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Abstract—Over the last three decades, adaptive control has 

evolved as a powerful methodology for designing feedback 
controller of nonlinear systems. Most of the studies assume that 
the system nonlinearities are known a prior, which is generally 
not applicable in the real world. To overcome this drawback, 
from twenty years ago, there has been a tremendous amount of 
activity in applying Neural Networks for adaptive control. 
With their powerful ability to approximate nonlinear functions, 
neuro-controllers can implement the expected objectives by 
canceling or learning the unknown nonlinearities of the system 
to be cancelled. Neural Networks are specially suitable for the 
adaptive flight control applications where system dynamics are 
dominated by the unknown nonlinearities. 

 
Index Terms—Control, flight, neural network. 

 

I.  INTRODUCTION  
  In the past decades, major advances have been made in 

adaptive control of linear time-invariant plants with 
unknown parameters. The choice of the controller structure 
is based on well established results in linear systems theory 
and stable adaptive laws which assure the global stability of 
the overall system are derived based on properties of those 
system. In recent years, Artificial Neural Network based 
control strategies have attracted much attention because of 
their powerful ability to approximate continuous nonlinear 
functions.[1] In fact, a neural controller with on-line learning 
can adapt to the change in a system dynamics and hence is 
an ideal choice for controlling highly nonlinear system with 
uncertainty.  

For adaptive control purposes neural networks are used as 
approximation models of unknown nonlinearities. The input 
/ output response of neural network models is modified by 
adjusting the values of its adjusting the values of its 
parameters. Although it is true that polynomials, 
trigonometric series and orthogonal functions can also be 
used as function approximator, neural networks have been 
found to be particularly useful for controlling highly 
uncertain, nonlinear and complex systems. Neural control 
strategies can be broadly classified into off-line and on-line 
schemes based on how the parameters of the network are 
tuned. When the neural controller operates in an on-line 
mode, it has no a priori knowledge of the system to be 
controlled and the parameters of the network are updated 
while the input – output data is received. In the off-line 
control, the network’s parameters are determined from the 
unknown training pairs and then those parameters are fixed 
for control purposes.[2] 
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II. FLIGHT CONTROL 
The performance of aircraft systems is highly dependent 

on the capabilities of the guidance, navigation and control 
systems. This necessitates the need to have sophisticated and 
reliable control systems. In order to maximize the 
performance, the control system needs to be adaptive in 
nature. 

Developing flight control systems for today’s aerospace 
vehicles is time consuming. While the theory is understood, 
its application is lengthened as a result of three factors. First, 
flight control is an interdisciplinary subject that integrates 
mathematical models, control theory, computers, hydraulic 
and electrical systems, specifications, and pilots. Combining 
these pieces into a unified framework is a challenge. Second, 
imperfect knowledge of a contributing component results in 
costly flight-test iterations. Manufacturers have previously 
allotted 25% of the total flight test development time for 
flight control evaluation and iteration. Third, after a control 
system design is finalized, it can take two weeks to just 
evaluate the control system against the myriad of often 
conflicting design specifications. 

The use of adaptive control system has been growing in 
flight control. In the past few years, there has been an 
increasing interest within the control community in 
exploring the promise of biologically motivated algorithms, 
like fuzzy sets, neural networks as well as genetic 
algorithms to solve difficult optimization and control 
problems [3]. Fig. 1 shows application of neural network in 
flight control. The nonlinear aircraft equations are linearized 
at several equilibrium flight conditions over the desired 
flight envelope. Then the control gain is designed for these 
different flight conditions. The optimal gains at each 
scheduling point should guarantee robust stability and 
performance, that is, they should guarantee stability and 
good performance at point near the designed equilibrium 
point. Since the feedback gains are schedule a priori, no 
automatic corrective action is taken to mitigate the effects of 
a control law that is no longer appropriate.  

The Intelligent Flight Controls System (IFCS) is a piloted 
flight test program whose purpose is to demonstrate the 
ability of neural network technologies to provide 
compensatory augmentation to a baseline flight control 
system for adverse flying conditions that may be the result 
of damage or systems failures to an aircraft in flight. 
Aircraft flight control software is critical to the safety of 
flight. Failures of the software to meet the design 
requirements (e.g. for stability and handling qualities) or to 
perform as intended could lead to loss of mission, aircraft or 
human life. The purpose of the Intelligent Flight Controls 
System flight test program is to develop and flight-
demonstrate adaptive neural network technologies capable 
of providing stable flight and adequate flying qualities to an 
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aircraft in the presence of modeling uncertainties, failures 
and damage to the aircraft. The first generation intelligent 
flight control system was flight tested in 2003. Intelligent 
flight control system generation I employed an indirect 
adaptive scheme using neural networks to identify and 
augment stability and control parameters of the aircraft in 
flight. These parameters provided updates to a linear 
quadratic regulator flight controller to maintain stability and 
performance of the aircraft. A pre-trained neural network 
provided the controller with the healthy aircraft parameters 

as a function of flight condition and aircraft state. Onboard 
real-time parameter identification algorithms provided 
increments to the stability and control parameters which 
were stored using a dynamic cell structure (DCS), self-
organizing feature map routine. The incremented parameters 
were then passed to the flight controller to optimize 
performance. The dynamic cell structure algorithm allowed 
the flight control system to ‘remember’ identified parameter 
increments from previously flown flight conditions so they 
did not have to be re-learned. [4] 

 

 
Fig. 1. Application of neural network in flight control 

 
The second generation IFCS employed a direct adaptive 

approach to the flight control of the aircraft in USA.  That is, 
adaptive compensation to the controller was based on 
aircraft tracking performance and sensor measurements 
without an explicit, on-line estimated aircraft model. The 
baseline intelligent flight control system generation II 
controller architecture used a model inverting scheme to 
provide commands to the aircraft control surfaces that 
produce the accelerations commanded by the pilot. The 
neural network architecture is of the Sigma-Pi type. The 
Sigma-Pi neural networks are described in next section.  

The neural networks interface with the baseline controller 
by providing augmentation signals to the commanded 
accelerations when the error regulation portion of the 
baseline controller fails to provide adequate handling 
qualities, as determined via measurement of the aircraft state 
feedback tracking errors signals. One of the features of the 
intelligent flight control system generation II concept is that 
the neural network architecture software can be integrated 
with any conventional flight controller configuration. This 
offers significant cost savings, especially for retrofit 
additions to existing controller configurations. 

The intelligent flight control system generation II flight 
controller was designed to meet the standard requirements 
for stability and handling qualities of a piloted aircraft. The 
baseline controller with no neural network augmentation 
was demonstrated to meet these requirements using standard 
flight controls development techniques.  

The addition of the neural networks introduces 
nonlinearities to the system that complicate the application 
of traditional stability and performance assessment 
techniques. 

III. CONTROLLER PROPERTIES AND ARCHITECTURE 
The intelligent flight control system generation II 

controller architecture consists of the baseline research flight 
controller and Sigma-Pi neural networks. A separate neural 
network was implemented in each of the three axes 
(Longitudinal, Lateral and Directional) in the generation II 
controller. As mentioned above, the baseline research flight 
controller can operate with the neural networks active or 
inactive. First, we detail the baseline intelligent flight 
control system generation II controller architecture and then 
we describe the neural network architecture and its 
interaction with the baseline. Fig. 2 provides an overview of 
the intelligent flight control system generation II system 
architecture. 
 

 
Fig. 2.   Intelligent flight control system generation II system 

The intelligent flight control system generation II flight 
controller uses a dynamic model inverting control scheme 
with Proportional, Integral, Derivative (PID) regulation of 
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the errors between the pilot commands and the sensed 
aircraft response. The pilot’s stick and pedal commands are 
converted into desired aircraft angular rates. The PID error 
regulator computes tracking error compensation signals that 
are summed with the desired angular accelerations. These 
signals are the total desired aircraft angular accelerations. 

One of the most important aspects of a control systems 
design is the process of validation that the design meets the 
overall system requirements. Three of the major 
requirements concern quantification of system stability, aero 
servoelastic margin and aircraft performance (or handling 
qualities). Each of these requirements is critical for control 
systems design and the approach to meeting each of these 
requirements for the intelligent flight control system 
generation II control system had to be amended to 
accommodate the neural network algorithms. 

System stability is the tendency of a system to return to 
an equilibrium state when perturbed from that equilibrium. 
For an aircraft, this means that if the aircraft is in steady 
flight (i.e., with zero rotational rates) and it is perturbed via 
a temporary pilot command or disturbance, then it will 
return to steady flight after some settling period. Stability 
robustness margins provide quantitative measures of the 
strength of this tendency to return to equilibrium. These 
measures are gain margin and phase margin. The gain and 
phase margins, respectively, quantify the amount of gain or 
phase uncertainty can be withstood by the system without 
the system becoming unstable. 

If the controller were allowed to output commands in the 
frequency range of the aircraft’s structural mode frequencies, 
it could cause the natural flexure of the aircraft to be 
interpreted by the sensors as uncommanded disturbances 
that the controller would try to regulate by commanding 
more deflection in the frequency range of the flexible 
structural modes. This creates a positive feedback loop that 
could literally shake the aircraft apart. To avoid this 
phenomenon, bending mode compensation filters are 
applied to the feedback signals to attenuate them in the 
frequency range of the aircraft structural modes. 

Handling qualities for an aircraft are assessed using both 
linear and nonlinear analysis techniques. These three 
requirements (stability, ASE and handling qualities) are 
somewhat contradictory and require tradeoffs in the design 
of the controller to simultaneously meet them. 

The neural network architecture chosen for the intelligent 
flight control system generation II system is of the Sigma-Pi 
type. This architecture was chosen based on the results of a 
trade study conducted to compare the accuracy and 
adaptation speed of multiple neural network architectures. 
The Sigma-Pi neural networks provide adaptation to the 
intelligent flight control system generation II controller by 
adding augmenting signals to the total desired aircraft 
accelerations described above. Fig. 3 shows the neural 
network architecture. 

The Sigma-Pi network is so-called because it calculates 
the weighted sum of basis functions. For intelligent flight 
control system generation II these basis functions, ui, are 
sensor measurements and functions of the tracking errors in 
the three aircraft axes. The signal Uad is the augmenting 
signal that is provided to the baseline controller to 
compensate for tracking errors induced by the simulated 

surface failures. 
The neural network weights, wi, are adaptive. The 

adaptive laws that govern the evolution of the neural 
network weights are derived from Lyapunov nonlinear 
systems stability theory and ensure bounded command 
tracking while guaranteeing that the system remains stable. 
[5]. Where σ is the hidden-layer activation function, vjk are 
the first-to-second layer interconnection weights and wij are 
the second –to-third layer interconnection weights. 

The bias terms qwi and qvj represent thresholds. This 
architecture has N1 inputs, N2 hidden-layer neurons, and N3 
outputs. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Neural network with one hidden layer     

The bias terms qwi and qvj represent thresholds. This 
architecture has N1 inputs, N2 hidden-layer neurons, and N3 
outputs. 

The functional form of the hidden-layer activation is a 
design parameter, but we will consider the case of sigmoidal 
activation functions. 

The main benefit of networks with this architecture is that 
they are universal approximators. Another important issue 
concerns robustness of adaptive systems to unmodeled 
dynamics. 

 

IV. CONCLUSION 
 

The performance of aircraft systems is highly dependent 
on the capabilities of the navigation and control systems. In 
order to maximize the performance, the control system 
needs to be intelligent.  There are numerous opportunities 
envisioned for transitioning neural network technology to 
applications within the aerospace industry, besides the 
tiltrotor application described in a previous section. The 
potential payoffs in aircraft applications include: 

Reduced flight control system design/development costs. 
Reduced costs associated with the need to develop a large 

aerodynamic data base. 
Reduction of control related accidents, and maintenance 

of handling qualities immediately following failures and 
damage. 

Payoffs in missile and guided munition applications 
include several of the above mentioned factors, and in 
addition: 

 Accommodation of variants within a class of munitions 
with a single control design. 

Improve and more predictable weapon performance and 
the potential for eliminating the need for wind-tunnel testing. 
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