
  

  
Abstract—We develop a method for combined object 

detection and segmentation in natural scene. In our approach 
segmentation and detection are considered as two faces of the 
same coin that should be combined into a single framework. 
There are two main steps in our strategy. First we focus on the 
learning of a visual vocabulary that efficiently encompasses 
objects’ appearance, spatial configuration and underlying 
segmentation. This vocabulary is used within a Hough voting 
framework to produces object’s configuration.  The second step 
consists in searching for valid objects’ configurations by 
interpreting and scoring them in terms of both detection and 
segmentation.  This allows us to prune false detections and 
hallucinated object-like segmentation. Experiments show the 
advantage of the combined approach and the improvements 
over recent related methods. 

 
Index Terms—Object recognition, random forest, hough 

votes. 
 

I. INTRODUCTION 
Mimicking the human vision system’s ability to identify an 

object and to isolate it from its environment is one of the most 
challenging tasks in the field of computer vision. A 
tremendous amount of work has been done over the years, 
leading to different formulation of the problem and different 
approaches in handling this task.  

One of the major approaches is the object detection 
problem in which objects’ scales and locations within the 
images are to be discovered. Another major approach is the 
object segmentation problem where images are divided into 
regions with some of them being the objects’ boundaries. 
One can see that while being different these two problems are 
strongly related. Several approaches have been proposed to 
combine detection and segmentation [1]-[4]. A 
straightforward approach consists in performing the 
segmentation within the object bounding box provided by a 
strong detector [5], [6]. While offering accurate segmentation, 
such method heavily depends on the quality of the detection 
results. Moreover no feedbacks from the segmentation 
process are provided to the detector.    
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Fig. 1. Example results of our proposed combined object detection and 
segmentation approach. The combination of segmentation and detection 

improves the accuracy of both detection and segmentation processes. 
 

Ramanan [7] has shown that by using the segmentation to 
verify detection hypothesis, one could significantly improve 
the detection performances. Nevertheless, in their approach 
detection and segmentation are performed sequentially thus 
ignoring the interactions between them.  

ObjCut [4] provides an elegant method allowing detection 
and segmentation process to continually interact with each 
other. Using MRFs with a layered pictorial structure the 
algorithm can achieve object detection along with high 
accuracy segmentation within natural scene. The total 
number of parts in the pictorial structure and their parameters 
are fairly limited which makes their model very sensitive to 
viewpoint variations. 

The Implicit Shape Model (ISM) [1] provides an 
interesting way to combine detection and segmentation 
within a single framework. The idea is to learn a visual 
dictionary of local appearance and its spatial distribution over 
a star shaped model. At training time the visual dictionary is 
enriched with underlying segmentation mask and the 
matching location in regards to the object center. At run time 
the dictionary is used within a Hough voting framework to 
casts votes for the object location. A segmentation mask is 
inferred from visual words’ local segmentation masks. 

The ISM framework has several drawbacks. The learning 
of the visual dictionary of local appearances and its spatial 
distribution over the star shape model are learned 
independently.  Moreover only positive samples can be used 
to generate the visual words (VW). Finally the aggregation of 
evidence within the Hough accumulator often leads to false 
detection on cluttered background. Over the years several 
modifications of the ISM framework have been proposed, 
mainly focusing on learning a better visual dictionary and 
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improving the voting procedure [8]-[10]. 
In our work, we present a method for combined object 

detection and segmentation within natural scene based on 
Random forest (RF) and the ISM framework. Our 
contribution is threefold; first we propose a way to learn a 
visual dictionary optimized for combined detection and 
segmentation.  The appearance of the visual words, their 
distribution over the star shaped model and the underlying 
segmentation mask are jointly learned. Our second 
contribution lies in the efficient evaluation of the quality of 
the aggregated evidence within the accumulator.  Each 
configuration maxima from the Hough accumulator are 
independently scored in terms of detection and segmentation. 
These scores are used to estimate the quality of the evidence 
combinations. Our last contribution consists of illustrating 
the benefits taken from performing segmentation and 
detection within the same framework. We show 
improvements in detection and segmentation performances 
when combining both processes. 

 

II.  GENERATING OBJECT CONFIGURATIONS 
In our approach, object recognition relies on the 

generation of a set of candidate object configurations which 
are then scored in terms of detection and segmentation (see 
Fig. 2).  We define an object configuration ( , )h = c m  as an 
assembly of parameters c  related to the object detection i.e. 
the target object position and scale with parameters m related 
to the object segmentation. Similarly to [1] we use a visual 
dictionary to make assumptions about the objects’ 
configurations. These assumptions, called votes, are 
collected into a Hough accumulator ( , , )H x y s , where the 
candidate configurations are searched as local maxima. 
 

 
Fig. 2. Overview of our framework. The visual dictionary is matched against 
a test image. Each matching VW casts votes for the object configuration into 

an accumulator. Strongly supported configurations are scored in terms of 
detection and segmentation. True object configurations are required to have 

high scores for both detection and segmentation. 

A. Voting for Detection Parameters 
The voting procedure for the detection is defined as follow. 

Let f  be an image feature extracted at location l . We match 
the visual dictionary against f  to obtain a set of valid visual 

words { }iW , hereafter called support evidences. The 
conditional probability of an object O  existing at the 
position c within the voting space is computed as: 
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The first term is the distribution of the object’s center 
position for a given VW. The second term specifies the 
confidence for a VW to be related to the target object. The 
last term describe the quality of the match between a feature 
and the matching visual words. So the pseudo probability of 
an object O  at location c  is defined as: 

 
( , ) ( , | , ) ( , )k k k k

k
p O p O f l p f l=∑c c  ,       (2) 

with k  the total number of features extracted from the test 
image. Setting the accumulator dimensions to be equal to the 
test image dimensions, we have a direct relation between 
positions in voting space and in the image space. 

B. Voting for Segmentation Parameters 
Aside from voting for detection parameters, the support 

evidences need to vote for the segmentation parameters m . 
Being directly related to the target object, the support 
evidences provide local interpretations of the image content. 
Assembling the local interpretations agreeing on a same 
object configuration allows inferring a global interpretation 
for the target object. Especially one can compute a 
back-projected segmentation mask m  as explained in 
section IV.A. To do so we need to store additional 
information about the support evidences. A single vote from 
a feature kf  stored at c  in the accumulator is: 

 
( ), ( , | , ), ,{ }c k k k k i kv p O f l l W= c ,          (3) 

 
with ( , | , )k kp O f lc  the confidence of the vote and kl  the 
extracted feature location. The accumulation of votes from 
multiple features for a configuration at location c becomes: 
 

( )( , ),{ },{{ } }c k i kv p O l W= c ,               (4) 
 

where ( , )p O c  is the confidence for the target object O  to be 
found at position c . The corresponding configuration 

( ),h = c m is composed of ({ },{{ } })k i kl Wψ=m  the 
back-projected segmentation mask and ( , , )x y sc c c=c  the 
3D location within the accumulator. 
 

III. LEARNING A VISUAL DICTIONARY 
The visual words are used to cast votes for the objects 

configurations which makes them crucial to the performances 
of the algorithm. A particular attention needs to be paid to 
their design. 

A. Training Data 
Our training data is a set of local patches extracted from 

random locations within positive and negative training 
images. Each training patch ( , , , )i i i i iP A F g d=  has a local 
appearance patch iA , a ground truth local segmentation mask 

iF , a class label ig  and an offset to the object center id . For 
negative patches, the local segmentation and offset vector are 
left undefined.  
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B. Random Forest 
To learn the VW from the training patches, we grow a RF 

to act as a visual dictionary. This idea has been exploited with 
success by the past [11],[10], however, to the best of our 
knowledge, we are the first to take into account the class label, 
the offset vectors and the local segmentations into the 
learning of the visual dictionary. The idea is to grow the trees 
such as to learn discriminant local appearances for consistent 
locations relative to the object center and consistent local 
segmentations. A RF is composed of a set of trees trained 
individually as explained in the following paragraph. 

Training. Starting from the root, each node of a tree splits 
the incoming patches { }iP  into two subsets according to a 

binary test { }( ) 0,1t A → . The test simply compares the 

pixel's values at two random positions within the appearance 
patch iA .The two subsets are passed onto child nodes where 
further splitting is performed. This recursive splitting leads to 
a large number of subsets in which patches share a similar 
appearance. The path from the tree's root to a given leaf 
describes the patches’ shared appearance. Thus each leaf acts 
as a VW. In order to product strong votes for the object 
configuration, a visual word should: Be highly confident in 
voting, vote for a precise location and vote for a consistent 
local segmentation mask.  When growing a tree, we need to 
choose at each node the binary test which increases the 
potential vote's quality. We define separate uncertainty 
measurement for our three criterions. Let { }iZ P=  be a 
subset of patches leaving a given node in a given tree. The 
uncertainty over the class labels { }ig ,  offset vectors id  and 
local segmentation masks iF  are defined as: 
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with 1ig =  if the patch is a positive sample, d  and F  the 
mean offset vector and mean segmentation patch in Z . The 
first measurement tends to improve the VW discriminant 
power. The second and third uncertainty measurements 
improve the votes’ locations and segmentation mask 
accuracies.  

At each non leaf node of a tree, one of the three uncertainty 
measurements is randomly selected and used to score binary 
tests. The test which minimizes the uncertainty is kept and the 
tree is grown up to the next level. Inhibiting some of the 
uncertainty measurements will optimize the trees for either 
detection, with compact votes’ locations or segmentation, 
with large back-projected areas. The Fig. 3 show the 
influence of the training when U2 or U3 are inhibited. 

 
Fig. 3. Back-projections of confident leaves trained on Weizmann horse 
dataset.   The top, middle and bottom rows shows sample leaves from RF 
optimized for detection only, segmentation only, combined detection and 

segmentation. The combined approach takes benefit from both approaches. 
Votes are coming from compact locations, which favor detection, while the 

back-projected masks cover large local areas and preserves boundaries. 
 
When a tree's maximal depth has been reached or when the 

number of patches in a subset is too small, we create a leaf 
node and store the patches' information, that is, the number of 
positive patches { | 1}p

i iP P g= = , the total number of 

patch | |iP , the offset vectors { }id  and the set of local 
segmentations { }iF . 

Testing. At run time patches are extracted from random 
locations in the test images and passed through each tree of 
the forest. Each time a single patch from location l , reach a 
leaf node iW  a vote is casted according to (1).  The location 
distribution ( | , , )ip O W lc  is determined by the set of 
location { } { }il d= −c  weighted by a uniform 
probability1/ | |id . The probability ( | )ip O W  is estimated by 

the ratio | | / | |p
iP P . Finally the probability ( | )ip W f  is set 

uniform over the number of trees in the forest. 
 

IV. EVALUATING PROPER OBJECT CONFIGURATIONS 
Generalized Hough transform is known to be a very robust 

parameter estimation method. In our framework, it allows for 
object detection under large occlusions and poses changes. 
However the additive nature of the accumulation of 
evidences is equivalent to assuming independence between 
the support evidences. This crude assumption makes the 
Hough framework sensitive to cluttered background, which 
produces falsely confident configurations.  

This is where the combined approach shows its power. 
Obviously two adjacent support evidences are strongly 
correlated. When casting votes for the detection parameters 
the correlation of the support evidences is lost. However, the 
back-projected segmentation mask keeps the spatial 
relationship between the support evidences. One can score 
such mask to estimate if the spatial distribution of support 
evidences is compatible with a true object configuration. We 
end up with two scores for a single object configuration.  

Assuming independence between c  and m  allows to 
simplify the computation of a candidate configuration’s final 
score which is: 

( , ) ( , ) ( , )j j jP O h P O P O= c m .                  (8) 
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The probability ( , )jP O c  from (2) is the object 

configuration's detection score while ( , )jP O m  is the 

segmentation score. The finals objects’ configurations 
satisfying both detection and segmentation are defined as: 

 
* { | ( , ) }j jh h P O h υ= > ,                       (9) 

 
with υ  the threshold controlling the strictness of the 
algorithm. In the following section, we show how to compute 

( , )P O m  from the support evidences. 

A. Back-projected top-down segmentation mask. 
Similarly to the detection parameters c , the segmentation 

parameters m  which corresponding to the foreground 
labeling, are also extracted from the support evidences' votes. 
We start by collecting all the votes for an object 
configuration h  within a circular region centered at the 
configuration’s location hc . The collected votes contain a set 

of support evidences { }iW  but also their matching 

locations { }l . Reminding that local ground truth 

segmentations iF  are available for each VW word, one can 

produce a global segmentation mask by assembling these 
local segmentations. We closely follow the probabilistic 
formulation of [1] where the backprojected segmentation 
mask m is computed as a weighted sum of the local 
segmentation masks. Fig. 4 shows samples back-projected 
segmentation masks. 

 

 
Fig. 4. Back-projected segmentation masks. The first and second rows show 

the back-projected masks for respectively, false and true object 
configurations. 

B. Scoring the Segmentation Mask 
Once a back-projected segmentation mask is available, it 

can be used to score the combination of support evidence 
from which it originated. Indeed, we can observe from Fig. 4 
that proper combinations of support evidences lead to 
object-like segmentations while some of the poor 
combinations produce ill shaped segmentations. To estimate 
the quality of the support evidence combination we learn a 
scoring function on positive and negative back-projected 
masks. HoG [12] feature descriptors are extracted from each 
segmentation mask and serves as training samples for 
learning a scoring function. We used the libSVM package to 
learn the segmentation class probability ( , )P O m . The 
model's output gives the probability for a segmentation mask 
to be the target object foreground.  

V.   RESULTS 
We have tested our algorithm for detection and 

segmentation on three challenging datasets, the Weizmann 
Horse dataset [13], the TUD pedestrian dataset [14] and the 
PennFudan pedestrian dataset [2].For each dataset, the 
positive training images have been resized so that each 
object's bounding box would have its largest dimension 
approximately equal to 120 pixels. All the trees were trained 
on 18000 positive and 18000 negative patches. The training 
patches of 16 by 16 pixels were extracted at random locations 
within the bounding box of positive images and anywhere 
within negative images. For both pedestrian datasets, we used 
a subset of 600 images from the INRIA dataset [12] as 
negative training set. Each RF was composed of 5 trees.  

The SVMs used to score the segmentation masks are using 
RBF kernel and have been trained on 50 positives and 50 
negatives masks for the Horse dataset and 200 positives and 
200 negatives masks for both pedestrian dataset. A true 
detection should overlap the ground truth bounding box by 
more than 0.5. To avoid multiple detections of the same 
instance we use non-maxima suppression. 

Due to the lack of standardized evaluation measures in the 
segmentation community, we use two measurements to 
evaluate the segmentation performances. The Fscore defined 
as (2 precision recall) / (precision recall)Fscore = × × +  and 
the foreground accuracy computed as 

(intersection) / (union)Acc = . 
The Table I show the superiority of the combined approach 

over specialized approach. All the segmentation results are 
given for a detection recall of 97.7%. We can see the 
combined approach performs the best for both detection and 
segmentation. This dataset was originally built for 
segmentation which makes it not very challenging for 
detection. To better illustrate the detection’s improvements, 
we used the TUD pedestrian dataset. Fig. 5 shows the 
combined approach increased both precision and recall when 
comparing to RF optimized for detection only. We also 
improves over two Hough-based approach, the 4DISM [15] 
and the Hough Forest [10] retrained from the code available 
on their website. 

TABLE I: DETECTION AND SEGMENTATION RESULTS ON THE HORSE 
DATASET. 

  RF Det. only RF Det. + Seg. RF Seg. only
Det. EER 98.8% 98.8% 97.7% 

Seg. Fscore 78.2% 79.2% 78.9% 
 

 
Fig. 5. Detection performances on the TUD pedestrian dataset. The 
combined approach perform the best among Hough based approach. 
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The Table II shows the comparison of performance for the 
Weizmann horse dataset. At detection EER, we achieve 
better detection results and improved the segmentation 
quality by 10.1% compared to the recent related method of 
Torrent et al. [16]. We also get higher segmentation quality 
than the early bottom-up segmentation method of Ren et al. 
[17]. Finally we achieve worse segmentation but similar 
detection compared to the state of the art method [18].  
TABLE II: DETECTION AND SEGMENTATION  RESULTS  ON  THE  WEIZMANN 

HORSE DATASET AT DETECTION EER. 
Methods Seg. Fscore Det. EER Image 
Zhu [18] 89.2% 99.1% 228 

Ren et al. [17]  80.2% - 172 
Torrent et al. [16] 69.1% 97.0% 262 
RF Det. + Seg. 80.7% 98.8% 262 

 
Comparative results for the PennFudan dataset can be seen 

in Table III. We compared our results with two works having 
reported detection and segmentation results for this dataset.  

 III: DETECTION AND SEGMENTATION RESULTS ON THE PENNFUDAN 
PEDESTRIAN DATASET AT DETECTION EER.  

Methods Fscore Acc. EER Image 
Bo [5] 82.9 % 73.2 % 85.5% 101 

RF Det. + Seg. 83.7 % 72.8 % 85.4% 101 
Wang et al. [2] - - 59.5 % 345 
RF Det. + Seg. 78.4 % 64.7 % 80.7 % 345 

 
We improve detection EER by more than 20% over Wang 

et al. [2] results. They did not provide quantitative results for 
the segmentation. However visual comparisons of the 
produced masks show the higher segmentation accuracy of 
our approach (see Fig. 6). Recent results [5] have been 
published for a subset of the original database containing 
only 101 fully un-occluded pedestrians from the original 345. 
We achieve very similar performances for both the detection 
and segmentation. It should be noticed that Bo et al. [5] are 
using state of the art bottom up segmentation algorithm, 
while our segmentation is a purely top-down. Furthermore 
their segmentation results are heavily depending on the 
detection's bounding box. Our approach doesn't suffer from 
this flaw. When tested on the full dataset, we observe a 
decrease in our performances due to the heavy occlusion that 
appears within the test set. 

 
Fig. 6. Visual comparison of segmentation results for the PennFudan dataset. 
(a) Original images. (b) Wang et al. [2] segmentation results.  (c) Our results. 

VI. CONCLUSION AND DISCUSSION 
We have presented a simple method to efficiently combine 

detection and segmentation into a single framework. Both 
elements have been taken into account at training time, in the 
building of the visual vocabulary and the model but also at 
run time by scoring object configurations in term of detection 
and segmentation. The experiments have shown the 
performance improvements of the combined approach over 
specialized approach and clear improvements in comparison 
to closely related methods. The algorithm performs on par 
with state of the art for some of the tested dataset. As future 
work, we are planning to include pose estimation within our 
framework and introducing occlusion within our model. 
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