
  

  
Abstract— In this paper a linear representation of a synthetic 

genetic regulatory network (GRN) model is derived and it is 
used for evolving linear dynamic controllers for nonlinear 
systems. A case study is considered in which running the genetic 
algorithm on the elements of the system matrix of a linear 
controller is unable to evolve and reach the control ends, while 
running the genetic algorithm on the genes of an artificial cell 
with linear regulatory networks evolves and a linear controller 
is achieved. This justifies the computational burden imposed on 
computations due to GRN dynamics as GRN representation 
increases the evolvability of the controller. 
 

Index Terms—Genetic regulatory networks, linear artificial 
cells, linear dynamic controller, genetic algorithms, 
evolvability. 
 

I. INTRODUCTION  
Biological cells’ basic control structure is governed by 

Genetic Regulatory Networks (GRNs). These networks 
consist of genes, proteins and metabolites that interact with 
each other and control the cell’s behavior [1], [2]. Modeling 
these structures has great value from two different aspects. 
On one hand it can help researchers to understand the 
underlying interconnection of cell functions and ables them 
to investigate the cell dynamics within cheap, in silico 
experiments rather than expensive in vitro experiments. On 
the other hand as GRNs show properties such as adaptability 
and robustness, artificial systems modeling genetic 
regulatory networks can be helpful for engineers to design 
GRN inspired controllers that show the same properties. In 
this usage they might have a potential to be as handy as some 
of the previously developed nature inspired tools like Neural 
Networks, Genetic Algorithms and Fuzzy logic. 

Thus far many researches have been done in modeling 
GRNs and using them to evolve controllers [3]-[9]. In our 
research first a linear model of GRN is introduced which is 
inspired by the BioSys and XBioSys models by neglecting 
nonlinearities such as saturation and protein diffusions from 
membrane to environment and vice versa [6],[10]. Section II 
is dedicated to introducing the artificial cell model. In Section 
III the application of the artificial cell model as a controller is 
explained and then the linear state space equations of the 
model are derived. Further in Section IV a case study is 
investigated for evolving linear dynamic controllers for 
which the simple genetic algorithm on the elements of the 
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system matrix of the controller fails to evolve while the linear 
artificial cell successfully evolves and reaches a linear 
controller. This shows the potentiality of the linear artificial 
cell in representing an evolvable formulation of linear 
dynamic controllers. 
 

II. ARTIFICIAL GRN MODEL 
In this section a model of the synthetic cell is explained 

which is an inspiration of the BioSys and XbioSys model in 
[6], [10]. The model differs with BioSys model in neglecting 
nonlinearity sources such as saturation and diffusion.  

A. Genome and Genes: 
All the proteins are arrays of size PD  (Protein Dimension). 

The genome is a bit string of size GS  (Genome Size) .A 
promoter is a string of size PR  with a fixed structure which 
defines the starting of a gene. Right after the promoter, the 
regulatory part of the gene begins. The first RD×2  
(Regulatory Dimension) bits of the regulatory part define 
how many enhancer and inhibitor sites the gene possesses. 

Let’s show them with An  and In  respectively. After this part 

of the regulatory site, the first PDnI ×  bits define inhibitory 

sites and the first PDnE ×  bits after inhibitory sites define 
enhancer sites. After the regulatory site, a set of bits define 
the number of proteins the gene expresses ( np ). The number 
of these bits is fixed and equals to a universal constant GD  
(Gene Dimension). After theses, a sequence of bits defines 
the proteins to be expressed by the gene plus their default 
expression values. The protein defining bits are of size PD  
and expression value defining bits are of size ED  
(Expression dimension). All the bits in the genome after a 
gene ends are meaningless unless they are located after a 
promoter string which would further define another gene.  

B. Dynamic of the Cell 
When a gene is expressed it releases proteins to the 

cytoplasm. There are different kinds of proteins in the 
cytoplasm with different concentrations. Some amount of 
proteins diffuse to out of the cell (environment), some 
amount decay and some amount act as transcriptional factors 
and bind to regulatory sites of the genes and increase or 

decrease their rate of expression. Assume that there are pN  

different kinds of proteins in the cytoplasm pNppp ,...,, 21  with 

concentrations pNccc ,...,, 21  and there are gN  genes 
gNggg ,...,, 21  that interact with these proteins. We define 

following terms: 
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Assume that function ijf  determines how much of protein 
j  sticks to regulatory sites of gene i  .Inhibitor and enhancer 

signals for gene i  caused by protein j  would be computed 
as relations (1) and (2) in which the function dmatch  
computes the degree of match between two proteins which is 
the Hamming distance of the two sets of bits. It is the number 
of identical bits of two proteins divided by the size of the 

protein. Terms )(kini  and )(keni  are the k  th site of inhibitor 
and enhancer sections of gene i  respectively. Number of 

inhibitor and enhancer sites of gene i  are shown by iIn  

and iAn . 
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The total inhibitor and enhancer signals for a single gene i  
are computed as relations (3) and (4): 
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The expression rate of j  th protein of gene i  at time 
1+t  , )1( +treij , is computed by relation (5) . 

)()()()1( tintentretre iiijij −+=+ (5)

We define imjξ  as (6) . 
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Protein j  ‘s concentration in cytoplasm at time 1+t  would 
be computed by relation (7) . 
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In the above relation, terms ψ  and λ  are universal 
constants determining decay rate and expression effect 
respectively. The amounts of the protein which goes out of 

the cell and enters the cell at instant t  are shown by )(toutp j  

and )(tinp j  respectively. 

III. APPLYING THE ARTIFICIAL CELL AS A CONTROLLER 
In the previous section we explained the artificial cell 

model and its dynamics. In this section we want to show how 
this model can be used as a controller. First of all the inputs 
and outputs of the controller should be determined. 

A. Inputs and Outputs of the Cellular Controller 
All the information passes through cellular environment 

by the means of proteins. Thus the inputs and outputs of the 
cellular controller must be proteins too. To adapt a cellular 
network as a controller, at first the input and output proteins 
should be attributed. Moreover a predefined method should 
be chosen to transform the proteins to system signals and vice 
versa. The necessary information from the system enters to 
the cellular environment by means of special input proteins. 
This causes the cell to start developing. The proteins and their 
concentration in the cellular environment change due to 
cellular development. Then special output proteins are 
transformed to system appropriate signals and in this way the 
system receives signals from the controller. The following 
figure depicts the process.  

 
Fig. 1. Artificial cell as a controller. 

B. Evolution of the Controller 
Once the input and output signals are attributed to specific 

proteins, the artificial cell evolves to meet the control 
problem goals which are represented in an objective function. 
The genetic algorithm creates different populations of 
genomes and passes them to the objective function which 
defines the control problem. The objective function returns a 
value which determines how well the artificial cell could 
control the system. Genetic algorithm chooses the best cells 
of a population as parents and generates the new population. 
This process is continued until a proper artificial cell is 
found. 

C. Representing the Artificial Cell as a Linear Controller 
We assume that the proteins which act as input to the 

controller enter directly to the cytoplasm of the cell and the 
output signals are directly and linearly computed from the 
cytoplasm proteins. The states of these cells are 
concentrations of the proteins and their expression rates by 
genes. Due to the fact that the external signals are directly 
affected to the cytoplasm of the cell and output signals are 
directly resulted by cytoplasm proteins: 

proteinsallfortoutpj 0)( = (8)

Thus and according to (7) : 
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Due to (5) we have relation (10) . 
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By applying (3) and (4) we have relation (11) . 
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Further by using relations (1) and (2) , relation (12) is 
reached. 
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By taking )( iil Cf  a linear function of iC  , and organizing the 
relation (12), we have relation (13). 
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By defining jlη  as relation (14) we reach relation (15) . 
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Relation (15) is the update rule for protein concentrations in 
cytoplasm. A similar procedure leads to relation (16) . 
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By defining ilχ  as (17) we reach (18) which is the update 
rule for protein expression rates. 

=ilχ ∑ ∑
= =

×× −′
Ei Ii

ilil

n

k

n

k

kinPdmatch

Ii

kenPdmatch

Ei
il e

n
e

n 1 1

))(,())(,( }11{ ββα

 
(17)

 

∑
=

+=+
pN

l
lilimim tCtretre

1

)()()1( χ

 
(18)

State space equations of the artificial cell are given by 
relations (15) and (18). The changing parameters due to 

evolution are ilη  and ilχ  .So once the genome of the proper 

artificial cell is obtained via evolution, the ilη  and ilχ  s are 
computed and the linear controller’s system matrix is 
achieved. 

D. The Application of Cell Based Method to Get Linear 
Controllers 
Obviously when the system under control is linear, using 

the cell based method to obtain a linear controller would not 
be suitable as there are efficient linear, direct methods to 
achieve desired linear controllers for linear systems. The 
method shows its value when it is applied to nonlinear 
complex systems for which there isn’t a straight forward 
method to obtain linear controllers and methods differ from 
case to case.  

A natural question that arises is why to impose the 
computational burden of the artificial cell to evolve a linear 
controller while the controller may be evolved using a simple 
genetic algorithm ran on its parameters, i.e. if our target is to 
evolve a controller with state equations of type (19) why not 
run the genetic algorithm on the elements of matrix A  
directly and eliminating the computational complexity 
associated with the artificial cell dynamics. (Note that 
matrices B  and C  are defined initially for the problem as 
we have attributed how inputs affect protein concentrations 
and how output of the controller is determined from the 
concentrations of proteins.).The answer to this question lies 
in what is called the representation problem and evolvability 
in Genetic Algorithm methods. In biological terms 
evolvability is an organism’s capacity to generate heritable 
phenotypic variation [11]. In the case study section we show 
that a simple genetic algorithm on the parameters of the 
system matrix of the controller is unable to evolve and reach 
an answer, while the artificial cell representation evolves and 
reaches a suitable controller that meets the problem goals. 
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IV. CASE STUDY 
In this part we want to develop a linear dynamic controller 

for a robot so that it can move in its path and avoid hitting any 
obstacle or walls during its travel. The robot is a simple two 
dimensional entity that can move in one of four directions 
forward, backward, up and down or a mixed of them in each 
time unit. The obstacles are vertical lines of arbitrary size 
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scattered in robot’s path. Sensors with limited ranges are 
placed on the robot to diagnose the obstacles and walls. An 
extra sensor is placed to sense the passing of the robot from 
an obstacle. The inputs of the controller are distances from 
the nearest ahead obstacle and upper and down walls. 
Outputs of the controller are four actuating signals for the 
robot. Each signal moves the robot in one of the four 
directions in an amount commensurate with the intensity of 
the signal. Fig. 2 shows the field with obstacles.  

 
Fig. 2. Field with obstacles. 

 
The robot is initially positioned at point [0, 0] and is 

wanted to pass through the left of the field to the right of the 
field without hitting the obstacles. If we take the robot and 
field as the open loop system and position of the robot and 
distance from nearest obstacle as the states of the system, the 
state space equations of this system would be as equations 
(20) in which x  and y  stand for horizontal and vertical 

positions of the robot, 1s  stands for obstacle sensor output 

and 2s  , 3s  for upper and down wall sensor outputs. The 
output of the sensor which detects passing of a robot from an 

obstacle is shown by passs  . It is assumed that obstacle sensor 
range is 20 units and obstacles farther than 20 units are not 
recognized by the sensor. The sensor’s output is reversely 
proportional to the distance of the robot with obstacle or 
walls. 

From equations (20) it is seen that nonlinearity of the state 
space equations appear in the output equations of obstacle, 
wall and pass obstacle sensors. Our aim is to design a 
dynamic linear controller that can lead the robot from left to 
right without hitting obstacles.  

 
Fig.3. A linear controller for robot and field system 
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A. Control Problem Representation as an Optimization 
Problem 
For each controller the number of the obstacles the robot 

can pass successfully is chosen as the fitness value. For the 
given configuration the maximum fitness value is eight. So 
finding a suitable controller is equivalent to finding a 
controller with maximum fitness value.  

B. Genetic Algorithm Directly on System Matrix Elements 
The three obstacle and wall sensor outputs are taken to be 

three states of the controller. The fourth sensor’s output is 
used to reset the state space of the controller to its initial value 
whenever a robot passes an obstacle. Four more states of the 
controller are assigned to determine the four actuator inputs 
of the robot. So the controller has at least seven states. 
Equations (21) show the controller state space equations.  

From equations (21) the unknown is matrix A  .We ran 
genetic algorithm on the elements of matrix A  for 100 times 
with different sizes, each for 500 generations and 50 
population size. None of the trials were able to find a matrix 
A  to lead the robot to pass even one obstacle. 

C. Genetic Algorithm on the Artificial Cell 
The three obstacle and wall sensors are attributed to three 

protein concentrations of a linear artificial cell. Four more 
proteins are needed to determine the four actuator signals of 
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the robot. The linear cell model is used for updating proteins. 
Protein Dimension are taken to be three so that we have  23=8 
different proteins. Regulatory dimension, Gene Dimension 
and Expression Dimension are all taken as three as well. The 
promoter is taken to be the string 1000.The genome of the 
cell is chosen to be of 500 bits size and is put to evolution 
with the fitness function described in section A. The genetic 
algorithm is run for ten times, each for 500 generations with 
50 population size. Mutation generates 20% of the new 
populations and the rest is formed by cross over. Out of ten 
runs of the GA, four were able to evolve a controller to lead 
the robot through all eight obstacles without hitting them. 
Two were able to pass the robot through seven obstacles, 
three were able to pass it through five obstacles and the 
remaining one was able to pass the robot through four 
obstacles. Fig. 4 shows the pass of the robot controlled by the 
four successful runs of GA. 
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Fig. 4. Four robot traces controlled by four linear artificial cells 

 

V. CONCLUSION AND FUTURE WORK 
In this paper we have developed a linear state space 

representation of a synthetic genetic regulatory network 
model and in a case study we have investigated its application 
in evolving linear dynamic controllers for nonlinear systems. 

In the case study the new method for evolving linear 
controllers shows its superiority over simple genetic 
algorithms for obtaining linear dynamic controllers. 
However we believe that the new approach should be studied 
on different case studies to prove its applicability. So an open 
area of research is applying the represented model as a linear 
controller for different nonlinear systems. Another track of 
research would be the possibility of proving the evolvability 
of the new method over simple genetic algorithms with 
analytical tools such as the one introduced in [12]. These two 
trends constitute our future research directions. 
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