
  

  
Abstract—This study investigates the supply chain inventory 

problems when the supply price increases and market demand 
rate depends on retail price. The purpose of this study will be to 
determine optimal special order quantity, retail price and 
production cycle by maximizing the increment of joint total 
profit. Furthermore, due to the vendor may or not provide all 
the special order quantity at the buyer’s next replenishment 
date and hence the shortage will or not occur, two specific 
situations are discussed in this study. A simple algorithm to find 
the optimal solution is developed. Finally, several numerical 
examples will be presented to demonstrate the developed model 
and solution procedure to provide manager a useful decision 
consultation. 
 

Index Terms—Inventory, deteriorating items, supply chain, 
price increase,  price-dependent demand. 
 

I. INTRODUCTION 
Due to the recent increases in the prices of oil and raw 

materials, the prices of commodities have continued to 
increase worldwide. This has become a serious problem for 
enterprises. As the vendor announces an impending price 
increase due to take effect at a certain time in the future, it is 
important for the buyer to decide whether to purchase 
additional stock before the price increase, to take advantage 
of the present lower price. In many of the existing studies in 
this area, the authors have taken the announcement of a price 
increase problem into account and have proposed various 
analytical models to gain more insight into the inferences 
relating to inventory policy. Naddor [1] was one of the early 
researchers who proposed an infinite horizon economic order 
quantity (EOQ) model where the supplier announces a price 
increase. Lev and Soyster [2] developed a finite horizon 
inventory model and determined optimal ordering policies 
based on known information about an imminent price 
increase. Later, Goyal [3] analyzed Lev and Soyster’s model 
and proposed an alternative method for determining the 
optimal policy. Taylor and Bradley [4] extended Naddor’s 
model and obtained the optimal ordering strategies for 
situations where the price increase does not coincide with the 
end of an EOQ cycle. Lev and Weiss [5] subsequently 
developed a structure of optimal policies and procedures for 
computing the optimal policy. Goyal et al. [6] presented a 
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review of a study on inventory policies under one-time only 
incentives. Tersine [7] proposed an economic production 
quantity (EPQ) model under an announced price increase. 
Ghosh [8] and Huang and Kulkarni [9] presented an 
infinite-horizon deterministic inventory model under an 
announced price increase. In contrast to single price change 
models, a small number of continuous price change models 
exist within inventory management literature. Recently, 
Sharma [10] developed inventory models on price increases 
or temporary price reductions when shortages are allowed 
and partial backordering. 

The objective of supply chain management is to be 
efficient and cost-effective across the entire system; total 
system-wide costs, from inventories to transportation and 
distribution, need to be minimized. The process of finding the 
best system-wide strategy is known as global optimization 
[11]. To accomplish global optimization in the field of 
inventory management, the concept of joint economic lot size 
(JELS) is introduced to refine the well-known classical EOQ 
model. The JELS model for a single vendor-single buyer was 
first developed and introduced by Goyal [12]. Later, Banerjee 
[13] assumed that the vendor produced on a lot-for-lot basis 
in response to orders from a single buyer, and developed the 
JELS model. Goyal [14] extended Banerjee's model by 
relaxing the lot-for-lot assumption and assumed that the 
vendor’s lot size was an integer multiple of the buyer’s order 
size and examined a model for a single vendor-single buyer 
production inventory system. Furthermore, Lu [15] relaxed 
Goyal’s assumption of a single vendor-single buyer and 
proposed a model in which the vendor could actually supply 
the purchaser in a number of equal smaller lot-sizes, even 
before completing the entire lot. Hahm and Yano [16] and 
Aderohunmu et al. [17] developed an integrated model to 
minimize the total relevant inventory cost for both the vendor 
and the buyer, which included transportation cost. Goyal [18] 
also allowed the first shipment to be made before the whole 
lot was produced, and proposed a policy in which the 
quantity delivered to the buyer was not identical every 
replenishment. Further literature in support of this includes 
[19]-[22].  

Nevertheless, a weakness in above inventory models is 
that they neglect the deterioration of goods, a common 
phenomenon. It is well known that certain products, such as 
medicine, volatile liquids, fruits, and vegetables, will 
vaporize, spoil, or damage over time. For such products, 
losses due to deterioration cannot be ignored when 
determining the optimal ordering policy. Inventory problems 
relating to deteriorating items have been studied widely, for 
example Ghare and Schrader [23] were the first to establish 
an EOQ model for an exponentially-decaying item, for which 
there is constant demand. Later, Covert and Philip [24] 
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extended this model and obtained an EOQ model for a 
variable deterioration rate, by assuming a two-parameter 
Weibull distribution. Philip [25] then developed an inventory 
model with a three-parameter Weibull distribution 
deterioration rate. Shah [26] extended Philip’s model and 
considered the circumstances in which a shortage is allowed. 
Goyal and Giri [27] provided a detailed review of the 
deteriorating inventory literature since the early 1990s. 
Bakker et al. [28] have recently undertaken an up-to-date 
review of the advances made in the field of inventory control 
of perishable items (deteriorating inventory) since 2001. 
There is a vast amount of literature on deteriorating items, an 
outline of which can be found by reviewing [29]-[31] and 
others. 

Consequently, the contribution of this paper, relative to 
previous studies, is that we explore a vendor-buyer supply 
chain inventory in the context of the following three issues: 
(1) when the buyer is informed by the vendor of a future price 
increase and decides whether to make a special order before 
the increase, and what their new retail price should be; and (2) 
the goods deteriorate at a constant rate. Furthermore, due to 
the vendor may or not provide all the special order quantity at 
the buyer’s next replenishment date and hence the shortage 
will or not occur, two specific situations are discussed in this 
study.  

II. NOTATION AND ASSUMPTIONS 
The following notation and assumptions are used in this 

study: 

A. Notation 

c vendor’s unit production cost before the material price 
increase 

rc vendor’s unit production cost after the material price 
increase, cr>c 
v vendor’s unit supply price (i.e., buyer’s unit purchasing 
cost) before the material price increase, v>c 

rv vendor’s unit supply price (i.e., buyer’s unit purchasing 
cost) after the material price increase, vr>cr 
p buyer’s unit retail price when the unit purchasing cost is
v , p>v 

rp buyer’s unit retail price when the unit purchasing cost is

rv , pr>vr 

sp buyer’s unit retail price for the special order quantity, a 
decision variable 

)( pD market demand rate, which is a decreasing function of 
the unit retail price. 
S vendor’s setup cost per setup 

A buyer’s ordering cost per order 

P vendor’s production rate 

vh vendor’s holding cost rate, as a fraction of the cost of the 
item carried in inventory per unit time, 0<hv<1 

bh buyer’s holding cost rate, as a fraction of the cost of the 
item carried in inventory per unit time, 10 << bh  

deterioration rate of the material, where 10 <≤ vθ  and is a 
constant 

bθ deterioration rate of the product, where 10 <≤ bθ  and is 
a constant 

π Buyer’s unit shortage cost per unit time 

Q buyer’s economic order quantity (vendor’s economic 
production quantity) before the material price increase 

rQ buyer’s economic order quantity (vendor’s economic 
production quantity) after the material price increase 

sQ buyer’s special order quantity (vendor’s special
production quantity) before the material price increase, a 
decision variable. 

T the length of buyer’s replenishment cycle time before the 
material price increase 

vT the length of vender’s production cycle time before the 
material price increase 

rT the length of buyer’s replenishment cycle time after the 
material price increase 

vr
T the length of vender’s production cycle time after the 
material price increase 

cT the length of time interval until the buyer places a special 
order.. 

sT depletion time for the quantity sQ , a decision variable 

vsT production time for the quantity sQ , a decision variable

st the length of time in which the inventory is shortage, a 
decision variable 

),( TpJTP joint total profit per unit time during the
replenishment period T. 

),( rrr TpJTP joint total profit per unit time during the 
replenishment period Tr. 

),(1 ss Tpg joint total profit increase between the special 
order and regular order during the special cycle time for case 
1.

),,(2 sss Ttpg joint total profit increase between the special
order and regular order during the special cycle time for case 
2. 

B. Assumptions 
1) There is single-vendor and single-buyer for a single 

product in this model. 
2) The buyer orders a lot of size Q per order. The vendor 

produces and delivers Q units to the buyer in each 
production run. 

3) For the vendor, shortages are not allowed whether the 
buyer makes a general or special order. For the buyer, 
shortages are allowed when making a special order. 

4) When shortages occur, the unsatisfied demand is 
complete backlogged. 

5) When the material price increases, the vendor will reflect 
it on the supply price (i.e., the buyer’s purchase cost). In 
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turn, the buyer will also reflect its purchase cost on the 
retail price.  

6) The demand rate D(p) is a non-negative continuous 
function of the retail price p, and satisfies D’(p)<0 and 
D’’(p)≤0. 

7) In general, the special order quantity at the present price, 
Qs, is always greater than or equal to the optimal 
economic order quantity before the purchasing price 
increase, Q*, i.e., Qs ≥ Q*. 

8) There is no replacement or repair of deteriorated units 
during the period of the consideration. 

9) The replenishment is instantaneous and the lead time is 
zero.  
 

III.  MODEL FORMULATION 
The integrated inventory system evolves as follows: the 

buyer orders Q units per order and the vendor delivers Q 
units to the buyer in each shipment. Following, we first 
establish the joint total profit per unit time before the price of 
material increases. And then the joint profit increase between 
the special order and regular order during the special cycle 
time is developed.  

A. The Buyer’S Total Profit Per Unit Time 
The depletion of the inventory occurs due to the combined 

effects of demand and physical deterioration. Hence, the 
change in inventory level before the purchasing price 
increase can be illustrated by the following differential 
equation: 

)()(/)( pDtIdttdI b −−= θ ,  Tt <<0 .   (1) 

Given the boundary condition I(T)=0, the solution of (1) can 
be represented by  

b
tTbepDtI θθ /]1)[()( )( −= − , Tt ≤≤0            (2) 

Thus, the order quantity is given by 

b
TbepDIQ θθ /)1)(()0( −== .                (3) 

Prior to the purchasing price increase, the buyer follows the 
regular economic order policy with unit purchasing cost, v, 
and sell them with unit retail price, p. In this situation, the 
total profit during the replenishment period T  is the total 

revenue ( ∫
T

dtpDp
0

)( ) minus the total relevant costs which 

are including the ordering cost (A), purchasing cost (vQ) and 

holding cost ( ∫
T

b dttIvh
0

)( ). That is, 

∫∫ ++−
T

b

T

dttIvhvQAdtpDp
00

])([)(  

( ) .1)()()()( 2 ATepvDhTpDvp b
T

b

bb b −−−+−−= θ
θ

θ θ

 
(4) 

Therefore, the buyer’s total profit per unit time is 

⎩
⎨
⎧ −= TpDvp

T
TpPBT )()(1),(                                              

( )
⎪⎭

⎪
⎬
⎫

−−−+− ATepvDh
b

T

b

bb b 1)()(
2 θ

θ
θ θ . (5) 

B. The Vender’S Total Profit per Unit Time 
The change in inventory level before the price of material 

increase can be illustrated by the following differential 
equation: 

)(/)( tIPdttdI vv θ−= ,  vTt <<0 .   (6) 

Given the boundary condition Iv(0)=0, the solution of (6) can 
be represented by  

v
t

v
vePtI θθ /)1()( −−= , vTt <<0 .              (7) 

Thus, the production quantity in a production cycle is 

v
vTv

vv ePTIQ θθ /)1()( −−==
                 

(8) 

Prior to the material price increase, the vender follows the 
regular economic production policy with unit production cost, 
c, and sell them with unit supply price, v. In this situation, the 
total profit during the production period Tv is the total 
revenue (vQ) minus the total relevant costs which are 
including the set-up cost (S), production cost (cPTv) and 

holding cost ( ∫
vT

vv dttIch
0

)( ). That is, 

∫−−−
vT

vvv dttIchcPTSvQ
0

)(  

SeTPchvPTcv vTv
vv

v

vv
v −−−

+
+−= − )1()()(

2
θθ

θ
θ .    (9) 

Therefore, the vendor’s total profit per unit time is 

    ⎢
⎣

⎡ +
+−=

2

)()(1)(
v

vv
v

v
v

PchvPTcv
T

TPVT
θ

θ  

⎥
⎦

⎤
−−−× − SeT vv T

vv )1( θθ .                                (10) 

C.  The Joint Total Profit per Unit Time 
Once the buyer and vendor have built up a long-term 

strategic partnership, they can jointly determine the best 
policy for both parties. Accordingly, the joint total profit per 
unit time can be obtained as the sum of the buyer’s and the 
vendor’s total profits per unit time. That is, 

=),,( vTTpJTP )(),( vTTPVTpPBT +
 

( )
T
ATe

T
pvDhpDvp b

T

b

bb b −−−+−−= 1)()()()( 2 θ
θ

θ θ

 

v

vTv
vv

vv

vv

T
SeT

T
PchvPcv −−−++−+ − )1()()(

2
θθ

θ
θ .   (11) 

 
From (3) and (8), we have b

TbepD θθ /)1)(( −  

v
vTveP θθ /)1( −−= , and hence 

 
v

Tb
vbbv epDPPT θθθθ θ /)}]1)((/{ln[ −−= .       (12) 

 
It notes that )1)(( −> Tb

vb epDP θθθ . Substituting (12) into 
(11), JTP(p, T, Tv) can be reduced to JTP(p, T) and is given 
by 
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( )1)()()()(),( 2 −+−+= Tb

b

bb

b

bb e
T

pvDhpDvhpTpJTP θ

θ
θ

θ
θ

 

]
)1)((

ln[

)1)(()()(

−−

−−+
+−

+
−

Tb
vb

b
b

vb
Tb

vv

v

vv

epDP
P

SepDchv
T
AcPh

θ

θ

θθ
θθ

θθθ
θ

θ
.                

                                                                                 (13)
 The objective of this problem is to determine the optimal 

pricing, ordering and production policies that correspond to 
maximizing the joint total profit per unit time. The optimal 
solutions can be obtained by using the following search 
procedure: We first prove that for any given retail price p, the 
optimal value of T not only exists but also is unique. And then 
for any given value of T, there exists a unique sell pricing p to 
maximize the objective function. The processes of proofs are 
similar to [32-34], and hence are omitted here. Once the 
optimal retail price, p*, and the length of replenishment cycle 
time, T*, are obtained, the length of production cycle time, Tv

*, 
and the optimal order quantity, Q*, are given as follows: 

 

v
T

vbbv
bepDPPT θθθθ θ /)}]1)((/{ln[

*** −−= ,       (14) 
and 

b
TbepDQ θθ /)1)((

*** −= .                    (15) 

Next, when the supply price changes from v to vr due to the 
production cost changes from c to cr, if the buyer does not 
replace a special order before the price increases, then he/she 
will reflect the supply price changes on the retail price. Hence, 
the retail price increases from p to pr. In this situation, the 
joint total profit per unit time becomes 

 

( )1
)()()()(

),( 2 −
+

−
+

= rTb

rb

rrbb

b

rrbrb
rrr e

T
pDvhpDvhp

TpJTP θ

θ
θ

θ
θ

)]]1)((/[ln[
)1)(()()(

−−
−−+

+−
+

−
rTb

rvbbb

vb
rTb

rrvrv

rv

rvv

epDPP
SepDchv

T
APch

θ

θ

θθθθ
θθθ

θ
θ

.                                                       

(16)
 By using the similar argument as above, once the optimal 

retail price, pr
*, and the length of replenishment cycle time, 

Tr
*, are obtained, the optimal length of production cycle time, 
*

vr
T , and order quantity, Qr

*, are as follows: 
 

v
T

rvbbr
rb

v
epDPPT θθθθ θ /)}]1)((/{ln[

*** −−= ,       (17) 
And 

b
T

rr
rbepDQ θθ /)1)((
*** −= .                    (18) 

Subsequently, when the vendor announces a supply price 
increase (from v to vr) that is effective starting on a particular 
future date, the buyer may place a special order to take 
advantage of the relative lower supply price before the price 
increases. In order to response the marketing situation, the 
buyer will reflect supply price changes on retail price.  

Our purpose is to determine the optimal special order 
quantity and the retail price by maximizing the joint total 
profit increase between special and regular orders during the 
depletion time of the special order quantity. Due to the 
vendor may or not provide all the special order quantity at the 
buyer’s next replenishment date and hence the shortage will 
or not occur, two specific situations are discussed in this 

study: (i) *TTT
vsc ≤+  and (ii) *TTT

vsc >+ . Next, we will 
formulate the corresponding joint total profit increasing 
function for these two cases. 
Case 1: *TTT

vsc ≤+  
In this case, the vendor can provide all the special order 

quantity at the buyer’s next replenishment date and hence the 
shortage will not occur. If the buyer decides to adopt a special 
order policy and orders Qs units, then the inventory level at 
time t  will be  

b
tT

ss
sbepDtI θθ /]1)[()( )( −= − , sTt ≤≤0 .       (19) 

The special order quantity with the original unit purchasing 
price, v, is  

b
T

sss
sbepDIQ θθ /]1)[()0( −== .             (20) 

For the buyer, the total profit of the special order during the 
time interval [0, Ts] (denoted by TPBS1(ps, Ts)) is equal to 
total revenue minus the total relevant cost which consists of 
the ordering cost, purchasing cost and holding cost, and can 
be expressed by 

21

)()()()(),(
b

sbb
sssss

pvDhTpDvpTpTPBS
θ

θ +
−−=            

( ) ATe sb
Tsb −−−× 1θθ .                          (21) 

As to the vendor, if the buyer decides to adopt a special 
order policy and orders Qs units, the inventory level at time t 
will be  

v
t

s
v

v
ePtI θθ /)1()( −−= , 

vsTt <<0 .           (22) 

Thus, the special production quantity is given by 

v
T

sss
vsv

vv
ePTIQ θθ /)1()( −−== .             (23) 

Similarly, the total profit of the special order during the time 
interval [0, Tsv] (denoted by TPVS1(Tsv)) is equal to total 
revenue minus the total relevant cost which consists of the 
set-up cost, production cost and holding cost, and can be 
expressed by 

)1()()()(
21

vsv

vvv

T
sv

v

vv
ss eTPchvPTcvTTPVS θθ

θ
θ −−−

+
+−=                   

S− . (24) 

Consequently, the joint total profit when the buyer decides to 
adopt a special order policy can be obtained as the sum of the 
buyer’s and the vendor’s total profits per unit time. That is, 
 

)(),(),,( 111 vsssvsss TTPVSTpPBSTTTpJTPS +=
 ( ) ATepvDhTpDvp sb

T

b

sbb
sss

sb −−−+−−= 1)()()()( 2 θ
θ

θ θ

 
SeTPchvPTcv vsTv

vsv
v

vv
vs −−−++−+ − )1()()(

2

θθ
θ

θ .(25) 

From (20) and (23), we have  

v
sTb

svbbvs epDPPT θθθθ θ /)}]1)((/{ln[ −−= .         (26) 

It notes that )1)(( −> sTb
svb epDP θθθ . Hence, JTPS1(ps, Ts, 

Tsv) can be reduced to JTPS1(ps, Ts) as  
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SATpDvhpTpJTPS
b

ssbsb
ss −−+=

θ
θ )()(),(1

 

22

)()1)(()(

v

vv

bv

sTb
svbbv cPhepDvhch

θ
θ

θθ
θθ θ +−−−+  

]
)1)((

ln[
−−

×
sTb

svb

b

epDP
P

θθθ
θ

.                (27) 

Due to *TTT
vsc ≤+ , substituting 

vsT  in (26) into the 
inequality *TTT

vsc ≤+ , we have 

U
sv

sv
cTTv

b

b
s T

pD
pDePT ≡+−≤

−−

]
)(

)(]1[ln[1 )*(

θ
θθ

θ

θ

.     (28) 

If the vendor and buyer adopt its regular EPQ and EOQ 
policies, then the joint total profit during the time interval 

],0[ sT  will be divided into two periods (see Figure 1). In the 
first period, the buyer orders Q* units at the unit purchasing 
price v and retail price p. The corresponding joint total profit 
is similar (11), and is ***** )(),( vv TTTPVTTpTPB + .    (28) 
 

 

sQ

sQ

Q

Q

rQ

rQ

vT

T sT

vs
T

cT

 
Fig. 1. Special vs. regular order policies when *TTT vsc ≤+ . 

As to the rest period, the vendor and buyer follows regular 
EPQ and EOQ policies with the unit production cost cr, 
purchasing price vr and retail price pr. Thus, the joint total 
profit during the rest period is  

])(),([
)( *****

**

**

rr
r

v
vvrrrrr

vr

vss TTTPVTTpTPB
TT

TTTT
+

+
+−+

 
,      (29) 

where 
vsT  is shown as in (26)

 Consequently, the joint total profit of a regular EPQ and EOQ 
policies during the time interval [0, Ts] (denoted by 

),(1 ss TpJTPN ) is 

**

**
*****

1

)(
)(),(),(

rvr

vvss
vvss TT

TTTT
TTTPVTTpTPBTpJTPN

+
+−+

++=

                       
])(),([ *****

rr vvrrrrr TTTPVTTpTPB +× .        (30)
 Comparing (27) with (30), the joint total profit increase for 

Case 1 can be given by 

),(),(),( 111 ssssss TpJTPNTpJTPSTpg −= ,       (31) 

where JTPS1(ps, Ts) and JTPN1(ps, Ts) are shown as in (27) 
and (30). 

Due to the high-power expression of the exponential 
function, we could not obtain a sound result. Instead, we first 
prove that for any given the buyer’s selling price ps, the 
optimal value of Ts not only exists but also is unique. And 
then for any given value of Ts, there exists a unique sell 
pricing ps to maximize the joint total profit increase. Due to 
limited contexts available, we omit the solution procedure 
and the algorithm here.     
Case 2. *TTT

vsc >+  
   In this case, the vendor is unable to provide all the special 
order quantity at the buyer’s next replenishment date and 
hence the shortage will occur. If the buyer decides to adopt a 
special order policy and orders Qs units, then the inventory 
level at time t will be  

         ⎩
⎨
⎧

≤≤−
≤≤−

= − .,/]1)[(
,0,)(

)( )(

*

ssb
tsTb

s

s
s TttepD

tttpD
tI

θθ

      
(32) 

The special order quantity with the original unit purchasing 
price, v, is  

              
sb

tT
ss tpDepDQ ssb )(/]1)[( *)( +−= − θθ .          (33) 

For the buyer, the total profit of the special order during the 
time interval ],[ ss Tt  (denoted by ),,(2 sss TtpTPBS ) is equal 
to total revenue psD(ps)(Ts-ts)+ p*D(p*)ts, minus the total 
relevant costs which consist of the ordering cost A, 
purchasing cost vQs, holding cost ∫

s

s

T

t
sb dttIvh )( , and 

shortage cost ∫ −
st

s dttI
0

)(π , and can be expressed by 

s
b

sssbsb
sss tpDvp

tTpDvhp
TtpPBST )()(

))(()(
),,( **

2 −+
−+

=
θ

θ

                              AtpDepvDh s

b

tT
sbb

ssb

−−−+−
−

2
)(]1)[()( 2*

2

)( π
θ

θ θ

.(34) 

As to the vendor, the total profit of the special production 
during the time interval [0, Tsv] (denoted by TPVS2(Tsv)) is the 
same as Case 1, and can be expressed by 

                   
)()( 12 vsvs TTPVSTTPVS = .  

Consequently, the joint total profit when the buyer adopts a 
special order policies can be obtained as the sum of the 
buyer’s and the vendor’s total profits per unit time. That is, 

 
 

SAtTpDvhpTTtpJTPS
b

sssbsb
ssss v

−−−+=
θ

θ ))(()(),,,(2

 

2
)(]1)[()()()(

2*

2

)(
** s

b

tT
sbb

s

tpDepvDhtpDvp
ssb π

θ
θ θ

−
−+

−−+
−
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From (23) and (33), we have  
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That is, JTPS2(ps, ts, Ts, Tsv) can be reduced to JTPS2(ps, ts, Ts) 
and is given by 
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2
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⎥
⎦

⎤
⎢
⎣

⎡

+−−
× − })(]1)[({

ln *)(
sb

tT
svb

b

tpDepDP
P

ssb θθθ
θ

θ .       (37) 

                         
If the buyer adopts its regular order policy, then the joint 

total profit of a regular order during the time interval [0, Ts] 
will be divided into two periods (see Figure 2). In the first 
period, the buyer orders Q* units at the unit purchasing price 
v and retail price p. The corresponding joint total profit is 
similar to (11), and is ***** )(),( vv TTTPVTTpTPB + .  
As to the rest period, the vendor and buyer follows regular 
EPQ and EOQ policies with the unit production cost cr, 
purchasing price vr and retail price pr. Thus, the joint total 
profit during the rest period is  

])(),([
)( *****

**

**

rvrvrrrrr

rvr

vvss TTTPVTTpTPB
TT

TTTT
+

+
+−+

.      (38) 

Consequently, the joint total profit of a regular EPQ and EOQ 
policies during the time interval [0, Ts] (denoted by JTPN2(p, 
ts, Ts)) is 

*****
2 )(),(),,( vvsss TTTPVTTpTPBTtpJTPN +=                

])(),([
)( *****

**

**

rvrvrrrrr

rvr

vvss TTTPVTTpTPB
TT

TTTT
+

+
+−+

+ . (39) 

Comparing (37) with (39), the joint total profit increase for 
Case 2 can be given by 

),,(),,(),,( 222 sssssssss TtpJTPNTtpJTPSTtpg −= ,  (40) 
where JTPS2(ps, ts, Ts) and JTPN2(ps, ts, Ts) are shown as in 
(37) and (39). 

sQ

sQ

Q

Q

rQ

rQ

vT

T
sT

vs
T

st

cT

  
Fig. 2.  Special vs. regular order policies when *TTT vsc >+ . 

Similarly, due to the high-power expression of the 
exponential function, we could not obtain a sound result. 
Instead, we first prove that for any given the buyer’s selling 
price ps, the optimal value of (ts, Ts) not only exists but also is 
unique. And then for any given value of (ts, Ts), there exists a 
unique sell pricing ps to maximize the joint total profit 
increase. Due to limited contexts available, we omit the 
solution procedure and the algorithm here.   

Finally, we develop a simple algorithm to illustrate the 
step-by-step solution procedure for finding the optimal 
solution as follows. 
Algorithm 
Step 1. Determine *T , *Q , *p , *

rT , and *
rp , respectively. 

Step 2. Calculate optimal value of  (ps, Ts, Tsv) for Case 1. 
Step 3. Calculate optimal value of (ps, ts, Ts, Tsv) for Case 2. 
Step 4. Compare 

vsT which is shown as in (26) with T*-Tc. If 
Tsv≤ T* − Tc, then substitute optimal value of (ps, Ts, 
Tsv) into (31) to evaluate *

1g  ; otherwise, set 

−∞=*
1g . 

Step 5. Compare 
vsT which is shown as in (36) with T*-Tc. If 

Tsv>T* − Tc, then substitute optimal value of (ps, ts, Ts, 
Tsv) into (40) to evaluate *

2g  ; otherwise, set 

−∞=*
2g . 

Step 6. Find ii
gMax

2,1=
. 

IV. NUMERICAL EXAMPLES 
To illustrate the optimal ordering policy, the following 

examples are presented: 
Example 1. Given an inventory system with the following 
parameters: 

D(p)=1000 − 8p, where p<125, P=1500, v=30, c=10, vr=35, 
cr=12, A=250, S=300, θb=0.06, θv=0.05, hb=0.3, hv=0.2 and 
Tc=0.2 in appropriate units. It is shown that the increase rates 
of unit production and supply price are [(cr − c)/c] 

%100× =20% and [(vr − v)/ v ] %100× =16.67%, respectively. 
From the algorithm, we can obtain the optimal retail price, 
length of replenishment cycle time and order quantity as 
shown in Table I.  

 
TABLE I: THE OPTIMAL SOLUTIONS BEFORE AND AFTER PRICE INCREASE IN 

EXAMPLE 1. 

 optimal 
retail price

optimal length of 
replenishment  cycle 

time 

optimal 
order 

quantity 
Before price 

increase 77.9650 0.72099 277.2472 

After price 
increase- regular 

order policy 
80.5059 0.70124 254.9339 

After price 
increase- special 

order policy 
76.0497 2.11075 809.876 

 
From Table I, the buyer will reflect supply price increases 

on retail price with the rate [(pr
*- p*)/p*] %100× %26.3=  

which is less than the increase rates of unit production and 
supply price. Furthermore, when the vendor announces a 
price increase that is effective starting on a particular future 
date, the optimal value of g*=g2

*=2278.51 and the change 
rate on retail price is [(ps

*- p*)/p*] %100× %46.2−= . From 
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the economical viewpoint, the buyer will place a special 
order to take advantage of current lower purchasing cost 
before supply price increases. And then he/she will reflect the 
cost saving on retail price which is related to market demand 
to increase the joint total profit.  
Example 2. The data used is the same as those in Example 1 
except we consider the case with quadratic demand function, 
D(p)=1000+8p-0.5p2, where 8<p<53.4312. Similarly, we can 
obtain the optimal retail price, length of replenishment cycle 
time and order quantity as shown in Table 2.  
 
TABLE II. THE OPTIMAL SOLUTIONS BEFORE AND AFTER PRICE INCREASE 

IN EXAMPLE 2. 

 optimal 
retail price 

optimal length of 
replenishment  cycle 

time 

optimal order 
quantity 

Before price 
increase 42.9581 0.6521 279.9334 

After price 
increase- regular 

order policy 
45.1820 0.7295 254.0873 

After price 
increase- special 

order policy 
39.0689 2.5133 1176.7884 

 
From Table II, the buyer will reflect supply price increases 

on retail price with the rate [(pr
*- p*)/ p*] %100× %18.5=  

which is less than the increase rates of unit production and 
supply price. When the vendor announces a price increase 
that is effective starting on a particular future date, the 
optimal value of g*=g2

*=4335.15 and the change rate on retail 
price is [(ps

*- p*)/ p*] %100× %05.9−= . The insights are 
similar to Example 1. 

 

V. CONCLUSIONS AND FUTURE RESEARCH 
In this paper, we investigate the supply chain inventory 

problem when the price increases where demand rate 
depends on retail price. From the point of view of the vendor, 
he/she will determine the optimal production policy with the 
increase in the price of raw material. And then he/she will 
reflect the increasing cost on supply price (the buyer’s 
purchase cost) and allow the buyer to make a special order. 
From the buyer's viewpoint, the buyer will adopt a special 
order policy to determine the optimal special order quantity 
and retail price when demand rate depends on retail price. A 
simple algorithm to find the optimal solution is provided. 
Two numerical examples are presented to demonstrate the 
developed models and solution procedures. From the 
numerical results, we have that the buyer will place a special 
order to take advantage of current lower purchasing cost 
before supply price increases. And then he/she reflects the 
cost saving on retail price which is related to market demand 
to increase the joint profit. 

The proposed model can be extended in several ways. For 
example, it is usually observed in the supermarket that 
display of the consumer goods in large quantities attracts 
more customers and generates higher demand. Hence, the 
proposed inventory model may deal with the demand rate as a 
function of the on-hand inventory. Furthermore, time value 
of money is not considered in this study. In the future, we 
hope the model can also be generalized to take time value of 
money into account. 
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