and plagiarism 
detection [6], [7] should consider even intentional errors 
generated to avoid such systems. 

Measuring the similarity is important for dealing with such 
errors in data. We can calculate the similarity between a 
given input and strings in a pre-existing database. We can 
make the system robust to errors by replacing the input with 
the most similar example from the database. 

In this sense, sequence alignment can be used for 
measuring the similarity of strings [8]. It was originally 
developed to find similar biological sequences, and it gives a 
score and its corresponding arrangements of two strings. 
Moreover, it can be directly applied to general strings, since 
biological sequences belong to one specific type of strings. 
Thus, we can use the sequence alignment to measure the 
string similarity, and to determine whether given strings are 
identical to each other by checking the score returned from 
the sequence alignment. 

Sequence alignment is a general scheme for measuring 
string similarity, and is instantiated by the scoring scheme. A 
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scoring scheme is an objective function, and is usually 
defined by a matrix whose rows and columns indicate each 
character, with elements of matched scores of corresponding 
characters. This character similarity of the scoring scheme 
indicates which characters are very similar and 
interchangeable, and is directly connected to the string 
similarity. Therefore, it is important to choose a scoring 
scheme that has appropriate character similarities, in order to 
properly determine the string similarity. 

However, manual setting character similarities involves 
substantial effort as the size of the alphabet over which 
strings are defined increases. Moreover, manual setting may 
lead to an insufficient scoring scheme that does not 
sufficiently reflect the actual character similarity. 

In this paper, we present a learning method for character 
similarity, which takes a set of similar strings and gives a 
matrix that has an appropriate character similarity scheme. 
Our method counts the relative frequency of matched 
characters to distinguish interchangeable character pairs and 
assign high scores to them. We also show the performance of 
our proposed method empirically. 

 

II. SEQUENCE ALIGNMENT 
Sequence alignment is an arrangement of strings used to 

maximize the value of the objective function, which is 
usually defined by the sum of pairs of the corresponding 
characters derived from the arrangement. Fig. 1-(a) shows an 
example of sequence alignment where the objective function 
is defined by the character similarity in Fig. 1-(b). 

 
Fig. 1. An example of sequence alignment. 

 
The sequence alignment of two strings may not be unique. 

As depicted in Fig. 1, there can be more than one 
arrangement that maximizes the value derived from the 
objective function. Nevertheless, the similarity score is 
unique, so we can use it as a similarity measure without any 
problems. 

Sequence alignment can be represented in a recursive form, 
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and it can be derived by solving the following dynamic 
programming equation: 
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where ε is the gap character and σ is the character similarity 
function. 

Fig. 2 shows the dynamic programming matrix for the 
sequence alignment of two strings, "aaabb" and "aab," with 
σ(α,β)=1 if α=β, and -1 otherwise . The similarity score is the 
value in the last column of the last row. The corresponding 
arrangements can be obtained by back-tracking the paths that 
earn the scores making the final value. 

 
Fig. 2. Dynamic programming matrix for sequence alignment. 

 

III. RELATED WORK 
As mentioned in Section II, the similarity score obtained 

from the sequence alignment is highly dependent on the 
given character similarity, which is used for the unit score of 
the objective function. Therefore, defining a good character 
similarity scheme is an important task for the similarity 
calculation using the sequence alignment to derive an 
appropriate similarity relationship between strings. 

In bioinformatics, several scoring schemes have been 
addressed to identify similar biological objects such as DNA 
and protein sequences [8]. For example, PAM is one of the 
representative examples for the character similarity schemes. 
It takes a parameter k as the number of evolution units, which 
represents the evolutionary distance between sequences. For 
example, from a PAM matrix with k=1, the character 
similarity is calculated as follows:  
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where p(α) is the probability that character α appears, and 
f(α,β) is the frequency that characters α and β match each 
other. 

However, this scoring scheme is specialized for biological 
sequences, and uses input data obtained from the ungapped 
local alignment, which finds similar substrings without gaps, 
from relatively long sequences. When dealing with words in 
natural languages, gaps are so essential that these methods 
cannot be directly applied. 

IV. MATCHING FREQUENCY 
As mentioned above, our method computes the character 

similarity from the relative frequency of matched character 
pairs. Higher scores are assigned to characters that match 
very frequently in the sequence alignment. The matching 
frequency is obtained by aligning all pairs of strings in the 
given database for learning. Thus, in this section, we discuss 
how to count the matching frequency from an alignment of 
two strings.  

Backtracking on the dynamic programming matrix is a 
straightforward solution to count the frequency of character 
matches. Fig. 3 shows this method. From the last column of 
the last row, we can trace the path to the first column of the 
first row and update the count table for character matches for 
each visited node on the path. 

 

 
Fig. 3. Counting character matches with backtracking the matrix. 

 
However, when we use the backtracking method, we have 

to consider the case that more than one arrangement exists. In 
this case, we have to enumerate all possible paths and count 
every pair of matched characters that appear on each path 
with an equal weight. Moreover, if there are consecutive gaps 
and mismatches, as described in Fig. 4, a number of possible 
arrangements are involved. In such cases, backtracking 
becomes time-consuming and costly. 

 

 
Fig. 4. An example of a case that involves a number of possible arrangements 

as the result of sequence alignment. 
 
To accumulate the matching frequency on the alignment 

matrix without backtracking, which is possibly a very 
substantial task, we use a combinatorial approach. First, we 
construct a graph, the vertices of which correspond to each 
element of the alignment matrix, with each edge representing 
a match, mismatch, or gap. Two vertices are connected only 
if there is a match, mismatch, or gap. The start vertex is 
defined by the one associated with the first column of the first 
row, and the end vertex is the one associated with the last 
column of the last row of the matrix. Fig. 5 shows a graph 
representation of the sequence alignment matrix used in Fig. 
4. The graph is direct, and the orientations of edges 
correspond to how the sequence alignment proceeds. 
Additionally, each edge indicates a (mis)match or gap 
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according to its direction. 

 
Fig. 5. Graph representation of sequence alignment matrix in Fig 4. 

 
Then, for each vertex, we can compute the number of paths 

from the start vertex to the end vertex that pass the node. The 
ratio of this number to the total number of paths represents 
the portion of the characters that the corresponding vertices 
occupy. 

To compute the number of paths that pass a specific vertex, 
we separately calculate the number of paths from the start 
vertex to the target vertex (referred to as forward paths), and 
those from the target vertex to the end vertex (referred to as 
backward paths). The product of these numbers is the same as 
the number of paths that we finally want to obtain. 

Before presenting a more detailed explanation of the 
calculation process, we define the relation a→b of two 
vertices if there is an edge from vertex a to vertex b. 

 
Fig. 6. Calculation of the number of forward paths. 

 
Fig. 6 shows the process to calculate the number of 

forward paths from the start vertex to the target vertex. 
Starting with assigning 1 to the start vertex, for each vertex v, 
the values of all u such that u→v are accumulated. More 
formally, the number of forward paths for vertex v is defined 
as follows: 
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where s is the start vertex. 
Similarly, the number of backward paths from the target 

vertex to the end vertex is computed as described in Fig. 7. 
Starting by assigning 1 to the end vertex, the values of all the 
connected vertices are accumulated, but in this time, we sum 
the values of all u such that v→u to obtain the value for vertex 
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where e is the end vertex. 

 
Fig. 7. Calculation of the number of backward paths. 

 
Note that the number of forward paths of the end vertex is 

the same as that of the backward paths of the start vertex. 
This is also exactly the same as the number of possible 
optimal arrangements for the sequence alignment. We denote 
this total number of paths from the start vertex to the end 
vertex by T: 

 
)()( sBeFT ==                                  (7) 

 
To accumulate the matching count of characters α and β, 

we first have to compute the number of paths that pass a 
specific edge (u,v) that indicates (mis)match of the characters 
α and β. We denote this by N(u,v), which is directly 
calculated from the product of the number of forward paths 
for u and that of backward paths for v: 

 
)()(),( vBuFvuN ⋅=                            (8) 

 

 
Fig. 8. Edges that indicate character match A(a,a). 

 
Let A(α, β) be the set of all edges that represent the 

(mis)match of characters α and β (see Fig. 8). To compute the 
matching frequency m(α, β) for characters α and β, we take 
the sum of N(v) for all (u,v)∈A(α, β) as m(α, β): 
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Now we have the probability p(α, β)  that characters α and 

β match as the ratio of the matching frequency m(α, β) to the 
total number of paths T: 

 

T
mp ),(),( βαβα =                           (10) 

 
In other words, p(α, β) is the frequency of matches 

between characters α and β for a given pair of strings. In the 
following section, we use this to compute the final character 
similarity of α and β. 
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V. SIMILARITY CALCULATION 
In this section, we derive the character similarity using the 

results of the previous section. As mentioned above, the 
sequence alignment finds the arrangements that maximize the 
score of the objective function. This maximum score is the 
similarity score, and it is usually defined by the sum of the 
character similarity σ(α, β). If we rewrite σ(α, β) as the 
logarithm of another function τ(α, β), finding the optimal 
alignment can be interpreted as the maximization of the 
product of τ(α, β).  

Under the assumption that each edit operation is performed 
independently, including insertion, deletion, and substitution 
of a character, the product of τ(α, β) can give the odds for the 
whole sequences if τ(α, β) gives the odds that α and β match 
in strings in the same class with that in any randomly selected 
strings. Therefore, it is reasonable to use the character 
similarity σ(α, β) as the logarithm of the odds of matching 
events. 

Let pS(α, β) be the probability that characters α and β match 
when we align two strings in set S. This can be obtained by 
parameterization of p(α, β) such that it takes two strings x and 
y. We denote the parameterized p(α, β) by p(α, β; x, y), where 
x and y are given strings. It represents the probability that 
characters α and β match when strings x and y are aligned. 
We can then define pS(α, β) more formally as follows: 
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Finally, we have the similarity of characters α and β as the 

logarithm of the ratio of the probability pS(α, β) that the 
characters match between strings in the set S of similar 
strings to the random chance φ(α, β): 
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The constant term C is a small positive number, in order to 

avoid both dividing by zero and taking the logarithm of zero. 
For the efficiency of computation in the sequence alignment, 
the character similarity can be scaled and subjected to the 
floor function to make it an integer. 

The random chance φ(α, β) that characters α and β match 
can be computed by a combinatorial method or Monte Carlo 
simulation. In the experiments of the following section, we 
use the latter for an intuitive and simple implementation, 
which is equivalent to pR(α, β) where R is the random strings. 

 

VI. EXPERIMENTAL EVALUATION 
The dataset used in the experiments is synthetic string sets 

generated by the following steps: (i) a string is chosen as the 
seed in a random manner and inserted into the dataset; (ii) a 
random symmetric matrix is generated, each of whose 
elements indicate the substitution probability between its 
corresponding character pair; and (iii) choosing a string from 
the dataset is repeated in a random manner and a random edit 
operation is performed according to the probability matrix. 

 
(a) Levenshtein distance matrix 

 

 
(b) Scoring matrix derived from the proposed method 

 
Fig. 9. Distribution of the maximum similarity scores with respect to two 

different scoring matrices and different sets. 
 
We generate two sets of 1K strings from the same seed. 

One set is used for training, the other for evaluation. We also 
use the randomly generated sets without any skewed 
probability setting to obtain φ(α, β) and evaluate the 
performance. 

We determine whether a given string is included in the 
pre-determined class by checking the maximum similarity 
score against the set of known strings. Fig. 9 depicts the 
distribution of the maximum similarity scores with respect to 
the scoring matrix and string sets. Dashed lines indicate the 
score distribution for the random set, and solid lines represent 
that for the set of strings in the class.  

The Levenshtein distance can be represented as a matrix in 
which all elements are -1, but those on the diagonal are 0. 
Sequence alignment using this matrix returns the 
Levenshtein distance with a negative sign. Fig. 9-(a) shows 
the distribution of the Levenshtein distance. We can easily 
observe that the range is too narrow and the overlapped area 
is substantial. In contrast, the distribution derived from our 
proposed scheme has a wider variance and relatively small 
overlapped portion. This means that our method would 
perform well for string classification. 

We also evaluate the performance of our proposed method 
for string classification in terms of the sensitivity and 
specificity, which are defined as follows: 
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 Fig. 10. The performance comparison between the proposed method and the 

levenshtein distance for classification. 
 

Fig. 10 shows the performance of our method comparing 
against the Levenshtein distance. It is observed that our 
method outperforms the Levenshtein distance for string 
classification. When the sensitivity is 90%, the specificity of 
our method is above 0.92, while that of the Levenshtein 
distance is only 0.671. 

 

VII. CONCLUSIONS 
We have presented a new construction method of the 

scoring scheme for sequence alignment. Our method counts 
the relative frequency of matched characters relative to 
random chance, and computes the similarity score as its 
logarithm. We have demonstrated the performance of our 
method by comparing against the Levenstein distance in 
terms of sensitivity and specificity. The notable contributions 
of our study are summarized as follows: 

• We have presented several combinatorial methods to 
calculate the number of paths on the sequence 
alignment matrix. It is useful to compute the matching 
frequencies of characters. 
• Based on this, we have also presented a probabilistic 

model to construct the scoring matrix from a given set 
of strings that are included in the same class. 
• Our method outperforms the Levenshtein distance by 

about 0.3 in terms of the specificity when the 
sensitivity is 0.9. 

We have also observed several aspects to be further 
improved upon as follows: 

• More extensive experiments on real datasets and other 
synthetic datasets with various configurations are 
necessary. 
• We used a set of random strings to obtain φ(α, β), the 

random chance that characters match. We will 
discover various cases where additional 
characteristics are imbued on the string set. 
• We expect that our method can be extended to much 

more general cases with complex character sets. If 
possible, it can be applied to much broader fields, 
such as information retrieval and data compression. 

 
 

• We used only the global sequence alignment that 
arranges the whole strings. Local sequence alignment 
that finds similar substrings can be considered as an 
extension of our method. 
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