

Abstract—CoReJava (Constraint Optimization Regression in

Java) is a framework which extends the programming language
Java with built-in regression analysis, i.e., the capability to do
parameter estimation for a function. CoReJava is unique in
that functional forms for regression analysis are expressed as
first-class citizens, i.e., as Java programs, in which some
parameters are not a priori known, but need to be learned from
training sets provided as input. Typical applications of
CoReJava include calibration of parameters of computational
processes, described as OO programs. If-then-else structures of
Java language are naturally adopted to create piecewise
functional forms of regression. Thus, minimization of the sum
of least squared errors involves an optimization problem with a
search space that is exponential to the size of learning set. In
this paper, combinatorial restructuring algorithm is proposed
to guarantee learning optimality and furthermore reduce the
search space to be polynomial in the size of learning set, but
exponential to the number of piece-wise bounds. Heaviside
restructuring algorithm, which expresses the piecewise linear
regression function using a unified functional format, instead of
multiple pieces, is proposed to decrease the searching
complexity further to be polynomial in both the size of learning
set and the number of piece-wise bounds, while the learning
outcome will be an approximation of the optimality.

Index Terms—Combinatorial Restructuring, Heaviside
Restructuring, Object-Oriented Programming, Piecewise
Regression

I. INTRODUCTION
 Regression Analysis (RA) is a widely-used statistical
technique for investigating and modeling the relationship
between variables (see [1] for overview of RA). Given as
input to regression learning is a parametric functional form,
e.g., 332211321),,(xpxpxpxxxf ++= , and a set of training
examples, e.g., tuples of the form),,,(321 fxxx , where f is an
experimental observation of the function f value for an input

),,(321 xxx . Intuitively, the problem of regression analysis is
to find the unknown parameters, e.g., 321 ,, ppp which best
approximate the training set. For example, the national
housing price can be modeled as a function of such
determinants as age of the house, the floor area of the house,
neighborhood attributes, and location attributes. This
functional form may have unknown parameters, reflecting
the relationship between house price and a particular attribute
of the house. This regression based on the national data set is
an “overall" form of linear regression which is represented by
line ‘A’ in Fig. 1. The regression analysis is applied to all of
the data within your dataset. In other words, it gives you a

Manuscript received March 22, 2011.
Juan Luo is with the Dept. of Computer Science, George Mason

University, Fairfax, VA 22030, USA (corresponding author to provide
phone: 703-993-1531; e-mail: jluo2@gmu.edu).

Alexander Brodsky is with Dept. of Computer Science, George Mason
University, Fairfax, VA 22030, USA (e-mail: Brodsky@gmu.edu)

measure of the global rather than local relationships between
variables. However, it clearly misses some important local
variations between Y and X.

Figure 1: Global and Piecewise Linear Relationship

Piecewise Regression (PWR) are forms of data analysis

that allows to evaluate how the relationship between a
dependent variable and one or more explanatory variables
changes according to the different value intervals in which
the explanatory variable resides. So, instead of being a
conventional and stationary model, for example, y= p0 + p1x
in the case of linear regression with a single explanatory
variable, the piecewise linear regression model can be
expressed as

,݌)݂ (ݔ = ൞ ଵ݂(݌ଵ, ݔ (ݔ < ܾଵ ଶ݂(݌ଶ, ଵܾ (ݔ ≤ ݔ < ܾଶ… . .௞݂(݌௞, ௞ିଵܾ (ݔ ≤ (1) ݔ

In the PWR expression (1), for different value intervals of

the explanatory variable, a specific functional form ௜݂
represents a “segment” of line in the overall problem. There
exists a relationship between two variables, Y and X, which
needs to be determined from the observed data. A global
linear regression model will produce a relationship such as
that depicted by line A. A local technique, such as linear
“spline” function, depicted by line B, will give a more
accurate picture of relationship between Y and X. This is
obtained by essentially running three separate regressions
over different ranges of the X variable with the constraint that
the end points of the local regression lines meet at what are
known as “knots”.

In the CoReJava framework [2], the above spline
functional form of regression analysis can be expressed as a
Java program, in which the slopes and intercepts are not
priori known, but can be learned from a given training set.
One special thing for the knots in the Java program is that the
values of knots are not priori known as well. All these
parameters will be initialized as a special CoReJava data type

Piecewise Regression Learning in CoReJava Framework

Juan Luo and Alexander Brodsky

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

163

– non-deterministic variable, i.e. only the value range of the
variable is given during the initialization, instead of the value
itself. As we can observe from the Fig. 1, the spline function
is composed of three linear pieces. Correspondingly, the
function will be represented with three “if” / “else” condition
branches. Knots variables are involved in the “if” condition
check, which in turn will increase the searching complexity
of the problem. The regression learning in CoReJava
framework actually involves two steps. First, it analyses the
structure of the Java programs to automatically generate a
constraint optimization problem from them, in which
constraint variables correspond to all non-deterministic
variables, and the objective function of the constraint
optimization problem to be minimized is the summation of
squares of errors w.r.t. the training set. Second, the generated
optimization problem will be solved by the non-linear
mathematical optimization solver. The searching complexity
of non-deterministic variables in the optimization problem
will be ܱ(2ே∙ெ)which is exponential in N (the size of the
training set) and M (the number of condition checks in which
non-deterministic variables are involved).

There is growing literature and techniques for examining
local relationships in data sets. For example, the use of spline
function [3] requires that the knots of piecewise linear model
need to be given but the coefficients of the linear problem are
left unknown. LOWESS regression in [4] can be used to fit
segments of data without a global function. However, it fits
data using curves and at the same time, it is so
computationally intensive that it is practically impossible to
be used. A connectionist model (three layer neural network)
[5] is used to solve the piecewise linear regression problem
heuristically with clustering and multi-category classification
involved. Even though the neural network can show high
accuracy on the available data set, it is not feasible to prove
that it will show a good performance on all possible input
combinations such as unseen data.

This paper proposes two different strategies for piecewise
regression learning. One strategy is called combinatorial
restructuring with the searching complexity ܱ(ܰ௉), where N
is the number of learning sets and P is the number of
parameters in the function, i.e., only polynomial in N, as
opposed to the original ܱ(2ே∙ெ)which is exponential in N.
At the same time, it guarantees optimality of learning.
However, for the combinatorial restructuring, the piecewise
regression learning has to be repeated totally ܥேାଵ௞ିଵ number of
times. The other strategy is called Heaviside restructuring
with the searching complexity of ܱ(ܰ௉ା௄), where N is the
number of learning set, P is the number of parameters in the
function and K-1 is the number of “knots” in the function, i.e.,
polynomial in the size of data set, as opposed to the original ܱ(2ே∙ெ), which is exponential in N. Heaviside restructuring
is proposed to replace all “if” / “else” decision structures by a
unified functional format in learnedFunction method. The
“spline” function (piecewise functions) can be expressed as a
single, continuous function by applying the Heaviside
transformation [6]. The Heaviside restructuring decreases
the search complexity to be polynomial in the number of
learning set but the learning outcome will be an
approximation of the optimal solution. Compared to the
combinatorial restructuring, Heaviside restructuring
improves the learning efficiency by trading with the

approximation of optimal learning outcome. Finally, we
conduct an experimental study to compare generic CoReJava
learning, combinatorial restructuring, and Heaviside
restructuring. It shows that both restructurings outperform
generic CoReJava regression learning.

This paper is organized as follows. Section II is the
overview of CoReJava framework which is exemplified by
the implementation of regression learning on the spline
function (see Fig. 1). Section III explains key ideas and
algorithm of combinatorial restructuring for
single-dimensional piecewise regression problem. As to
higher dimensional piecewise surface regression model, the
combinatorial restructuring cannot be simply reused for
general models, however can be applied to solve a special
class of the problems in the same domain. Section IV
explains key ideas and algorithm for Heaviside restructuring
of piecewise regression problem. An experimental study is
performed to compare the results of different learning
strategies in section V. Finally, we conclude and briefly
outline our future work in Section VI.

II. OVERVIEW OF THE COREJAVA FRAMEWORK
EXEMPLIFED BY REGRESSION ON SPLINE FUNCTION

In this section, we exemplify the use and semantics of
regression framework by implementing the spline function
example which is described as line ‘B’ in Fig. 1. The spline
function is the kind of estimates produced by a spline
regression in which the slope varies for different ranges of the
regressors. The spline function can be continuous but usually
not differentiable.

Figure 2: Regression Framework in Eclipse

Fig. 2 shows a partially expanded CoReJava library of the

regression framework for the spline function example. The
three key packages in the example are (1) the existing
codebase, that may have been developed not for the purpose
of regression learning, (2) RL (Regression Learning), which
is system package of the framework, and (3) the
usageExample, which instantiates some classes in the

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

164

codebase and then do as regression learning . The codebase
contains all source code implementing the computational
process. There is no regression learning related code in this
package. The codebase in the example models the spline
function with data members of two knots, br1 and br2 and
three different set of intercepts and slopes, (a, b), (c, d) and (e,
f), i.e., models the function ݂(ݔ) = ൝ܽ + ݔ ݔܾ < ܿ 1ݎܾ + ≥ 1ݎܾ ݔ݀ ݔ < 2݁ݎܾ + ≥ 2ݎܾ ݔ݂ (2) ݔ

In the usageExample package, let us assume that Coefs
(parameters of spline function) is not priori known, and we
would like to learn them using a given training set. To do that,
the user can define its own learning behavior by extending an
abstract class RegressionLearning which belongs to the
system package RL. We use the class simpleregression to
exemplify the user’s learning behavior in the example.
Simpleregression class has a Coefs object as data member,
which we would like to learn. It defines a constructor and a
learnedFunction(Scanner scanner) method. Method
learnedFunction describes a functional form written using
standard Java, while method constructor describes the set
of adjustable parameters to that function. Note that the
constructor method of simpleregression uses the method
paramToLearn(double min, double max) to specify the
learning parameters (coefficients and knots) of the Coefs
object to be learned. The min and max here can specify a
value range for the learning parameters to be chosen. The
learning parameters are unknown in the constructor.
Simpleregression class overrides the abstract method
learnedFunction(Scanner scanner) of its super class,
to represent the functional form used in learning. This
method reads from the scanner object, as input, the X values
of training examples and returns their Y values as output.
Note that the output Y depends on the object Coefs, which
contain unknown parameters to be learned. Both the
constructor and learnedFunction methods can make use
of an existing Java code base.

The parameter scanner is defined as a Java utility class
Scanner and used to read a set of training. The Scanner
object that encodes a set of training examples, in the form

),,,(1 nn fxx K . In the spline function example, each data point
is composed of pairs of X and Y values. The size of training
set is decided by the information the user has collected. If the
size of the table is not big enough, the model selection
technique (cross validation) of machine learning will be used
to filter the noise of learning sets [7].

The simpleRegressionUsage class is used to show the
actual execution of the spline funciton example. The main
method is defined in this class. Two variables min_Bound
and max_Bound are used to specify the range of coefficients
to be chosen and assigned in the main method. Intuitively,
the special regression semantics of the
simpleRegressionUsage constructor is as follows. It
constructs a simpleRegressionUsage object, in which all the
invocations of paramToLearn method are replaced with
actual values of type double, for which the function defined
by the learnedFunction method would best approximate the
set of training examples. After that, the main method will be
executed as a regular Java program. The values of all
parameters and knots will be printed out. The running result

of spline function example, i.e., the values of parameters and
knots is displayed in Fig. 3.

Figure 3: Running Results

To implement regression learning, the compiler of

CoReJava framework involves two steps. First, it analyses
the structure of the learnedFunction method to
automatically generate a constraint optimization problem, in
which constraint variables correspond to paramToLearn, and
the objective function to be minimized is the summation of
squares of errors w.r.t. the training set, and then solves the
optimization problem using the non-linear optimization
solver AMPL / SNOPT [8]. AMPL is a comprehensive and
powerful algebraic modeling language for linear and
nonlinear optimization problems, in discrete or continuous
variables. Second, regression framework constructs a regular
myLearning object, in which all paramsToLearn are replaced
with the optimal learned parameters, and then continues with
regular Java semantics. The constructed optimization
problem is solved by an external solver such as AMPL /
SNOPT. That is why it inherits the solver’s limitations,
namely, it can only be solved when the resulting constraint
domain is supported by the solver, and furthermore, may
return only a local, rather than global, minimum of the
corresponding non-linear regression problem.

Figure 4: Code Snippet for learnedFunction method

The learnedFunction in Fig. 4 represents the decision

structure for the linear spline function of spatial housing
prices model. In this method, the number of knots in the
model is given as two however the thing not known is the
exact values of the knots. That’s why in the function cf.br1
and cf.br2 are assigned as non-deterministic value type
within the range [0, 15]. The nested “if” and “else” decision
structures are used to calculate the value of dependent
variable Y according to the range in which the input value X
lies. If it belongs to the first part of the spline function, i.e. X

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

165

is less than the value of first knot, Y will be calculated using
the first function ܻ = ܽ + ܾܺ. Similarly, the value of Y can
be calculated if X falls in the interval of the first knot and the
second knot, or X falls in the range of the second knot and the
end of input domain. In the “if” condition expression of the
example, two knots are involved. These two variables are of
non-deterministic data type. After the constraint
optimization problem is generated for the learnedFunction
method, a binary variable will be automatically generated for
each non-deterministic variable in the conditional expression.
Furthermore, each binary variable in the condition expression
will increase the search space of the optimization problem by
double. If given N data inputs and M “if” statements in the
learnedFunction, there will be totally N*M of binary
variables will be generated and then the searching space will
be of complexity ܱ(2ே∙ெ).

Due to the exponentially increasing complexity of
searching space, it will take unreasonable amount of time to
solve the above constraint problem. Most times, the solution
for the regression learning even can’t be found due to the
limitation of the mathematical solver. Better strategy need to
be proposed to decrease the complexity of searching space.
Combinatorial restructuring is proposed first in section III
and then Heaviside restructuring is proposed in section IV.

III. COMBINATORIAL RESTRUCTURING

A. Piecewise Regression Problem Definition
We focus on regression learning of the piecewise function

in (1) where (݌ଵ, ,ଶ݌ … , (௞݌ are parameters of “case”
functions and (ܾଵ, ܾଶ, … , ܾ௞ିଵ) are bound parameters which
we call “knots”. We assume a training data set {(ݔ௡, ௡݂)}, ݊ = 1, . . , ܰ is given. The purpose of learning is to
find the parameters (݌ଵ, ,ଶ݌ … , (௞݌ which can best
approximate the function set (ଵ݂, ଶ݂, … , ௞݂), and at the same
time find the values for the (ܾଵ, ܾଶ, … , ܾ௞ିଵ).

B. Proposed Learning Approach
For the generic least squared regression learning of

CoReJava, the learning objective is min ∑ ,̂݌)݂) ෠ܾ, (௜ݔ − ௜)ଶே௜ୀଵݕ (3)

The optimization would require N*M binary variables
because of the piecewise form of the function ݂(݌, ܾ, (ݔ ,
which corresponds to the search space of ܱ(2ே∙ெ). To
understand the idea of proposed combinatorial restructuring,
we start with the simplest case, in which there is a single knot ܾଵ, i.e., ݂(݌ଵ, ,ଶ݌ ܾଵ, (ݔ = ൜ ଵ݂(݌ଵ, ݔ (ݔ < ܾଵଶ݂(݌ଶ, ଶܾ (ݔ ≤ (4) ݔ

Assume that without loss of generality, (ݔଵ, ,ଶݔ . . , ே) areݔ
sorted in an ascending order. In the combinatorial
restructuring, instead of solving (3), we propose to solve N+1
problems, corresponding to the following value intervals of ܾଵ, (-∞,ݔଵ], (ݔଵ, ,ேିଵݔ) ,… ,[ଶݔ ,ேݔ) ே], andݔ ∞). Thus, the
ith problem will be ݉݅݊ ෍(݂(̂݌, ෠ܾ, (௜ݔ − ௜)ଶேݕ

௜ୀଵ =

min (∑ (ଵ݂(̂݌, ෠ܾ, (௜ݔ − ௜)ଶ௞௜ୀଵݕ + ∑ (ଶ݂(̂݌, ෠ܾ, (௜ݔ −ே௜ୀ௞ାଵ (5) (2(݅ݕ

Note that in the above form, we do not need binary
variables to represent the piecewise selection since ܾଵ can
only satisfy one of the N+1 cases, it will be suffice to solve
N+1 problem (5) and select the solution that gives the
minimum. This approach will decrease the searching
complexity from ܱ(2ே∙ெ) to ܱ(ܰ௉) where P is the number
of parameters, N is the size of data inputs and M is the
number of “if” branches in the learnedFunction of the
regression learning.

Consider a more general function format (1), N data points
in the training data set and ݇ − 1 knots. Each knot has N+1
possible value intervals (-∞,ݔଵ], (ݔଵ, ,ேିଵݔ) ,… ,[ଶݔ ,ேݔ) ே], andݔ ∞). The function definition assumes that ܾଵ < ܾଶ <⋯ < ܾ௞ିଵ . Let us index the intervals 1, … , ܰ . If ܾଵϵ൫ݔ௜భ, ௜భାଵ൧, we say that ܾଵresides in the interval ݅ଵ. Noteݔ
that ݔ଴ = −∞, so if ݅ଵ=0, −∞ < ܾଵ ≤ ଵ. More generally, if ܾଵ resides on interval ݅ଵݔ , ܾଶ resides on interval ݅ଶ, …, and ܾ୩ିଵ resides on interval ݅௞ିଵ, we know that

The idea is that under the constraints in (6), for input points

{௝ݔ} ݆ = 1, . . , ݅ଵ , ݂൫̂݌, ෠ܾ, =௜൯ݔ ଵ݂൫݌ଵ, ௝൯ݔ ,…, and for input
points {ݔ௝} ݆ = ݅௞ିଵ, … , ݊ , ݂൫̂݌, ෠ܾ, =௜൯ݔ ௞݂൫݌௞, ௝൯ݔ . Thus,
under the constraint (6), the problem ݉݅݊ ∑ ,ො݌)݂) ෠ܾ, (݅ݔ −ே௜ୀଵ2(݅ݕ can be rewritten as ݉݅݊݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ (∑ ൫ ଵ݂൫݌ଵ, ௝൯ݔ − ௜൯ଶݕ + ௜భ௝ୀଵ ∑ ൫ ଶ݂൫݌ଶ, ௝൯ݔ − ௜൯ଶݕ +௜మ௝ୀ௜భାଵ … … + ∑ ൫ ௞݂൫݌௞, ௝൯ݔ − ௜൯ଶ௡௝ୀ௜ೖషభାଵݕ) (7)

Figure 5: Combinatorial Regression Learning Algorithm

This gives rise to our algorithm: enumerate all possible

index selection ݅ଵ, … , ݅௞ିଵ for ܾଵ, . . , ܾ௞ିଵ respectively, and
for each selection solve the problem (7). This idea is
summarized in the combinatorial restructuring algorithm in
Fig. 5.

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

166

Claim: the combinatorial restructuring algorithm
guarantees optimality of the regression problem (1), and
requires solving ܥேାଵ௞ିଵ continuous optimization problems in
the complexity of ܱ(ܰ௣).

C. Piecewise Surface Regression Model
We now extend the functional form (1) to a

multi-dimensional case, with the following form

൞ ଵ݂(݌ଵෞ, (ොݔ)ො) zݔ < ܾଵ ଶ݂(݌ଶෞ, ො) ܾଵݔ ≤ z(ݔො) < ܾଶ… . .௞݂(݌௞ෞ, ො) ܾ௞ିଵݔ ≤ z(ݔො) (8)

where ݔො = ,ଵݔ) … , (௡ݔ and z(ݔෝ) = ∑ ௜௡௜ୀଵݔ௜ݓ where ∑ ௜ଶݓ = 1௡௜ୀଵ . Note that while this functional form is of
multi-dimensional input space, its cases of piecewise
functions are expressed with a fixed linear combination z(ݔෝ),
i.e., the axis (ݓଵ, … , ௡). For this case we will sort theݓ
learning set ൛(ݔఫෝ , ݆ ௝)ൟݕ = 1, . . ܰ by the value ݖ൫ݔఫෝ ൯ and
assume without loss of generality, that ݖ(ݔଵෞ), … . is in (௡ෞݔ)ݖ
increasing order. The combinatorial restructuring algorithm
for this case is given in Fig. 6.

Figure 6: Combinatorial Regression Learning Algorithm for a
Multi-dimensional Case

We can have the similar claim for this case as to the
piecewise function in (1). The combinatorial restructuring
algorithm guarantees optimality of the regression problem (8),
and requires solving ܥேାଵ௞ିଵcontinuous optimization problems
in the complexity of ܱ(ܰ௣).

IV. HEAVISIDE RESTRUCTURING OF REGRESSION LEARNING

A. Problem Definition
Same to combinatorial restructuring, we focus on

regression learning of the piecewise function in (1) where (݌ଵ, ,ଶ݌ … , (௞݌ are parameters of “case” functions and (ܾଵ, ܾଶ, … , ܾ௞ିଵ) are bound parameters which we call “knots”.
We assume a training data set {(ݔ௡, ௡݂)}, ݊ = 1, . . , ܰ is
given. The purpose of learning is to find the parameters (݌ଵ, ,ଶ݌ … ,) ௞) which can best approximate the function set݌ ଵ݂, ଶ݂, … , ௞݂), and at the same time find the values for the

(ܾଵ, ܾଶ, … , ܾ௞ିଵ). The learning objective is expressed as (3),
which can be rewritten as ݉݅݊݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ (∑ ൫ ଵ݂൫݌ଵ, ௝൯ݔ − ௜൯ଶ௫ೕழ௕భݕ + ∑ ൫ ଶ݂൫݌ଶ, ௝൯ݔ − ௜൯ଶݕ … … + ௕భஸ௫ೕழ௕మ ∑ ൫ ௞݂൫݌௞, ௝൯ݔ − ௜൯ଶ ௕ೖషభழ௫ೕݕ) (9)

In (9), both (݌ଵ, ,ଶ݌ … , (௞݌ and (ܾଵ, ܾଶ, … , ܾ௞ିଵ) are

non-deterministic variables to be searched during the
optimization. The sum of least squared errors is composed of
multiple itemized summations of least squared errors for
every individual piece of the piecewise function ݂(݌, As .(ݔ
described in Fig. 4, in learnedFunction method, a nested “if”
and “else” statements are constructed to express every single
piece of piecewise linear function. Given N data inputs and
M “if” statements in learnedFunction method, the searching
space will be of complexity ܱ(2ே∙ெ) . To lower the
complexity, it is not necessarily to express the piecewise
linear function in multiple pieces and each piece has a
different functional form. However, it can be expressed as
one unified function instead. Consequentially, we can
remove “if” and “else” statements in the learnedFunction
method. We call this approach Heaviside restructuring.

B. PWLR Expressed in Unified Functions
The piecewise linear function in (1) can be expressed a

single, continuous unified function by applying Heaviside
function (known as the Unit Step function), which is defined
as: ܷ(ݔ) = ൜ ݔ ݂݅ 0 < ݔ ݂݅ 01 ≥ 0 (10)

We can perform the transformation by switching on and

switching off the appropriate functions at the right time.
After transformation, the function in (1) can be rewritten as:

,݌)݂ (ݔ = ଵ݂(݌ଵ, (ݔ − ଵ݂(݌ଵ, (ݔ ∗ ݔ)ܷ − ܾଵ) + ଶ݂(݌ଶ, (ݔ ݔ)ܷ ∗ − ܾଵ) − ଶ݂(݌ଶ, (ݔ ∗ ݔ)ܷ − ܾଶ) + … + ௞݂(݌௞, (ݔ ݔ)ܷ ∗ − ܾ௞ିଵ)
 (11)

The learning objective for the Heaviside restructuring can

be expressed as: ݉݅݊ ݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ ෍(ଵ݂(݌ଵ, (ݔ − ଵ݂(݌ଵ, (ݔ ∗ ݔ)ܷ − ܾଵ)ே
௜ୀଵ+ ଶ݂(݌ଶ, (ݔ ∗ ݔ)ܷ − ܾଵ) − ଶ݂(݌ଶ, ∗(ݔ ݔ)ܷ − ܾଶ) + … + ௞݂(݌௞, (ݔ ∗ ݔ)ܷ − ܾ௞ିଵ)− ௜)ଶݕ

 (12)

Given the number of “knots” as k-1, the total number of

terms in the unified function will be 2k + 1. When the
Heaviside function is converted to constraint optimization
problem in CoReJava framework, it requires the function to
be optimized is differentiable. A differentiable
approximation of the Heaviside function is called sigmoid
function, defined as:

(ݔ)ߪ = ଵଵା௘షೌೣ (13)

Correspondingly equation (11) will be rewritten as:

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

167

,݌)݂ (ݔ = ଵ݂(݌ଵ, (ݔ − ଵ݂(݌ଵ, (ݔ ∗ ݔ)ߪ − ܾଵ) + ଶ݂(݌ଶ, (ݔ ݔ)ߪ∗ − ܾଵ) − ଶ݂(݌ଶ, (ݔ ∗ ݔ)ߪ − ܾଶ) + ⋯ + ௞݂(݌௞, (ݔ ݔ)ߪ ∗ − ܾ௞ିଵ)

 (14)

 The variable α is a predefined constant which has been
assigned as 10 in our experiments. However, the value of α
can be changed for different experiment set-ups. The
sigmoid function is implemented as a Java class Produce
which is depicted in Fig. 7.

Figure 7: Class representation of sigmoid function

The learnedFunction is implemented a different way in

the Heaviside restructuring. We do not need binary variables
to represent the piecewise selection any more since nested “if”
and “else” statements have been replaced by a single
assignment statement. This approach will decrease the
searching complexity from ܱ(2ே∙ெ) where N is the number
of data inputs and M is the number of “if” statements in the
learnedFunction, to ܱ(ܰ௉ା௄) where P is the number of
parameters and K-1 is the number of knots.

Figure 8: Code Snippet for unifedlearnedFunction

Claim: the Heaviside restructuring algorithm decreases the

searching complexity to polynomial degree while its learning
outcome approximates optimal solution.

V. EXPERIMENTAL STUDY
The experiment is designed to compare different

approaches of regression learning – generic CoReJava
regression learning, combinatorial restructuring and
Heaviside restructuring. Two matrices are adopted for
evaluation. One is the execution time (in milliseconds), and
the other is RMS (root mean square error) [10]. In our case,
RMS error is equal to the sum of squared error differences
between the observed dependent variable Y and the value ෠ܻ
which is returned from the learnedFunction. The quality of
regression learning is evaluated by the RMS error. The lower
the RMS errors, the better the learning quality.

To construct the training data sets, we generate four
piecewise linear functions f1, f2, f3, and f4, which have 1, 2,
3 and 4 knots correspondingly. The number of sample data
points generated for f1, f2, f3 and f4 are 50, 75, 100 and 125.
For each function fi, sample data points (ݔ௜, ݅ (௜ݕ = 1,2, . . , ܰ
according to the model ݕ = (ݔ)݂݅ + ߝ , being ߝ a normal
random variable with zero mean and standard deviation equal
to 0.5. The experiments are run in windows vista with
1.60GHZ processor and 3GB memory. The supporting
software is Java 6, AMPL/SNOPT and Eclipse 3.5.

Table I compares the execution time among different
approaches. We can observe that for generic CoReJava
regression learning, where non-deterministic knot variables
are involved in the “if” condition, its execution time increase
dramatically as the number of knots increase, from 456 ms
for one knot to 13002 ms for four knots. However, the
execution time for single running of combinatorial
restructuring is trivial, around 10 ms compared to that of
generic learning in CoReJava framework. Although the
single running of combinatorial restructuring takes trivial
time, the exhaustive search strategy for the combinatorial
restructuring makes the situation worse. As the number of
knots increase, all the possibilities of knots combination from
the input data set increases dramatically as well. When the
number of knots reaches four, it shows that the total running
time for combinatorial restructuring reaches a substantial
amount of time, around 10଼ milliseconds. This makes the
combinatorial restructuring a less competitive strategy. In the
view of execution time, Heaviside restructuring is a
promising method in that it takes a little bit longer than a
single run of combinatorial restructuring.

TABLE I: EXECUTION TIME IN MILLISECONDS FOR DIFFERENT APPROACHES

 Approach

Number
of knots

Generic
CoReJava
Regressio
n
Learning

Combinatorial
restructuring

Heaviside
Restructuring

Each
Run

No. of Runs

K = 1 (50 data
points)

456 9 49 14

K = 2 (75 data
points)

1012 10 76 * 75 / 2=2850 14

K = 3 (100
data points)

4006 10 101 * 100 * 99 / 3
*2=166650

14

K = 4 (125
data points)

13002 10 126*125*124*12
3/4*3*2*1≈ 10଻

15

Table II summarizes the RMS error returned by each

approach. We can observe for the generic CoReJava
regression, the learning qualify is very poor with regarding to
the RMS errors. For function f3 and f4, the RMS errors are
2544.346 and 15578.966, which actually means that feasible

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

168

solution cannot be found by generic CoReJava regression
learning due to the limitation of external optimization solver.
However, the combinatorial restructuring guarantees
optimality and locates the optimal feasible solution by
minimizing the RMS error for piecewise linear functions, f1,
f2, f3 and f4. That is why we prefer the combinatorial
restructuring for optimal feasible solution by sacrificing the
amount of execution time. RMS error for Heaviside
restructuring is a little bit above the combinatorial
restructuring but outperforms the generic CoRejava
regression learning.

TABLE II: RMS ERROR COMPARISON AMONG DIFFERENT APPROACHES

 Approach

Number
of knots

Combinatorial
Restructuring

Generic
CoReJava
Regression
Learning

Heaviside
Restructuring

K = 1 (50 data
points)

13.947 366.826 18.227

K = 2 (75 data
points)

17.940 758.216 21.904

K = 3(100 data
points)

19.862 2544.346 23.647

K = 4 (125
data points)

30.317 15578.966 34.879

As the size of data set scales up, the execution time for

combinatorial restructuring becomes very expensive.
Combining both matrices (time and RMS), Heaviside
restructuring is an efficient and applicable method for the
piecewise regression learning problems.

VI. CONCLUSION AND FUTURE WORK
Spline functions (piecewise linear regression problems)

are depicted as Java programs in CoReJava framework. It is
initially solved by the generic regression learning in
CoReJava framework. Due to exponentially increased
searching complexity and limitation of external optimization
solver, we propose a combinatorial restructuring which
decreases the complexity of learning, at the same time
guarantees the optimality. However, the exhaustive search

strategy for the combinatorial restructuring makes the
execution expensive. Heaviside restructuring furthermore
decreases the searching complexity of learning to polynomial
of the size of learning set and takes a little more execution
time than a single run of combinatorial restructuring. It can’t
achieve the optimal solution due to the fact that it is the
differentiable approximation of the piecewise functions.
However, the RMS for Heaviside restructuring is close to the
value of combinatorial restructuring.

Many research questions remain open. They include (1)
decreasing the number of combinations of knots heuristically;
(2) extending single-dimensional piecewise linear model to
general higher-dimensional piecewise surface regression by
clustering and classification; (3) adjusting the sigmoid
function to achieve the better approximation of piecewise
functions; and (4) special-purpose hybrid optimization
algorithms suitable for learning that originates from a
simulation process described as an OO program.

REFERENCES
[1] D. Montgometry, E. Peck and G. Vining, Introduciton to Linear

Regression Analysis, 4th ed., John Wiley & Sons Inc, 2007
[2] A. Brodsky, J. Luo and H. Nash, “CoReJava: Learning Functions

Expressed as Object-Oriented Programs,” icmla, pp.368-375, Seventh
International Conference on Machine Learning and Applications, 2008

[3] Wahba, G., “Spline models for observatinal data”, Philadelphia, SIAM,
1990

[4] Cleveland, S., “Robust locally weighted regresison and smoothing
scatterplots”, Journal of the American Statistical Association, 74: pp
829-36, 1979.

[5] Ferrari-Trecate, G and Muselli M., “A New Learning Method for
Piecewise Linear Regression”, Lecture Notes In Computer Science;
Vol. 2415, pp 444-449, Proceedings of the International Conference on
ANN, 2002.

[6] Arumugam, M and Scott, S,. “EMPRR: A High-Dimensional
EM-Based Piecewise Regression Algorithm”. In Proceedings of The
2004 International Conference on Machine Learning and Applications
(ICMLA '04), pages 264-271, Louisville, Kentucky, December 2004

[7] Bishop, C. Pattern Recognition and Machine Learning, Springer,
(2006)

[8] http://www.ampl.com
[9] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2004

International Journal of Machine Learning and Computing, Vol. 1, No. 2, June 2011

169

