
  

  
Abstract—Photon attenuation correction is a challenging task 

in the emerging hybrid PET/MRI medical imaging techniques 
because of the missing link between tissue attenuation 
coefficient and MRI signal. MRI-based tissue classification 
methods for attenuation correction have difficulties caused by 
the significantly different abilities of photon absorption in 
tissues with similar MRI signal, such as bone and air. We 
proposed a novel method of integrating the information from 
MRI and PET emission data to increase the tissue classification 
accuracy. A classifier based on conditional random field was 
trained using features extracted from fused MRI and 
uncorrected PET images. The efficacy of the proposed method 
was validated quantitatively on synthetic datasets. It was found 
that the inclusion of PET data improved the classifier’s 
performance in terms of classification accuracy and PET image 
reconstruction quality. 
 

Index Terms—Attenuation correction, conditional random 
field, tissue classification, PET/MRI. 
 

I. INTRODUCTION 
Hybrid PET/MRI systems, which combine the capabilities 

of positron emission tomography (PET) to obtain metabolic 
information with high sensitivity, and magnetic resonance 
imaging (MRI) for structural and functional imaging without 
the additional radiation exposure associated with X-ray 
computerized tomography (CT), are currently under 
extensive research and development [1]. Among other 
technical hurdles, MRI-based correction for photon 
attenuation is the major issue unsolved in the development of 
quantitative PET/MRI [2]. Inadequate attenuation correction 
has serious implications, such as inaccurate cancer staging or 
failure to detect tumours[3].  

In PET, tissue concentration of the injected radiotracer is 
estimated from the detection of photons emitted by the 
annihilation of positrons from the radiotracer and electrons in 
adjacent tissue. Some photons are absorbed by tissue prior to 
detection and this attenuation effect has to be corrected to 
generate PET images during image reconstruction. The 
degree of photon attenuation can range from 50% to 95% and 
is greater in larger patients [4]. Without attenuation 
correction, the regional tissue radiotracer concentration may 
be underestimated, leading to lesions becoming invisible on 
PET images [3].  

Attenuation correction relies on the calculation of a 
voxelizedattenuation coefficient map (µmap) in PET image 
domain representing the tissue-specific photon attenuation 
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coefficient of each voxel, based on which attenuation 
correction factor map (ACFmap) in PET emission data 
(i.e.sinogram) domain is computed. ACFmapand µmap can 
be obtained using CT in PET/CT scanners and transmission 
PET scansin PET alone systems, respectively. Nevertheless, 
patients suffer from exposure to ionizing radiation and 
additional scan time. These drawbacks can be overcome 
using the simultaneously acquired MR image for attenuation 
correction on hybrid PET/MRI systems.  

MRI-based correction, however, is much more challenging 
than with CT because the attenuation coefficient and MR 
signal intensity are not directly linked as is the case with CT. 
Photon attenuation is mainly caused by tissues with high 
concentrations of elements of high atomic number, such as 
calcium in cortical bone, which are not imaged well by 
commonly used MR sequences. For example, as illustrated in 
Fig. 1, both bone and air have low intensity on T1 weighted 
images but their attenuation coefficients differ greatly, which 
has been a main limitation in the ability to correct PET 
emission data using MR images. 

 
Current MRI-based attenuation correction methods can be 

broadly classified into two categories: template-based [5]and 
tissue classification-based [6]techniques, as reviewed in[7]. 
Template-based methodsrely on registration between patient 
images to a population-based atlas and may not account 
satisfactorily for individual difference in normal anatomy, 
such as bone defects and surgical resection, and variations 
due to lesions. In tissue classification-based methods, image 
voxels are allocated to classes with distinct attenuation 
coefficients (mainly bone, soft tissue, sinuses, lung and air), 
which are assigned the corresponding attenuation coefficient 
to create the µmap. The classification accuracy significantly 
determines the quality of attenuation correction and PET 
image reconstruction. The elimination of bony structures 
from the µmap will cause a local error over 3% and an 
underestimation of 11% in Standard Uptake Value (SUV) in 
clinical PET studies[8]. 
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Existingmethodscan result in PET quantification errors of 
10% for head imaging [5], [9] and 19% for torso imaging [10]. 
Recently, tissue classification based on ultrashort-echo-time 
(UTE) MRI sequences was proposed for attenuation 
correction[6]. Anoverall voxel classification accuracy 
(compared with CT) of81.1% was achieved but bone 
segmentation was inaccurate in regions of bone/air interface 
such as the paranasal sinuses. Although UTE sequence 
provides better differentiation between bone and air, it has 
safety issues of high radio-frequency power to be delivered 
into patient body. Therefore, routinely acquired MR images 
in clinical settings, such as T1-weighted MRI, is preferable 
for attenuation correction.  

Sinogram before correction contains some information 
that can aid the µmap creation and Helgason-Ludwig 
Consistency Conditions (HLCC)was formulated to extract 
the information [11]. However, HLCC alone is not sufficient 
and sometimes not valid due to sparse data sampling. 

In this study, we proposed a supervised machine learning 
framework to integrate the information about tissue 
classification from conventional structural MRI and PET 
sinogram for attenuation correction. A graphic model based 
on conditional random field (CRF)was trained and features 
extracted from the fused T1 MR images and partially 
corrected PET images used. The efficacy of the method was 
quantitatively validated on synthetic datasets using the 
accuracies of tissue classification, and reconstructed PET 
image as metrics, compared with ‘ground truth’ and results of 
using T1 images alone. 

 

 

II. METHOD 

A. Experimental Datasets 
As illustrated in Fig. 2, we created synthetic PET images 

and sinograms with and without attenuation correction based 
on the digital brain phantoms of 20 subjects downloaded 
from Brain Web[12].Each phantom consists of a 
T1-weighted MRI structural image and a priori tissue 
classification. T1 images were simulated using spoiled 
FLASH sequence with TR=22ms, TE=9.2ms, flip angle=30 
degree and 1 mm isotropic voxel size. Each voxel was labeled 
as one of the 11 classes (background, cerebrospinal fluid, 
gray matter, white matter, fat, muscle, muscle/skin, skull, 

vessels, around fat, dura matter, and bone marrow). Two 
dimensional slices with 256x256 pixels were extracted from 
the T1 and label volumes and used as the raw datasets in this 
paper. 

The PET image contrast is generated by the difference in 
radiotracer uptake between different tissues. We merged the 
tissue labels into 4 groups: gray matter (GM), white matter 
(WM), other tissue, and air and set the uptake ratio to 
40:10:2:0 to create the ‘ground truth’ radiotracer uptake 
images, i.e., the synthetic PET images. Denote the radiotracer 
uptake in a given pixel ( , )x y  as ( , )x yλ . For a given 
line-of-response (LOR), which is defined by the line linking 
two crystal photon detectors of the PET scanner, the number 
of photon pairs  detected (i.e. emission data E) by these two 
detectors can be calculated as line integral using forward 
projection, 

 GT LOR ( , )
( , ) ( , )

s
E s x y dt

φ
φ λ= ∫  (1) 

where, t is the coordinate along the LOR, s and φ  are the 
radial and angular variables used to parameterize the LOR, 
respectively. In our study, LOR was parameterized by 

{0,1,2,...,179}φ= and { 183, 182,...,183}s = − − . The 
emission data for all the LORs were calculated to 
constructthe2-dimentional ‘ground truth’ sinogram as a 
180 367×  matrix. 

Three classes of tissues with distinct attenuation 
coefficients were used: air, soft tissue and bone to define the 
synthetic µmaps. We generated the ‘ground truth’ 
classification by keeping the classes of background (air) and 
skull (bone) and pooling all the rest as soft tissue. The 
‘ground truth’µmap was obtained by assigning uniform 
attenuation coefficient for each of the three classes: 0/cm for 
air, 0.009/cm for soft tissue and 0.015/cm for bone. 

The ACF for each LORwas calculated as the exponential 
of forward projection of the µmap, 

 
LOR ( , )

ACF( , ) exp( ( , ) ).
s

s x y dt
φ

φ μ= ∫  (2) 

The ACFs for all LORs formed the ACFmap, which was in 
sinogram domain. Then the uncorrected sinogram (sinogram 
without attenuation correction) wastheentrywise division 
between the ‘ground truth’sinogram and the ACFmap: 

 
UC GT

GT LOR( , )

( , ) ( , ). / ACF( , )

( , )exp( ( , ) ).
s

E s E s s

E s x y dt
φ

φ φ φ

φ μ

=

= −∫
 (3) 

PET image was then reconstructed from sinogram using 
filtered backprojection (FBP). In our machine learning 
algorithm, the uncorrected sinogram and the T1 MR image 
created from the 20 subjects were the samples, and the 
corresponding µmaps were the labels. 

B. Image Fusion 
We observed that the PET image reconstructed from 

uncorrected sinogram, i.e., the uncorrected PET image, 
contains tissue classification information and hypothesized 
that a classifier working on fused T1 image and uncorrected 
PET image would give better classification result than that 
based on T1 image or uncorrected PET image alone. 
Dual-Tree Complex Wavelet Transform (DT-CWT) based 
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Fig. 2. Flow chart of synthetic dataset creation. GT: ‘ground truth’.
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image fusion algorithm [13] was employed because of its 
good performance in both spatial and spectral domains 
achieved by resolving the shift variance and lack of 
directionality issues in real valued wavelet transforms. 

C. Conditional Random Field 
Aprobabilisticgraphical model based on CRF theory was 

used as the classifierin this study [14]. Given the training set 
iX  and classification label y , CRF models the conditional 

distributions ( | )ip y X  directly, instead of the joint 

distribution ( , )ip y X as in hidden Markov models.Therefore, 
the priors p(Xi) does not need to be modelled. Recent 
successes of CRF-based classification have been in the 
segmentation of natural scenes, text, brain MR images for 
tumour detection and optical coherence tomography. 
However, it has not been attempted in the context of 
generating attenuation maps for PET/MRI scanners. 

The CRF is defined as a unidirectional graph { , }G V E∈ , 

in which each node iv V∈  is associated with a random 
variable iy  over the tissue type space 1{ ,..., }nl l=L  
describing the tissue type of the ith voxel. In this study,

{bone, soft tissue, air}L = . A classification y is the vector 

1( ,..., )my y=y  for the m voxels in a given image X . When 
conditioned on X , the random variable iy  is assumed to be 
Markovianon G : ( | , , ) ( | , , ~ )i j i jp i j p i j≠ =y X y y X y , 
where ~i j indicates i  and j are neighbors in G , which 
means each variable is independent on the entire graph when 
conditioned on its neighbors. Then ( , )X y  is a CRF [14] and 
the conditional probability function for y is 

 exp ( , , )( | ; ) ,
( , )

p
Z

y Xy X
X

θ
θ

θ
Ψ

=  (4) 

where θ  is the model parameter vectorand ( , )Z θX  is a 
normalization factor. The potential function Ψ  is a 
summation of potentialterms depending on clique variables 
that are defined according to the neighborhood. Each term 
has the form ( , , )c cc C

y Xφ θ
∈∑ , where C  is the set of cliques 

and ( : )c i i c= ∈y y .Cliques could be unary and pairwise, 
resulting in unary and pairwise potential terms.Instead of the 
popular Maximum a Posteriori (MAP) algorithm, we 
employed themarginalization-based parameter learning 
approach, which was found outperformed likelihood-based 
algorithms, to train the CRF models and the Tree-reweighted 
Belief Propagationmethodto make the inferences[15]. 

D. Feature Selection 
The feature set used in classifiers plays a critical role and 

finding the relevant features to the learning task is often too 
expensive to explicitly enumerate and compare all the 
candidate feature subsets. Information criterion (e.g.Akaike’s 
Information Criterion and its variants) can be adapted to 
feature selection through a ‘wrapper’ algorithm.However, 
‘wrappers’algorithmssuffer from high computational 
complexity and poor generalization to other classifiers. To 
reduce the computational time, we used a filter feature 
selection method based on mutual information using 

minimal-redundancy-maximal-relevance (mRMR)[16]. 
The candidate features are constant, pixel location, pixel 

intensity,n-neighborhood pixel intensities (n=4,8,26), 
histogram of oriented gradients (HoG) descriptors (number 
of bins=4,8,16,32), local binary patterns (LBP), differential 
threshold, Sobeledge, Canny edge, Prewitt edge, Roberts 
edge, Scharr feature, and Laplacian of Gaussian.  

E. CRF Models Using Different Training Sets 
To test the hypothesis that uncorrected PET image can 

behelpfulintissue classification, we trained a series of CRF 
models using T1 image alone, ‘ground truth’ PET image 
alone, uncorrected PET image alone, T1 image fused with 
‘ground truth’ PET image, and T1 image fused with 
uncorrected PET image as training sets, 
respectively.Correspondingly, the trained models are called 
CRF-T, CRF-P, CRF-Puc, CRF-TP, and CRF-TPuc, 
respectively. To evaluate the classification performance of 
these models for unseen data, “Leave-One-Out Cross 
Validation” (LOOCV)wasused.For each LOOCV run, the 
cross validation errorαwas defined as the percentage of 
misclassified pixels. The mean and standard deviation of this 
percentageover the 20 runs were used to evaluate the model 
performance.Given the ‘ground truth’ classification was 
known, the Dice Similarity Coefficient (DSC) for each of the 
3 tissue classes (bone, soft tissue and air)was computed for 
comparison as well, 

 2 ( )( , ) ,
( ) ( )

Num A BDSC A B
Num A Num B

=
+
I  (5) 

where, Num( ) is the function to count the pixels in an image, 
and A∩B the intersection of A and B, which are ‘ground truth’ 
classification and the predicted classification, respectively. 

To evaluate the effect of different tissue classification on 
the PET image reconstruction quality, Relative Error (RE) is 
defined as follow, 

 AC(PET PET) / PET 100%,− ×  (6) 

where, ACPET  is the corrected PET image and PET is the 
‘ground truth’ PET image. The mean and standard deviation 
(over the 20 runs) of RE and the absolute value of RE are 
calculated for each model. 

All the calculations in this study were carried out in 
MatLab®.The CRF toolbox in [15] was adapted to train the 
models and make inferences. The mRMR toolbox in [16]was 
tailored for feature selection. 

 

III. RESULTS AND DISCUSSION 
We targeted on the lower skull region because that the 

complicated bone/sinuses/air interfaces cause problems in 
existing tissue classification methods. As illustrated in Fig. 1, 
we chose the 11th slice to createthetraining and test datasets. 
Examples of reconstructed PET images and fused images are 
given in Fig. 3. It is obvious that the corrected PET image is 
uniform; while the uncorrected PET image has intensity 
inhomogeneity issue and the central part appears to be darker 
because of the photon attenuation effect. The bone/air 
interface is much clearer in uncorrected PET than in 
corrected PET. However, the bone and soft tissue boundaries 
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are weak in these PET images. The boundary between soft 
tissue and background air is poorly defined too. In the fused 
images, however, both the bone/air and bone/soft tissue 
contrasts are preserved to some extent. 

 

 
Feature selection based on mRMR criterion highlighted 

these features:constant, pixel intensity,26-neighborhood 
pixel intensities,HoG(16), HoG(32),LBP, differential 
threshold, and Scharr feature, which were used to train the 
models. 

The LOOCV resultsfor a representative subject (Subject 1) 
using the five CRF models are shown in Fig. 4. It can be 
observed that T1-based classification generated very poor 
result, while PET-based classification performed well in 
distinguishing bone and soft tissue but not in bone and air. 
The uncorrected PET based classifier achieved good 
accuracy in air/bone segmentation in nasal sinuses region but 
performed poorly in soft tissue/air interface around the 
nose.The results from the fused images showed a 
combinational effect. The classification results with the best 
and the worst accuracy obtained using each model are 
illustrated in Fig. 5.  

 

 
The LOOCV error for each subject was plotted in Fig. 6. It 

can be seen that the classifier based on fused images 
outperformed that solely based on T1 or uncorrected PET 
images in all cases. The quantitative comparison between the 
trained models is shown in Table I. The classification based 

on ‘ground truth’ PET (CRF-P), which is not available when 
performing attenuation correction in practical settings, has 
the least mean and standard deviation of misclassification 
error. The classifier based on T1 fused with uncorrected PET 
(CRF-TPuc) achieved an accuracy very close to that based on 
‘ground truth’ PET, and better than those based on T1 or 
uncorrected PET only. 
 

 
 

 
Fig. 6. Comparison of the LOOCV accuracy for each subject. 

 

Worst (9)
T1 

Fig. 5. The classification results from the 5 CRF models with the best and 
worst accuracy. The ‘ground truth’ classification is on the right side in each 

case. The subject IDs are in the parentheses.  
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Fig. 4. The classification results from the 5 CRF models on Subject 1. White
is bone, gray is soft tissue, and black is air. 
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Fig. 3. MRI-PET image fusion. 
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TABLE I: QUANTITATIVE EVALUATION OF CRF MODELS FOR TISSUE 
CLASSIFICATION 

Model 
CRF- 

LOOCV Error (%) Mean DSC (%) 
Mean Std. Bone Soft Tissue Air 

T 7.05 1.11 12.57 90.08 97.65
Puc 4.39 1.09 72.81 93.48 98.19
TPuc 3.03 0.77 70.39 96.32 98.95
TP 3.13 0.83 70.16 96.19 98.91
P 2.83 0.59 72.90 96.65 98.94

 
There is no statically significant correlation in LOOCV 

error between T1 based and PET based classifications, which 
can bearguedto justify that the complimentary information 
about attenuation contained in T1 and PET images should be 
combined to achieve better classification. 

 
TABLE II: EVALUATION ON PET RECONSTRUCTION QUALITY. 

RE: RELATIVE ERROR; ARE: ABSOLUTE VALUE OF RELATIVE ERROR. 

Model CRF- 
RE (%) ARE (%) 

Mean Std. Mean Std. 
T 7.6 2.6 10.7 3.9 

Puc 7.0 2.3 10.3 3.6 
TPuc 6.5 1.9 9.9 2.3 
TP 5.7 1.8 10.0 2.4 
P 6.8 1.8 9.6 2.5 

 
Example reconstructed PET images using different tissue 

classification for a representative dataset (Subject 15) is 
shown in Fig. 7. The average (over 20 LOOCV runs) RE and 
absolute RE for each model are shown in Table II. It can be 
seen that the image quality of PET reconstructed with fused 
image based attenuation correction is better than that using a 
single modality based correction in terms of RE (6.5% v.s. 
7.6% and 7.0%). As RE could be negative or positive 
reflecting an underestimation or overestimation in radiotracer 
uptake, the mean and standard deviation of the absolute value 
of RE (ARE) is a better evaluation criterion. Again, the 
inclusion of uncorrected PET image for classification yields 
better PET image reconstruction (9.9% for CRF-TPuc against 
10.7% for CRF-T and 10.3% for CRF-Puc). 

 

 
In this study, the image reconstruction method FBP was 

chosen for its simplicity. More sophisticated reconstructed 
methods could be employed to improve the PET image 
quality, especially in the case of noisy data. Poisson noise 
was not introduced to the synthetic datasets because we 

wanted to elucidate the helpfulness of uncorrected PET in 
tissue classification. To test the efficacy of the proposed 
method on clinical dataset is our future work. The effect of 
different image fusion algorithms for noisy images on the 
classification accuracy is to be investigated. 

 

IV. CONCLUSION 
In this study, we demonstrated on synthetic data that PET 

image without attenuation correction could be useful for 
attenuation correction. To combine the information, we 
trained conditional random field based classifiers on fused 
images of T1 MRI and uncorrected PET. The classification 
results on the fused images were found to be better than that 
on T1 or uncorrected PET image alone.  
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