
  

  
Abstract—Traditional independent component analysis (ICA) 

method based on FastICA algorithm faced two main 
disadvantages. One is that the order of the independent 
components (ICs) is difficult to be determined and the other is 
that the FastICA algorithm often leads to local minimum 
solution, and the suitable source signals are not isolated. To 
alleviate these problems, an improved ICA algorithm based on 
artificial immune system (AIS) (called AIS-ICA) is presented. 
AIS is an attractive heuristic technique and has many 
advantages over other heuristic techniques such as it can be 
easily implemented and has great capability of escaping local 
optimal solutions The basic idea of the proposed AIS-ICA 
algorithm is to use AIS to determine the separating matrix of 
ICA. Simulation results from the artificial signal data illustrate 
the efficiency of the proposed AIS–ICA approach. 
 

Index Terms—Independent component analysis, artificial 
immune system, signal separation, heuristic algorithm.  
 

I. INTRODUCTION 
Blind source separation (BSS) is to separate the source 

from the received signals without any prior knowledge of the 
source signal. Problems related to BSS have become an 
active research area in the fields of statistical signal 
processing and unsupervised neural learning [1]-[3]. 
Independent component analysis (ICA) is one of the most 
used methods for BSS. The goal of ICA is to recover 
independent sources when given only sensor observations 
that are unknown linear mixtures of the unobserved 
independent source signals. It has been investigated 
extensively in image processing, financial time series data 
and statistical process control [1], [4]-[6]. 

For ICA, many effective algorithms have been proposed 
[1]-[3], the most used traditional algorithm is FastICA 
algorithm that uses the approximate Newtonian iteration 
algorithm. But in practical application, it often leads to local 
minimum solution and the suitable source signals are not 
isolated. Moreover, the order of the independent components 
(ICs) is difficult to be determined. These two problems are 
the main drawbacks of FastICA algorithm [7]-[9]. To 
overcome these disadvantages, an improved ICA algorithm 
based on artificial immune system (AIS) (called AIS-ICA) is 
presented.  

AIS is an adaptive systems, inspired by theoretical 
immunology and observed immune functions, principles and 
models, which are applied to problem solving [10], [11]. 
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They are one among many types of algorithm inspired by 
biological systems, including evolutionary algorithms, 
swarm intelligence, neural networks and membrane 
computing. AIS are bio-inspired algorithms that take their 
inspiration from the human immune system. Within AIS, 
there are many different types of algorithm, and research to 
date has focused primarily on the theories of immune 
networks, clonal selection and negative selection. It is based 
on natural immune system principles, and it can offer strong 
and robust information processing capabilities for solving 
complex problems. There are various applications of AIS, 
and they include data analysis, scheduling, classification, 
fault detection and security of information systems [10]-[13]. 
Since AIS has many advantages over other heuristic 
techniques such as it can be easily implemented and has great 
capability of escaping local optimal solutions [11], it is used 
in this study to develop the AIS-ICA algorithm.  

The basic idea of the proposed AIS-ICA method is to use 
AIS to replace the Newtonian iteration in FastICA algorithm 
to find the separating matrix of ICA. Then, the independent 
components can be extracted and the order of ICs can be 
determined according to the AIS results. The artificial signal 
data are used as illustrative examples. Experimental results 
showed that the proposed AIS–ICA approach is an effective 
ICA algorithm. 

The remainder of this paper is organized as follows: 
Section 2 gives an overview of ICA and AIS. Section 3 
describes the proposed AIS–ICA algorithm. The simulation 
results are shown in Section 4. The conclusions are drawn in 
Section 5. 

II. METHODOLOGY 

A. ICA 
Let 1 2[ ,  ,   ,  ]T

mx x x=X % % %L  be a multivariate data matrix 
of size nm × , nm ≤ , consisting of observed random 
variables ix%  of size n×1 , 1,  2,  ...,  i m= . In the basic ICA 
model, the matrix X can be modeled as  

1

m

i i
i

a s
=

= =∑X AS % %                             (1) 

where ia%  is the thi  column of unknown mixing matrix A  of 

size mm × ; is%  is the thi  row of source matrix S  of size 
nm × . The vectors is%  are unknown latent sources (variables) 

that cannot be directly observed from the observed variables 
ix% . The ICA model aims at finding an mm ×  de-mixing 

matrix W  such that  

[ ] [ ]i ib w= = =B WX X% % ,                       (2) 
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where ib%  is the thi  row of the matrix B , 1,  2,  ...,  i m= . 

The vectors ib%  must be as statistically independent as 
possible, and are called independent components (ICs). The 
ICs are used to estimate the latent variables is% . The vector iw%  

in eq. (2) is the thi  row of the de-mixing matrix W , 
1,  2,  ...,  i m= . It is used to transform the observed 

multivariate matrix X  to generate the corresponding IC, i.e. 

i ib w= X% % , 1,  2,  ...,  i m= . 
The ICA modeling is formulated as an optimization 

problem by setting up the measure of independence of ICs as 
an objective function and using some optimization 
techniques to solve for the de-mixing matrix W  [1]-[3]. In 
general, the ICs are obtained by using the de-mixing matrix 
W  to multiply the matrix X . The de-mixing matrix W  can 
be determined using an unsupervised learning algorithm with 
the objective of maximizing the statistical independence of 
ICs. And the statistical independence of ICs can be measured 
in terms of their non-Gaussian properties [1]. 

Normally, non-Gaussianity can be verified by two 
common statistics: kurtosis and negentropy. The kurtosis of a 
random variable b% , fourth-order cumulant, is classically 
defined by 

4 2 2( ) ( ) 3( ( ))kurt b E b E b= −% % % .                     (3) 

If variable b%  is assumed to be zero mean and unit variance, 
the right-hand side simplifies to 4( ) 3E b −% . This shows that 
kurtosis is simply a normalized version of the fourth moment 

4( )E b% . For a Gaussian b% , the fourth moment equals 
2 23( ( ))E b% . Thus, kurtosis is zero for a Gaussian random 

variable and non-zero for most non-Gaussian random 
variables. 

Unlike kurtosis, negentropy is determined according to the 
information quantity of (differential) entropy. Entropy is a 
measure of the average uncertainty in a random variable. The 
differential entropy H of random variable b%  with density 

( )f b%  is defined as ( ) ( ) log ( )H b p b p b db= −∫% % % % . According to a 

fundamental result of information theory, a Gaussian variable 
will have the highest entropy value among a set of random 
variables with equal variance [1]. For obtaining a measure of 
non-Gaussianity, the negentropy J is defined as follows:  

( ) ( ) ( )gaussJ b H b H b= −% % %                            (4) 

where 
gaussb%  is a Gaussian random vector of the same 

covariance matrix as b% . 
The negentropy is always non-negative and is zero if and 

only if b%  has a Gaussian distribution. Since negentropy is 
very difficult to compute, an approximation of negentropy is 
proposed as follows [1]:  

 
2( ) [ { ( )} { ( )}]J b E G b E G o≈ −% % %                          (5) 

 
where o%  is a Gaussian variable of zero mean and unit 
variance, and b%  is a random variable with zero mean and unit 
variance. G  is a nonquadratic function, and is given 

by ൫ܩ  ෨ܾ൯ = ෨ܾସ  in this study. The steps of the FastICA 
algorithm are shown in Fig. 1 [1]. 
 

Step 1: Data centering. The mean of the observed mixed 
signal data X is computed and the mean is subtracted from the 
observed data set to make it zero mean.  

}{XEXXc −←  
Step 2: Whitening. The covariance matrix cov X of the 
centered data Xc  is computed. The eigenvalue 
decomposition of cov X is performed. If D is the eigenvalue 
matrix and E is the eigenvector matrix then ܼ = ܧଵ/ଶିܦ ∗ ܺܿ 
Step 3: Fixed-point iteration for one unit. The fast ICA 
algorithm for one unit estimates one row of the demixing 
matrix w as a vector ࢝୘ that is an extremum of contrast 
functions. Estimation of w proceeds iteratively with 
following steps until a convergence as stated below is 
achieved. 

3.1 Choose an initial random vector w of unit norm. 
3.2 wzwzwzw )}({)}({ T
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3.3 ppp www ←*  where pw  is the norm of w 

3.4 If |w(old) − w(new)| ≤ε is not satisfied then go 
back to Step 3 where ε is a convergence 
parameter (∼10−4) and w(old) is the value of w 
before it’s replacement by the newly calculated 
value w(new) 

Step 4: Evaluation of second independent component. To 
estimate the other ICs, Step 3 of the algorithm is repeated for 
getting weight vectors ݓ௜, ݅ = 2,3, … , ݊. To prevent different 
vectors from converging to the same optimum and hence the 
same IC, the weight vectors are decorrelated using 
Gram–Schmidt like orthogonalization. When p vectors ݓ௜, ݅ = 2,3, … ,   ௣ାଵݓ have been estimated, Step 3 is run for ݌
and after every iteration step the following iteration steps are 
performed. ݓ௣ାଵ = ௣ାଵݓ − ∑ ௣ାଵ்௣௝ୀଵݓ) ௣ାଵݓ௝              (6)ݓ(௝ݓ = ௪೛శభට௪ುశభ೅ ௪೛శభ                           (7)

Fig. 1. Steps of FastICA algorithm. 
 

B. AIS 
Artificial Immune algorithm based on clonal selection 

principle (CLONALG) is be used to optimize functions. 
CLONALG is a population based algorithm and its only 
variation operator is mutation. The main search power of 
CLONALG relies on this mutation operator and therefore, 
such hyper-mutation operator is the efficiency deciding 
factor of this technique [14], [15].  
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The first step of CLONALG is initialization. In this step, 
antigens are represented by the value of the objective 
function f(x) that we want to optimize (minimize or maximize) 
and antibodies are represented by the variables of the 
problem (x୧, i = 1,2, … , s) which are potential solutions. An 
initial population of N antibodies is created randomly. 

The second step is cloning. In this stage, antibody’s 
affinity corresponds to the evaluation of the objective 
function given by the antigen. According to the affinity or 
fitness, the antibodies are cloned; the best antibody being 
cloned the most and worst being cloned the least number of 
times. The number of clones generated from the n selected 
antibodies is given by 

 ௖ܶ = ෍ ߚ)݀݊ݑ݋ݎ ∗ ,(݅/݌ ݅ = 1,2, … , ݊ 

 
where Tୡ is the total number of clones, β is a multiplier factor 
and p is the population size of the antibodies. 

 In the final step Hyper-mutation and selection, the clones 
are mutated in inverse proportion to their affinity; the best 
antibody’s clones are mutated lesser and worst antibody’s 
clones are mutated most. The clones are then evaluated along 
with their original antibodies out of which the best G 
antibodies are selected for the next iteration. The mutation 
can be uniform, Gaussian or exponential.  The pseudo code of 
CLONALG is shown in Fig. 2 [14], [15]. 
 
1. Generate N antibodies randomly. 
2. Determine the affinity or fitness of each antibody. 
3. Select the n highest affinity antibodies. 
4. The n selected antibodies will be cloned proportionally 

to their affinities, generating a repertory C of clones. 
Higher the affinity is, higher becomes the number of 
clones generated for that selected antibody. 

5. The clone from C are subjected to a hyper-mutation 
process inversely proportional to their antigenic 
affinity; higher the affinity, smaller is the mutation rate.

6. Determine the affinity of the mutated clones. 
7. From this set mutated clones and antibodies, select the 

highest affinity to compose the new antibodies 
population. 

8. Replace the d lowest affinity antibodies by new 
individuals generated at random. 

9. Continue until terminating condition. 
Fig. 2. Pseudo code of CLONALG. 

 

III. PROPOSED AIS-ICA ALGORITHM 
In the FastICA model, because of using the Newtonian 

iteration, it often leads to local minimum solution. For these 
reasons, the AIS method is introduced to replace the 
Newtonian iteration for solving the problem of finding the 
maximum non-gaussianity of Wx. According to the 
abovementioned pseudo code of CLONALG and steps of the 
FastICA algorithm, the steps of the proposed AIS-ICA 
algorithm are summarized and shown in Fig. 3. 

 
1. Data centering and whitening. 
2. Let p=1, h=number of ICs, Ab are Antibodies, 

i=1,2,…m, and used to represent vector wi. Make the Eq. 

(5), i.e. Maximize ൫ܬ ෨ܾ൯ , the objective function of the 
AIS. Initialize the Antibodies randomly. 

3. Let Eq. (5) be the fitness function. Calculate the fitness 
value/affinity of each Antibody. 

4. Find the best antibody Ab* with the maximum fitness 
value.   

5. Select the n highest affinity antibodies b_Ai, i=1,.,…n. 
6. The selected antibodies b_Ai are cloned according to 

their affinities and use to generate mutated clones C_Ai, 
i=1,2,…,C. Calculate the affinity of the mutated clones 
C_Ai.  

7. Compose the d new antibodies population from b_Ai and 
C_Ai. Replace the d lowest affinity antibodies by new 
antibodies randomly. 

8. Determine whether stopping criteria (i.e. the maximum 
iteration number s_t) is satisfied. If not, go back to step 
3; else, the one-unit algorithm is ended. Thus wi is 
obtained and go to step 9. 

9. Calculate the new antibodies according to Eqs. (6) and 
(7). 

10. Let p=p+1. If p<h, go back to step 3 until get demixing 
matrix  ࢃ = ,ଵ࢝) ,ଶ࢝ … , ்(௛࢝

. 
11. Get the source matrix B according to Eq. (2). 

Fig. 3. Steps of the proposed AIS-ICA algorithm.  
 

IV. SIMULATION RESULTS 
In this section, the proposed AIS-ICA algorithm and 

FastICA will be used to separate the mixed signal. The 
artificially generated mixtures are used to evaluate the 
effectiveness of the proposed AIS-ICA algorithm compared 
to FastICA algorithm. Six artificial signals that have the 
following distribution [16] are used as source signals and 
shown in Fig. 4. 
 
(a) Modulated sinusoid: 

P(t)= 2*sin(t/149)*cos(t/8)+0.2*rand() 
(b) Square wave : 

Q(t)= sign(sin(12*t + 9*cos(2/29))) + 0.1 *rand() 
(c) Sawtooth: 

R(t)= ( rem(t, 79)-17 )/23+0.1*rand() 
(d) Impulsive curve: 

S(t)= ((rem(t,23)-11)/9)^5) + 0.1*rand() 
(e) Exponential: 

U(t)= 5*exp(-t/121)*cos(37*t) + 0.1*rand() 
(f) Spiky noise: 

V (t)= ((rand())*2-1)*log(rand()) 
 
where the rem function returns a result that is between 0 and 
sign (e)* abs(z). If z is zero, rem returns NaN (not a number). 
The rand function generates a set of uniformly distributed 
pseudo- random numbers.  

According to a review of the literature [10], [11], the 
parameters of the AIS-ICA are set as: h=6; Ab=10; the 
highest affinity antibodies n=5; mutated clones C=5; the 
maximum iteration number s_t=50.  

The source signals are mixed by a known 6 by 6 mixing 
matrix (as shown in Table 1) to generate the mixed signals 
which are depicted in Fig. 5. The mixed singles are passed 
through FastICA and the proposed AIS-ICA algorithms. The 
separating outputs are given in Fig. 6. From Fig. 6 (b), it can 
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be seen that FastICA couldn’t separate the independent 
components clearly, whereas the proposed AIS-ICA 
separates them clearly (as seen in Fig. 6(a)). That is, it can be 
seen that the source signals separated by the AIS-ICA 
algorithm are more accurate than those separated by the 
FastICA algorithm since the AIS-ICA algorithm avoids the 
local minimum resolution.  

The order of the ICs can be determined by the proposed 
AIS-ICA algorithm. Fig. 7 shows the separating results of the 
AIS-ICA and FastICA algorithms by three rounds. From Fig. 
7 (a1)-(a3), it can be seen that the orders of the separating 
results among the three rounds are identical. The first to sixth 
ICs, respectively, represent the Spiky noise, Exponential, 
Impulsive curve, Square wave, Sawtooth and Modulated 
sinusoid signals. However, it can be observed from Fig.  
7(b1)-(b3) that the order of ICs cannot be determined by 
FastICA algorithm. It is worthy to note that, among the three 
rounds, the AIS-ICA algorithms consistently provides better 
separating results than that of FastICA algorithm.  

 
TABLE I. THE MIXING MATRIX. 

0.2 0.5 -0.6 0.8 0.5 -0.2 

0.7 -0.2 -0.3 0.8 0.1 0.7 

-0.2 0.8 0.1 -0.4 0.9 0.1 

-0.1 0.2 -0.6 -0.3 -0.8 -0.1 

0.7 0.6 0.1 0.4 0.2 0.3 

-0.1 0.1 -0.1 0.1 -0.1 0.1 

 
Fig. 4. Six source signals. 

 

 
Fig. 5. The mixed signals. 

 
 

(a) AIS-ICA (b) FastICA 
 

Fig. 6. ICs by AIS-ICA and FastICA algorithms. 
 

 

(a1) 1st round of AIS-ICA 
 

(b1) 1st round of FastICA 
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(a2) 2nd round of AIS-ICA  (b2) 2nd round of FastICA  

(a3) 3rd round of AIS-ICA  (b3) 3rd round of FastICA  
Fig. 7. The separating results of the AIS-ICA and FastICA algorithms by three rounds. 

V. CONCLUSION 
ICA technique separates mixed signals blindly without any 

information of the mixing system. FastICA is the most 
popular gradient based ICA algorithm. However, the order of 
the ICs is difficult to be determined and easy to obtain local 
minimum solution are two main drawbacks of the FastICA 
algorithm. In order to overcome these two disadvantages, this 
paper presented an improved ICA algorithm based on AIS. In 
the proposed AIS-ICA algorithm, the AIS method is used to 
determine the demixing matrix of ICA. Experimental results 
from the artificial signal data showed that the AIS-ICA 
algorithms provides better separating results than that of 
FastICA algorithm. The order of ICs can be determined by 
the proposed AIS-ICA algorithm.  
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