

Abstract—In this paper we propose an optimal routing

method for cars in car navigation system. The proposed method
finds the paths with a combination of Divide and Conquer
method and Ant Colony algorithm. In order to do this, the road
network is divided to small areas. Then the learning operation is
done in these small areas. Then different learnt paths are
combined together to make the complete paths. This method
causes balance and reduces the traffic in lanes of the pathes,
because it not only consider lengths of the paths for learning
operations, it also considers the other factor which is traffic
condition of the lanes of the paths. Consequently this method
reduces the average triptime of the cars in comparison with
existing Ant Colony, Genetic and Dijkstra algorithms by
reducing and balancing of road traffic. Therefore, some
improvements in the average traveling time of vehicles are
achieved. Also, this results in short and precise paths and
learning stage becomes faster.

Index Terms—Ant Colony algorithm, controlling system, car

navigation system, Divide and Conquer method, routing
algorithm.

I. INTRODUCTION
The optimal routing issue is inevitable in lots of cases

including railroad and in communication and urban road
networks.

Since the road traffic changes in rush hours and with
respect to the fact that the number of people using personal
cars increases, there is an urgent need to have a system which
can find optimal path with the short response time.

Because of the nature of the car navigation issue, as soon
as a vehicle arrives to a junction, the system must determine
the optimal path and represent it to the vehicle. If the
response time of the system is long, it will result in heavy
traffic on roads.

There are a lot of implementations for optimal routing of
vehicle in the past with certain and uncertain algorithms and
experiments show that the uncertain algorithms produce
better results in comparison to certain algorithms. Yet, each
of them has its own advantages and disadvantages which will
be discussed in detail in the following paragraphs. Much of
the researches and algorithms in this system have been based
on Dijkstra’s shortest path, Restricted Search, and A*
algorithms [6].

On the other hand, the road network is a big graph with lots

Manuscript received September 19, 2012, revised November23, 2012.
The authors are with the Marand Branch, Islamic Azad University,

Marand, Iran (e-mail: p_yousefi@marandiau.ac.ir;
r_zamani84@yahoo.com).

of edges and real-time response is necessary. So, most of the
researches attempted to optimize that parameter.

The disadvantage of these methods is that they just
consider physical distance as the only optimizing criteria and
they ignore the most important factor which is the traffic
condition of the paths.

Some other methods, which use graph partitioning with
respect to find the real time solution, are proposed in
literature but their solutions do not have high quality [7], [8].
The most important factor in these methods (graph
partitioning) is to divide the graph and to determine
intermediate edges among these sub graphs.

One of the difficulties with the above mentioned methods
is that they are not able to consider turning restriction in the
junctions and paths, i.e. Dijkstra, restricted search and A*
algorithms cannot consider these restrictions for determining
the shortest path from one node to other nodes, yet this
restriction is inevitable. Also the paths with the restricted
search algorithm may just be locally optimal [1].

In this paper, we propose a method of optimal path
searching that is based on combination of divide and conquer
method and Ant colony algorithm. This method gives
responses for driver’s requests in a short time and we can
consider restrictions such as turning left and right in the
junctions. The pathes which are found with our method are
globally optimal. So our proposed method doesn’t have most
of the restrictions and disadvantages which the previous
methods faced. To avoid confusing between two terms,
“path” and the “path which our method registers in the
nodes”, we call a learned path of proposed method as
“Antpath”. This paper is organized as follows.

In Section 2, we introduce the basic Ant Colony algorithm.
In Section 3, we explain our proposed method which is based
on divide and conquer method and Ant colony algorithm.
Section 4 deals with explanation of experiments. Section 5,
represents a pseudo code of implemented method and the last
section represents the results of the experiments.

II. ANT COLONY ALGORITHM
Real ants are capable of finding the shortest path from a

food source to the nest, without using visual ques. Also, they
are capable of adapting to changes in the environment, for
example finding a new shortest path once the old one is no
longer feasible due to a new obstacle. Ants are moving on a
straight line that connects a food source to their nest. The Ant
Colony algorithm is inspired of the behaviour of real ants and
with respect to how to use pheromone, tries to find near
optimal path or every other parameter that should be

The Optimal Routing of Cars in the Car Navigation System
by Taking the Combination of Divide and Conquer Method

and Ant Colony Algorithm into Consideration

Pirayeh Yousefi and Roghayeh Zamani

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

44

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

44DOI: 10.7763/IJMLC.2013.V3.270

optimized [3].
The method which ants use for marking these shortest

paths is called “pheromone”. In the other words, ants deposit
a certain amount of pheromone while walking and each ant
probably prefers a direction that has a high level of
pheromone. Due to this positive feedback process, all of the
ants will rapidly choose the shortest path.

There are agents in this algorithm that are called “ants”,
and they memorize all of nodes which they pass over them
and when arrive at a junction, they can determine which of
the front lanes are allowed. We do this by using an array
called Tabu list. A Tabu list contains the nodes which are
crossed over by an ant. So, an ant is not allowed to cross a
lane which led to a junction that is already inside its Tabu list.
This list is individual for each ant.

Initially, all of the paths of a node which go to all of the
edge nodes have an initial amount of pheromone. Suppose
ant ݇ is in the node ݎ and chooses node ݆ selected from
allowed nodes (nodes which are not in the Tabu list of this ant
and also are one of adjacent nodes of ݎ) with (1):

 ݆ = ൝ܽݔܽ݉݃ݎ൛[߬(ݎ, .[(ݑ [η(ݎ, ݍ ݂݅ ஒൟ௨[(ݑ ≤ ݑ ݀݊ܽ ݍ ∉ ݁ݏ݅ݓݎℎ݁ݐ ܵݑܯ

(1)

where ܵ is a random selected node according to ܲ(ݎ, ݆) (2),
which favors edges which are shorter and have a higher level
of pheromone trail, ߬(ݎ, ݆) is the amount of pheromone trail
on edge ,ݎ) ݆) , η(ݎ, ݆) is a heuristic function, which was
chosen to be the inverse of the distance between node r and ݑ . α and β are parameters which weigh the relative
importance of pheromone trail and of closeness, ܯ is the
Tabu list of vehicle ݇, ݍ is a value chosen randomly with
uniform probability in [0,1], ݍ (0 ≤ ݍ ≤ 1)is a parameter
[2].

ܲ(ݎ, ݆) = ൝ [த(,)]ಉ.[(,)]ಊ∑ [ఛ(,௨)]ഀ.[(,௨)]ಊೠ∉ಾೖ ݂݅ ݆ ∉ ݁ݏ݅ݓݎℎ݁ݐ 0ܯ (2)

 is the every node that isn’t in the Tabu list of ant ݇ and is ݑ
one of adjacent nodes of ݎ too.

To find the shortest path in the car navigation system, the
length of the edge is not important; however the total length
of path is important.

The best ant, among those that have the same sources and
destinations are the same, is the one which finds the shortest
path. There were found several paths between node a and b,
and now if the path which is found by an ant from node a to b
is shorter than previously found ones, it should be updated by
global updating (3) and (4), otherwise it should be updated
with local updating (5).

Global trail updating is as the following: τᇱ(,) = (1 − ρ). τ(ݎ, ݆) + ρ. ∆τ(ݎ, ݆) (3)

where τ(ݎ, ݆) is the amount of pheromone trail of edge (ݎ, ݆)
before being updated called “visibility”, τ′(ݎ, ݆) is the
amount of pheromone trail of edge (ݎ, ݆) after being
update, ρ is coefficient of evaporation of pheromone inspired
from natural evaporation of pheromone, ρ ∈ (0,1), ∆τ(ݎ, ݆)

is the amount of pheromone the best ant deposits on edges of
its Antpath that is inverse proportion of the length of the path.

 ∆τ(ݎ, ݆) = ଵೞ (4)

where ݈௦ is the length of the shortest Antpath.
The Antpaths from node a to node b whose lengths are

equal with previously founded Antpaths length should be
updated locally. The local trail updating equation is as
bellow:

 τ′(ݎ, ݆) = (1 − ρ). τ(ݎ, ݆) + ρ. τ (5)

where τ(ݎ, ݆) is the amount of pheromone trail of edge (ݎ, ݆)
before doing local update. τ must be smaller than ∆τ(ݎ, ݆)
which is used in (3).

The proposed method for solving the problem of optimal
path in vehicle navigation system is implemented in a java
base simulator which is called Green Light District (GLD).
Road network is generated manually in this simulator and we
can consider restrictions such as turning left or right in
junctions and lanes and we can have several types of vehicles
with different speeds. There are several traffic lights
controlling policies that can be chosen optionally, as well.

III. BRIEF EXPLANATION OF THE PROPOSED METHOD
Vehicles are considered as “ants” in this simulator and

they enter and leave road network by nodes that are called
“edge nodes”. We can set their entry frequency of vehicles
manually. Each Antpath per node i contains outgoing lanes of
it with different amount of pheromone. We do this method in
two phases:

A. Initially Learning Phase
First phase is initially learning phase. In this phase we just

consider the length of the path, and not path traffic condition.
In the other words, in this stage the learned Antpaths are
optimal according to the total length of the Antpath. One of
the goals of this stage is assigning some pheromone to the
lanes of Antpaths with Ant Colony algorithm. The other goal
is determining the Antpaths parameters such as the shortest
trip time, total length of the Antpaths. One Antpath may have
several lanes with different pheromones. This amount of the
pheromone of each lane is not unique. But the amount of
pheromone of each lane is different in the different ones. This
amount of the pheromone determines whether it is an optimal
one to achive the destinated node or not.

In this learning stage, with determining the number of sub
graphs, we divide road network into selected number of sub
graphs. Then Ant colony algorithm is running on all of these
sub graphs respectively. So, learning of total graph is done in
several short cycles.

We use Fig.1 to explain how learning of new Antpaths
from adjacent nodes is done. Each node only learns Antpaths
to edge nodes of its own sub graph. For example, in sub
graph1, nodes 7, 8, 9 and 10 learns Antpaths to edge node 2
and 3, the edge node 2 learns the Antpath to the edge node 3
and the edge node 3 learns the Antpath to edge node 2. In sub
graph 2, node 4, 5 and 6 learns the Antpaths to edge nodes 0

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

45

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

45

and 1, edge node 0 learns the Antpath to edge node 1 and
edge node 1 learns the Antpath to edge node 0. The learning
action in whole graph is starting just after the learning of sub
graphs is finished. It means that, adjacent nodes of different
sub graphs, tell its own knowledge of Antpaths to each other.
Then boundary nodes, tell new Antpaths to adjacent nodes
that are member of their own sub graphs. At this graph, node
8, 10 are the boundary nodes of sub graph 1. Node 4, 5 are the
boundary nodes of sub graph 2. So, node 8 learns Antpaths to
edge nodes 0, 1 from node 4, node 4 learns Antpaths to edge
nodes 2, 3 from node 8, node 7 learns new Antpaths from
node 8, nodes 1, 5 learns new Antpaths from node 4, and this
will be done for every node of the graph. (Each of nodes
selects the Antpath to destination x, among the Antpaths of
adjacent nodes which their destination is edge node x and
selects the shortest of them and registers the outgoing lane
that connect it to the shortest adjacent node.) In Fig.1 the
black arrows show the comparison and learning of Antpaths
among boundary nodes and the green arrows show
comparison and learning of Antpaths among the adjacent
nodes of each of sub graphs. All of the green arrows haven’t
been shown.

Fig. 2 shows a small road network which is generated in
the GLD simulator. In this map, edge nodes or destinations
are 0, 1, 2, 3 and the junctions are 4, 5, 6, 7, 8, 9 and 10. For
each of nodes, the node themself is the source of the Antpath
and the destination is one of the edge nodes. For example
L2-L6-L8 is a shortest path from node 5 to node 2.

In this method, L2 will be registered as an Antpath from
node 5 to node 2 and L6 will be registered as an Antpath from

This phase (first stage) of learning is done to assigning
amount of pheromone trail to the shortest Antpaths (Dijkstra
paths) of the graph and not to optimal paths.

In this method, as soon as a vehicle receives at a junction,
if there is a learned Antpath to the destination of it, the system
selects one of the lanes of that Antpath as a solution (else
selects one of the outgoing lanes of the current junction by
random) which the equation of selecting optimal lane of that
Antpath is: ݆ = ൜ܽݔܽ݉݃ݎ τ(ݎ, ݍ ݂݅ ௨(ݑ ≤ ݑ ݀݊ܽ ݍ ∉ ݍ ݂݅ ܵ ܯ > ݍ (6)

The (6) shows that vehicle ݇ in node ݎ, selects node s

with probability of q, if it didn’t passed it over. In the other
words, ݆ is not in the Tabu list of it and is the one of adjacent
nodes of ݎ too. If ݍ > ݍ , ܵ is selected by random
according to ܲ(ݎ, ݆) that its equation is represented as (7).

ܲ(ݎ, ݆) = ൝ த(,)∑ ఛ(,௨)ೠ∉ಾೖ ݂݅ ݆ ∉ (7) ݁ݏ݅ݓݎℎ݁ݐ 0ܯ

As mentioned above, the amount of the pheromone of the
Antpath’s lanes, are updated based on the total length of it, so
there is no parameter as a total length of the path in (7).

If there is any learned Antpath to destination of the vehicle
at current node, the system calls a function which selects a
random lane among outgoing lanes of it. Then the vehicle
enters to this random selected lane.

When a vehicle reaches to its destination, the amount of

pheromone of its path’s lanes must be updated. Each lane is
outgoing lane of one of nodes. Then the amount of
pheromone of lanes of the Antpath in each of the nodes which
include in this Antpath must be updated.

In each of nodes, If the total length of the path is smaller
than registered Antpath of that, the amount of pheromone of
this Antpath’s lane must be updated by global updating (3),
else if the length of the path is equal to registered Antpath of
that node, the amount of pheromone of this path’s lane must
be updated by local updating (5). This will be done for each
lane of the.

The value of τ0 which was used in the (5) is: τ = ଵ୬∗୪౩౦ (8)

where n is the number of nodes of the map.

B. Second Phase or Execution Phase
Second phase is execution phase, but we can consider this

stage as a learning phase too. Two phases have some
different points which we will detail in bellow. At this stage,
the shortest Antpaths have been learned, so selecting random
lanes is not allowed.

Fig. 1. A road network which is divided in two sub graphs

Fig. 2. A road network which is generated in GLD simulator

When a vehicle receives at a junction, the system finds the
Antpath which its destination is the same with the destination
of it and then selects one of the lanes of that Antpath with the
(6),(7).

When a vehicle reaches to its destination, the amount of
pheromone of its path’s lanes must be updated with (9). τ′(ݎ, ݆) = (1 − ρ). τ(ݎ, ݆) + ρ. τ (9)

We assign the pheromone to lanes of an Antpath with

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

46

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

46

relative shorter distance and balanced state of traffic on it. It
means that at this stage, τ0 is variable of physical distance
and delay of trip.

τ =
۔ۖۖەۖۖ
ۓ ܳl୮ୟ୲୦ if ݁݉݅ݐ ݅ݎݐ ௧݈௧ ≤ ୱ୮݈௦−ܳl୮ୟ୲୦݁݉݅ݐ ݅ݎݐ if ݁݉݅ݐ ݅ݎݐ௦݈௦ < ௧݈௧ ݁݉݅ݐ ݅ݎݐ ≤ (ܳᇱ ∗ ୱ୮݈௦݁݉݅ݐ ݅ݎݐ) −ܳ”ܳl୮ୟ୲୦ ݁ݏ݅ݓݎℎ݁ݐ

(10)

where ܳ, ܳᇱ and ܳ” are coefficients, ݈௧ is the total length
of the path which the vehicle passed it over, ݁݉݅ݐ ݅ݎݐ௦ is
the time which this vehicle spent from start node to
destination, ݁݉݅ݐ ݅ݎݐ௦is the shortest time which registered
on that Antpath. As shown in (10), we have negative reward
or negativeτ0, this is because of the delay of the vehicle in its
path.

According to trip time and the length of the path which a
vehicle passed it, we classify the path in (10). If the path of
the vehicle is a longer one, according to its length or its trip
time, we assign amount of negative pheromone to its lanes.

To avoid search stagnation (the situation where all of the
vehicles follow the same path, that is they construct the same
solution), the allowed range of the pheromone level is limited
to below [2].

߬(݅, ݆) = ൜߬௫ ݂݅ τ(݅, ݆) ≥ ߬௫߬ ݂݅ τ(݅, ݆) ≤ ߬ (11)

IV. EXPERIMENT CONDITIONS
We set initial amount of parameters in the initial learning

stage such as bellows: ߩ = 0.1, = ߚ , 1 = ݍ ,0 = 0.7,߬ = 1 and ߬݉ܽݔ = 5
And we set them in the execution phase such as bellows

and get the best results of our experiments:
ߩ = 0.001 , ܳᇱ = 1.3 , ” = 3 ߙ , = 1 ߚ , = 0 ݍ , = 0.6 , ߬ = 1 and ߬݉ܽݔ = 5

The implemented program is executed in pc with Intel(R)
Core(TM) 2 T700 2GH CPU and 256MB of RAM, and the
traffic lights controlling policy was relative longest queue.
This policy makes the traffic lights green for the lanes which
have relatively longer queues. This policy was selected
because of improving the results of Dijkstra algorithm to
show that despite of selecting best controlling traffic light
policy, the results of proposed method is better.

V. EXPERIMENTS
We implemented this problem with several algorithms

such as Dijkstra, Genetic, Ant Colony and proposed method
(combination of Divide and Conquer method and Ant Colony
algorithm) with GLD simulator. The results of our executions
are shown in Fig. 3. and Fig. 4. The explanation of

implementation of this problem with Genetic Algorithm was
detailed in [4], [5].

VI. THE PSEUDO CODE OF IMPLEMENTED METHOD

The initial learning phase:
 While Dijkstra paths are not found do
 Begin

 Step1.The Cars are generated at each cycle with determined
entry frequencies. A random destination will be selected
for each car.

 These should be done for each entered car:
 Step2.The car which reaches one of the junctions, if there is a

found Antpath to destination of the car on that junction,
then it will be selected with (6), (7). Otherwise, one of
the outgoing lanes of this junction will be selected
randomly.

 Step3.When a vehicle reaches to one of the edge nodes, if this
edge node is the destination of vehicle, then the amount
of pheromone of its path will be updated according to
(3),(4) or (5), (8) (depend on local or global path
conditions) and with consideration of (11). (The value
of τ which was used in (5) depends on length of the
path of the vehicle.)

 End while
Execution Phase:

 Step4.As soon as the car which reaches to the one of the
junctions, the Antpath whose distination is the same
with the distination of the vehicle will be selected. Then
one of the lanes of the selected Antpath (one of outgoing
lanes of the junction) will be selected according to (6),
(7).

 Step5.When a vehicle reaches to the edge node, the amount of
pheromone of the path of the vehicle will be updated by
(9), (10) by taking (11) into consideration. (The value of
τ in (9) depends on the length of the path of the vehicle
and its trip time.)

 The execution phase will be finished if we close the simulator.

VII. EXPERIMENTS
We implemented this problem with several algorithms

such as Dijkstra, Genetic, Ant Colony and proposed method
(combination of Divide and Conquer method and Ant Colony
algorithm) with GLD simulator. The results of our executions
are shown in Fig. 3 and Fig. 4. The explanation of
implementation of this problem with Genetic Algorithm was
detailed in [4], [5].

Fig. 3 shows the results of our experiments on a road
network with 120 nodes with entry frequency of the edge
nodes equal with 0.07 and 0.08. Entry frequency equal with
0.08 means that at each cycle of execution of the program,
0.08 numbers of vehicles enter at each edge node.

At Fig. 3, the horizontal axis shows the time steps of 50
cycles and vertical axis shows trip time average of vehicles.

In Fig. 4, we show results of execution of the algorithms
on the two graphs with 250 and 300 nodes for 2000 cycles of
time and entry frequency of 0.04.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

47

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

47

Fig. 3. Comparison of trip time average of vehicles in the road network
with 120 nodes and entry frequency of 0.08

Fig. 4. The results of execution of the algorithms on two graphs with 250
and 300 nodes for 2000 cycles of time and entry frequency of 0.04

REFERENCES

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

48

[1] M. Hashemzadeh and M. Mohammadreza, “A fast and efficient route
finding method for car navigation systems with neural networks,” IEEE,
2007.

[2] Y. Jiang, W. Wang, and Y. Zhao, “Solving the shortest path problemin
vehicle navigation system by ant colony algorithm,” in Proc. 7th
WSEAS Int. Conf. on Signal Processing, Computational Geometry and
Artificial Vision, Athens, Greece, August 24-26, 2007.

[3] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the travelling salesman problem,” IEEE
Transactions on Evolutionary Computation153–66, 1997.

[4] C. Ahn and R. S. Ramakrishna. “A genetic algorithm for shortest path
routing problem and the sizing of populations,” IEEE Trans. Evol.
Comput., 6(6), 567-569, 2002.

[5] S. Abeysundara, B. Giritharan, and S. Kodithuwakku, “A Genetic
algorithm approach to solve the shortest path problem for road maps,”
in Proc. International Conference on Information and Automation,
Colombo, Sri Lanka, December 15-18, 2005.

[6] I. Chabini and S .Lan, “Adaptation of the A* algorithm for the
computation of fastest paths in deterministic discretetime dynamic
networks,” IEEE Trans. Intelligent Transportation Systems, vol. 3, pp.
60-74, Mar. 2002.

[7] E. P. F. Chan and N. Zhang, “Finding shortest paths in large network
systems,” in Proc. of the 9th Int. Conference on Advances in
Geographic Information Systems, ACM Press, New York, NY, USA,
2001.

[8] I. Flinsenberg, “Graph partitioning for route planning in car navigation
systems,” in Proc. of the 11th IAIN World Congress, Smart Navigation
Systems and Services, Berlin, Germany, Oct. 2003.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

48

