
  

  
Abstract—Among all the technologies in creating a good 

poker agent, estimating winning probability is a key issue. In 
this paper, we propose an approach to estimating winning 
probability for Texas Hold’em poker. We design a data 
structure using both the observable data from the current 
board and the history.  A Support Vector Machine classifier is 
trained and 5-fold cross-validation is employed. We create a 
poker agent with some decision making strategies to compete. 
Experimental results show that our method has outperformed 
three other agents in precision of estimating winning 
probability. 
 

Index Terms—Opponent modeling, support vector machine, 
texas hold’em poker, winning probability. 
 

I. INTRODUCTION 
Nowadays, many papers have been published and 

competitions like the Annual Computer Poker Competition 
have attracted many researchers' interest [1]. The following 
are some most important properties of poker [2]. 
1) Imperfect information. This property creates a necessity 

for using and coping with deception and ensures a 
theoretical advantage of using randomized mixed 
strategies. 

2) Non-deterministic dynamics. This means that the cards 
we get are stochastic. 

3) Partial observable. We can’t always know the opponent's 
hole cards, even when a game is over. 

4) Multi-players. There are two and mostly more than two 
players. 

Poker research has led to the investigation of a wide range 
of new algorithms and approaches [3]. 

Knowledge-based systems: It requires experts with 
domain knowledge to aid the design of the system. There are 
two typical categories, which are including rule-based expert 
systems and formula-based methods. For the former, a 
collection of if-then rules is created for various scenarios. For 
the latter, inputs of a numerical representation of the hand 
strength and pot odds are accepted by the system and a 
probability triple is given for a betting decision making [4]. 

Monte-Carlo simulation: It involves choice of random 
samples in the game tree and playing until a leaf node 
reached where we know the payoff value. It generally 
requests a lot of time and computing resource in simulation 
[5]. 

Game theoretic equilibrium solutions: It's a method of 
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studying strategic decision making and optimal strategies. 
The field of game theory provides tools to study situations 
where multiple agents compete and interact within a 
particular environment. Nash equilibrium is a generally 
solution in game. In current computer poker research, 
Counterfactual regret minimization described by M.B. 
Johanson is a promising algorithm, which has been used in 
both heads-up limit and no limit poker agents  [6]-[7]. 

Case-base reasoning: It is a type of method using 
algorithms like the k-Nearest Neighbor algorithm where a set 
of cases are stored and maintained that encode knowledge of 
previously situations and solutions [8]. 

Evolutionary algorithms and Neural Networks: It tries 
to evolve strong poker agents via evaluating. In these agents, 
the algorithm gives the next action [9]. 

Bayesian Network: It is a directed acyclic graph where 
each node in it represents a variable associated with 
conditional tables. The goal of the graph is to forecast the win 
rate in a certain condition [10]. 

Support Vector Machine Classifier: J. Pfund shows us 
the use of Support Vector Machine classifier in poker 
research [11]. They use the classifiers to tell which action to 
choose. 

Apart from these fields, more and more contributions have 
focused on opponent modeling nowadays. The more you 
know your opponents, the more higher rate you will win. 
Opponent modeling has been studied since 1998 [12]. 
However, not until recent years has it obtained so much 
attention [13]. 

As is summarized by AAJ van der Kleij, there are two 
essential tasks: predicting the opponent's action and 
estimating the winning probability [4]. But past papers as 
have been listed above mainly focus on the opponent's 
actions based on styles, distributions or states [13]. 
Meanwhile, there are two data sources: data from the current 
inning and the previous innings. However, present 
contribution mainly uses data from the current inning online. 
It has been ignored for these two parts integrated. From that 
we design a data structure using both data from the current 
inning and the previous innings to estimate the winning 
probability. We train a Support Vector Machine classifier 
and do 5-fold cross-validation to see the precision in 
estimating whether a certain hand in a inning will win. This 
classifier can achieve the winning probability of a certain 
hand. With this classifier we create a poker agent with some 
simple decision-making strategies and use this to compete 
with other three different poker agents. Results show that our 
method has a precision higher than 75% in average in 
estimating whether a certain hand will win. It is effective on 
building a poker agent. 

In Section II, we will give a brief introduction of Texas 
Hold’em poker. After that, we show the details of our data 
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structure design, the classifier and agent design. Section IV 
presents the experiment results with some analysis. The final 
section contains a conclusion and some directions for future 
work. 

A. Texas Hold’em Poker 
Texas Hold'em poker: In Texas Hold'em pokers there are 4 

steps in a round, which are pre-flop, flop, turn and river [2]. 
During the pre-flop all players at the table are dealt two cards 
face-down called hole cards. Before any betting takes place, 
two forced bets are contributed to the pot: the small blind and 
the big blind. The big blind is typically double that of the 
small blind. Then the first round of betting is followed. Next 
the dealer places three community cards face-up in the 
middle of the table, that is the flop step. This is followed by 
the second round of betting. Then it is the turn step, and a 
further more card face-up is added to the community cards, 
following by the third round of betting. At the last step, the 
river, the fifth face-up card is added to the community cards 
followed by the last round of betting. A showdown occurs 
after the river where the remaining players reveal their hole 
cards and the player with the best hand wins all the wagers in 
the pot. If two or more players have the same best hand then 
the pot is split amongst the winners. The possible betting 
actions are described as follows: 

 Fold: A player contributes no further wagers to the pot. 
This will abandon their hand and any right to contest the 
wagers that have been added to the pot. 

Check/Call: A player commits the minimum amount of 
wagers in order to stay. A check requires a commitment of 
zero further wagers, whereas a call requires an amount 
greater than zero. 

Bet/Raise: A player commits greater than the minimum 
amount of wagers necessary to stay. When the player can 
check, but decides to invest further wagers in the pot, this is 
known as a bet. When the player can call, but decides to 
invest further wagers in the pot, this is known as a raise. 

Limit game: In a limit game all bets are in increments of a 
certain amount. 

No limit game: In a no limit game players can wager up to 
the total amount of chips they possess in front of them. 

 

II. OUR METHOD 
In this paper, we aim to combine both data from the current 

board and the history to estimate the winning probability 
when our agent facing a certain opponent. Firstly, we design 
a data structure using both the observable data from the 
current inning and the previous innings. Then we train 
Support Vector Machines classifier and do 5-fold 
cross-validation to see the precision in estimating whether a 
certain hand in a inning will win. This classifier can tell the 
winning probability of a certain hand in a inning. With this 
classifier we create a poker agent with some simple 
decision-making strategies and use this agent to compete 
with other three different poker agents. While the 
competition is going on, we use data from previous innings to 
update our classifier. Fig. 1 shows the relation between the 
classifier and the agent. 

 
Fig. 1. The flow chart of Our Agent Design 

 
In our agent, the classifier is used to estimate winning 

probability. We will store data when a game comes to a 
showdown. This data will be used to construct the input data 
of our classifier. At the same time, we use this data to update 
the priori probability of our classifier. In the decision making 
part of our agent, it chooses a strategy like this: 
1) If the winning probability is high enough (In our 

implementation, if the probability is bigger than 0.7 we 
think it is high enough. Here 0.7 means our agent will 
win in seventy percent of cases.), we will choose to raise; 

2) If the classifier tells it will win but the winning probably 
isn't so high(In our implementation, if the probability is 
smaller than 0.7  but bigger than 0.5, we think it will win 
but the winning probably isn't so high. That is to say, in 
fifty to seventy percent of cases, our agent will win.), we 
will choose to call; 

3) In other situations, we will choose to fold. 
In the following part of this section, we will show the 

Classifier and how to estimate Winning Probability at first. 
After that we will present the details of the data structure 
design. 

A. Estimating Winning Probability and Classifier 
In our experiments, we use LIBSVM as our classifier [14]. 

It is a library for Support Vector Machines developed since 
the year 2000. It suits our goal quite well. In our experiment, 
we give it an input data and it will tell us whether we will win 
with reliability. The reliability is a probability. We use this 
probability as the winning probability. 

B. Data Structure Design 
The whole data structure combines two parts: the Current 

Part and the Historical Part. The Current Part has 129 
attributes. It is used to represent the data which can be 
obtained from the current inning. The Historical Part has 
2172 attributes. It is used to represent the data which can be 
obtained from previous innings. There are 2301 attributes in 
our final data structure. The final data structure is shown in 
Fig. 2. 
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Fig. 2. The Whole Data Structure 

 
1) The current part 

In our method, we use the current board data to construct 
the Current Part. In an inning there are three critical data we 
can use: our agent's hole cards, the board cards, the actions 
sequence of all the players. 

As there are 52 cards at most, we use 52 bytes to represent 
them. Each of the byte will be 1 or 0, in which 1 means a 
certain card exist while 0 means not. For the hole cards and 
the board cards, we use 104 bytes to represent them. 

In a 2 player limit Texas Hold’em, there are at most four 
raise actions in a single stage. That is to say, adding the 
probable call actions at the beginning and the end of a stage, 
there will be six actions at most in a stage. For all the actions 
in four stages, we use 24 bytes to represent them. Each one of 
these 24 bytes will be 1 or 0, in which 1 means the action is 
raise while 0 means call. We don't consider fold action, 
because once there is an agent takes fold action this inning 
will be over. 

In addition, as the position has some influence on the 
player's action decision, we use a byte to represent it. This 
byte takes values of 1 or 0. If this byte is 0, the opponent will 
be the first to take action. If not, our agent will be the first to 
take action. 

Adding all these bytes together, the Current part has 129 
bytes as shown in Fig. 3. 

 
Fig. 3. The Current Part of Data Structure Design 

 
2) The historical part 

The Historical Part keeps a record of the historical data 
about the opponent in the previous innings. It records 
scenarios when the opponent's cards are in different hand 
ranks. We classify the hand rank into 12 ranks based on 
traditional partition of hand ranks which could be seen in 
Table I. The new ranks could be seen in Table I. 

We can represent the Historical Part as a 12 dimensional 
array. Each dimensional represents a scenario when  the 
opponent has a certain rank of cards. In each dimension, just 
as what the Current Part has, there are bytes to represent the 
opponent's position, our agent's hole cards, the board cards 
and the action sequence. The Historical part has 52 bytes to 
represent the opponent agent's hole cards, which is what the 
Current Part doesn't have. That is to say, the Historical part 

has 2172 (= 181 × 12) bytes together as is shown in Fig. 4. 
 

TABLE I: THE 12 HAND RANKS 

Hand Example 
High card Low ♠J♥9♦7♣5♦2 
High card Middle ♠A♥J♦7♣5♦2 
High card High ♠Q♥J♦10♣9♦2 
One pair Low ♦10♥10♠8♣7♦5 
One pair High ♦A♥A♠10♣7♦5 
Two pair ♦Q♠Q♦9♥9♣4 
Three of a kind ♦7♠7♣7♥6♣3 
Straight ♦Q♠♦10♣9♥8 
Flush ♦A♦Q♦J♦9♦6 
Full house ♥Q♦Q♣Q♠5♠5 
Four of a kind ♦Q♥Q♣Q♠Q♦9 
Straight flush ♦K♦Q♦J♦10♦9 

 

 
Fig. 4. The Historical Part of Data Structure Design 

 

III. EXPERIMENT RESULTS AND DISCUSSION 

A. Experiment Setup 
In our experiments, we will do: 

1) Firstly, to prove that our data structure design is effective 
for a certain agent, we use a single agent's log data to 
train our classifier and do 5-cross validation. It is 
assumed as usual that if the precision rate is high enough, 
for example bigger than 70%, our data structure design is 
effective. 

2) Secondly, to prove that our data structure design is 
effective when facing a new player whose log data can’t 
be obtained ahead, we train a classifier with multiple 
players' log data that could be obtained in advance. We 
suppose that a new opponent's strategy should be similar 
with some agents that we have seen before. So if our data 
structure is effective the 5-cross validation results of our 
classifier will good. In this paper, we choose the 
ACPC(Annual Computer Poker Competition)'s log data 
for this experiment [1]. The ACPC's log data is described 
in Fig. 5. 

 
Fig. 5. The ACPC's Log's format 

 
3) At last, an agent integrated with our classifier is 

necessary. If our agent could be at the same level with or 
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better than other agents, it will prove that our method is 
effective. In our experiments, we use three other agents 
for comparison. These agents are: 
A Simple Random Strategy Agent The Simple 
Random Strategy Agent which we used as an opponent 
doesn't care what cards it has, it will just choose to fold, 
call or raise randomly. 
A Rule-based Agent In our Rule-based Agent, we use 
the hand rank of the agent's card hand to make decision. 
Depending on the psychological confidence on winning 
or losing of a certain hand rank, the Rule-based Agent 
will choose to fold, call or raise. In our implementation, 
if the hand rank of the agent's card hand is stronger than 
{\bf three of a kind}, it will choose to raise. If the hand 
rank of the agent's card hand is stronger than one pair, it 
will choose to call. In other situations, it will choose to 
fold. 
A Bayesain Network Agent The Bayesain Network 
Agent uses a Bayesian decision network to model the 
program's poker hand, the opponent's hand and the 
opponent's playing behavior conditioned upon the hand, 
and betting curves to randomize betting actions. It is an 
implementation based on Korb and his partners' work on 
BPP agent [9]. 

In our experiments, we use LIBSVM as our classifier [14]. 
It is a library for Support Vector Machines developed since 
the year 2000. In our experiments, the classification results 
will show whether we will win with reliability. The reliability 
is a probability which is known as the winning probability. 

The following parts B and C will show the results of these 
three tasks. 

B. Results and Analysis 
1) 5-cross Validation Results 

Precision results when using a single player's log for 
training is shown in Table II. 

 
TABLE  II: USING A SINGLE PLAYER’S LOG FOR TRAINING 

Rounds 40,000 60,000 200,000 
precision 63.57% 82.13% 79.07% 

 
From that, we can see that our method has high 

performance when using a special agent's log data for 
training. The results prove that, a Support Vector Machine 
classifier using our data structure is effective at estimating 
whether a hand will win or lose. It also proves that our data 
structure design is effective. 

Precision results when using multiple players' log for 
training is shown in Table III. 

 
TABLE III: USING MULTIPLE PLAYERS’ LOG FOR TRAINING 

Rounds(1000) 100 400 900 1,000 1,200 
Precision(%) 61.20 60.27 60.29 61.22 61.03 

 
As shown in Table III, when using multiple players' log for 

training, our classifier can make right estimation on win or 
lose in at least 60% of cases. This shows that will be effective 
to use plenty of agents log data, which could be collected in 
advance. This data will be employed to train a classifier and 
used to estimate winning probability when our agent 

competes with a new agent. 
2) Competition Results 

In the following tables, the numbers in the Win rows is a 
ratio between the money our agent wins and the small blind. 
If the number is positive/negative, it means our agent 
wins/loses some money. 

Table IV shows the match results between our agent and 
the Simple Random Strategy Opponent. 

 
TABLE IV: OUR AGENT VS THE SIMPLE RANDOM STRATEGY OPPONENT 

Rounds 2,000 20,000 200,000 
Win -0.341 -0.060 +0.312 

 
Table V shows the match results between our agent and the 

Rule-based Agent. 
 

TABLE V: OUR AGENT VS THE RULE-BASED AGENT 

Rounds 2,000 20,000 200,000 
Win -0.630 -0.283 +0.110 

 
Table VI shows the match results between our agent and 

the Bayesain Network Agent. 
 

TABLE VI: OUR AGENT VS THE BAYESAIN NETWORK AGENT 

Rounds 2,000 4,000 6,000 80,000 
Win -0.623 -0.406 -0.175 -0.015 

 
The competition results indicate our method is effective to 

create an agent and our data structure design makes our 
classifier more stable. It also justifies our suppose that a new 
opponent's strategy will be similar with some agents that we 
have seen before. And these agents' log data could be 
collected in advance. 

C. Discussion 
From the 5-cross validation precision results using a single 

player's log for training we can see that our method has high 
performance when using a special agent's log data for 
training. The results prove that, a Support Vector Machine 
classifier using our data structure is effective at estimating 
whether a hand will win. It also shows that our data structure 
design is effective. 

The results using multiple players' log for training show 
that our classifier can achieve right estimation on win or lose 
in at least 60% of cases. This means it is effective to use 
plenty agents' log data. 

The competition results indicate that our method is 
effective to create an agent and our data structure design 
makes our classifier more stable. It also implies that a new 
opponent's strategy should be similar with some agents that 
we have seen before, while these agents' log data could be 
collected in advance. 

 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we design a data structure using both the 

observable data from the current inning and the previous 
innings. Using this data structure, we train a Support Vector 
Machine classifier and do 5-fold cross-validation to see the 
precision on estimating whether a certain hand in a inning 
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will win. This classifier can achieve the winning probability 
of a certain hand in a inning. With this classifier we create a 
poker agent with some simple decision-making strategies and 
use this agent to compete with other three different poker 
agents. As the results show, our data structure design is 
effective. Using multiple players' log for training, our 
classifier can make right estimation on win or lose in at least 
60% of cases. Our agent design can achieve nearly the same 
accuracy comparing with other agents. It indicates our 
method is effective and our data structure design makes our 
classifier more stable. Meanwhile, it implies that a new 
opponent's strategy should be similar with some agents that 
we have seen before, while these agents' log data could be 
collected in advance. 

For the future, we will work on the following: 
1) More comprehensive decision-making strategies In 

the implementation of our agent, we just divide the 
probability of winning into three parts and make a 
decision to fold, call or raise accordingly. More 
comprehensive strategies like adding Monte Carlo 
simulations is essential in order to see the real potential 
of our method in creating computer poker players. 

2) Real-world training data and competition Training 
with real competition data is interesting to compete with 
human poker experts. 
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