
 
 

 

  
Abstract—CoReJava (Constraint Optimization Regression in 

Java) is a framework which extends the programming language 
Java with built-in regression analysis, i.e., the capability to do 
parameter estimation for a function.  CoReJava is unique in 
that functional forms for regression analysis are expressed as 
first-class citizens, i.e., as Java programs, in which some 
parameters are not a priori known, but need to be learned from 
training sets provided as input. Typical applications of 
CoReJava include calibration of parameters of   computational 
processes, described as OO programs.  If-then-else structures of 
Java language are naturally adopted to create piecewise 
functional forms of regression. Thus, minimization of the sum 
of least squared errors involves an optimization problem with a 
search space that is exponential to the size of learning set.  In 
this paper, combinatorial restructuring algorithm is proposed 
to guarantee learning optimality and furthermore reduce the 
search space to be polynomial in the size of learning set, but 
exponential to the number of piece-wise bounds.  Heaviside 
restructuring algorithm, which expresses the piecewise linear 
regression function using a unified functional format, instead of 
multiple pieces, is proposed to decrease the searching 
complexity further to be polynomial in both the size of learning 
set and the number  of piece-wise bounds, while the learning 
outcome will be an approximation of the optimality. 
 

Index Terms—Combinatorial Restructuring, Heaviside 
Restructuring, Object-Oriented Programming, Piecewise 
Regression 
 

I. INTRODUCTION 
  Regression Analysis (RA) is a widely-used statistical 
technique for investigating and modeling the relationship 
between variables (see [1] for overview of RA).  Given as 
input to regression learning is a parametric functional form, 
e.g., 332211321 ),,( xpxpxpxxxf ++= , and a set of training 
examples, e.g., tuples of the form ),,,( 321 fxxx , where f is an 
experimental observation of the function f value for an input 

),,( 321 xxx .  Intuitively, the problem of regression analysis is 
to find the unknown parameters, e.g., 321 ,, ppp  which best 
approximate the training set.  For example, the national 
housing price can be modeled as a function of such 
determinants as age of the house, the floor area of the house, 
neighborhood attributes, and location attributes.  This 
functional form may have unknown parameters, reflecting 
the relationship between house price and a particular attribute 
of the house.  This regression based on the national data set is 
an “overall" form of linear regression which is represented by 
line ‘A’ in Fig. 1.  The regression analysis is applied to all of 
the data within your dataset.  In other words, it gives you a 
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measure of the global rather than local relationships between 
variables. However, it clearly misses some important local 
variations between Y and X. 

 
Figure 1: Global and Piecewise Linear Relationship 

 
Piecewise Regression (PWR) are forms of data analysis 

that allows to evaluate how the relationship between a 
dependent variable and one or more explanatory variables 
changes according to the different value intervals in which 
the explanatory variable resides. So, instead of being a 
conventional and stationary model, for example, y= p0 + p1x 
in the case of linear regression with a single explanatory 
variable, the piecewise linear regression model can be 
expressed as  

,݌)݂            (ݔ =  ൞ ଵ݂(݌ଵ, ݔ   (ݔ < ܾଵ          ଶ݂(݌ଶ, ଵܾ    (ݔ ≤ ݔ < ܾଶ… . .௞݂(݌௞, ௞ିଵܾ    (ݔ  ≤  (1)                         ݔ

 
In the PWR expression (1), for different value intervals of 

the explanatory variable, a specific functional form  ௜݂ 
represents a “segment” of line in the overall problem.  There 
exists a relationship between two variables, Y and X, which 
needs to be determined from the observed data.  A global 
linear regression model will produce a relationship such as 
that depicted by line A.  A local technique, such as linear 
“spline” function, depicted by line B, will give a more 
accurate picture of relationship between Y and X.  This is 
obtained by essentially running three separate regressions 
over different ranges of the X variable with the constraint that 
the end points of the local regression lines meet at what are 
known as “knots”. 

In the CoReJava framework [2], the above spline 
functional form of regression analysis can be expressed as a 
Java program, in which the slopes and intercepts are not 
priori known, but can be learned from a given training set.  
One special thing for the knots in the Java program is that the 
values of knots are not priori known as well.  All these 
parameters will be initialized as a special CoReJava data type 
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– non-deterministic variable, i.e. only the value range of the 
variable is given during the initialization, instead of the value 
itself.  As we can observe from the Fig. 1, the spline function 
is composed of three linear pieces. Correspondingly, the 
function will be represented with three “if” / “else” condition 
branches.  Knots variables are involved in the “if” condition 
check, which in turn will increase the searching complexity 
of the problem.  The regression learning in CoReJava 
framework actually involves two steps. First, it analyses the 
structure of the Java programs to automatically generate a 
constraint optimization problem from them, in which 
constraint variables correspond to all non-deterministic 
variables, and the objective function of the constraint 
optimization problem to be minimized is the summation of 
squares of errors w.r.t. the training set.  Second, the generated 
optimization problem will be solved by the non-linear 
mathematical optimization solver.  The searching complexity 
of non-deterministic variables in the optimization problem 
will be ܱ(2ே∙ெ)which is exponential in N (the size of the 
training set) and M (the number of condition checks in which 
non-deterministic variables are involved). 

There is growing literature and techniques for examining 
local relationships in data sets.  For example, the use of spline 
function [3] requires that the knots of piecewise linear model 
need to be given but the coefficients of the linear problem are 
left unknown.  LOWESS regression in [4] can be used to fit 
segments of data without a global function.  However, it fits 
data using curves and at the same time, it is so 
computationally intensive that it is practically impossible to 
be used.  A connectionist model (three layer neural network) 
[5] is used to solve the piecewise linear regression problem 
heuristically with clustering and multi-category classification 
involved.  Even though the neural network can show high 
accuracy on the available data set, it is not feasible to prove 
that it will show a good performance on all possible input 
combinations such as unseen data.   

This paper proposes two different strategies for piecewise 
regression learning.  One strategy is called combinatorial 
restructuring with the searching complexity ܱ(ܰ௉), where N 
is the number of learning sets and P is the number of 
parameters in the function, i.e., only polynomial in N, as 
opposed to the  original ܱ(2ே∙ெ)which is exponential in N.  
At the same time, it guarantees optimality of learning.  
However, for the combinatorial restructuring, the piecewise 
regression learning has to be repeated totally ܥேାଵ௞ିଵ number of 
times.   The other strategy is called Heaviside restructuring 
with the searching complexity of ܱ(ܰ௉ା௄), where N is the 
number of learning set, P is the number of parameters in the 
function and K-1 is the number of “knots” in the function, i.e., 
polynomial in the size of data set, as opposed to the  original ܱ(2ே∙ெ), which is exponential in N.  Heaviside restructuring 
is proposed to replace all “if” / “else” decision structures by a 
unified functional format in learnedFunction method.  The 
“spline” function (piecewise functions) can be expressed as a 
single, continuous function by applying the Heaviside 
transformation [6].   The Heaviside restructuring decreases 
the search complexity to be polynomial in the number of 
learning set but the learning outcome will be an 
approximation of the optimal solution. Compared to the 
combinatorial restructuring, Heaviside restructuring 
improves the learning efficiency by trading with the 

approximation of optimal learning outcome.  Finally, we 
conduct an experimental study to compare generic CoReJava 
learning, combinatorial restructuring, and Heaviside 
restructuring.  It shows that both restructurings outperform 
generic CoReJava regression learning.  

This paper is organized as follows. Section II is the 
overview of CoReJava framework which is exemplified by 
the implementation of regression learning on the spline 
function (see Fig. 1).  Section III explains key ideas and 
algorithm of combinatorial restructuring for 
single-dimensional piecewise regression problem.  As to 
higher dimensional piecewise surface regression model, the 
combinatorial restructuring cannot be simply reused for 
general models, however can be applied to solve a special 
class of the problems in the same domain.     Section IV 
explains key ideas and algorithm for Heaviside restructuring 
of piecewise regression problem. An experimental study is 
performed to compare the results of different learning 
strategies in section V. Finally, we conclude and briefly 
outline our future work in Section VI. 

II. OVERVIEW OF THE COREJAVA FRAMEWORK 
EXEMPLIFED BY REGRESSION ON SPLINE FUNCTION 

In this section, we exemplify the use and semantics of 
regression framework by implementing the spline function 
example which is described as line ‘B’ in Fig. 1.  The spline 
function is the kind of estimates produced by a spline 
regression in which the slope varies for different ranges of the 
regressors. The spline function can be continuous but usually 
not differentiable. 
 

 
Figure 2: Regression Framework in Eclipse 

 
Fig. 2 shows a partially expanded CoReJava library of the 

regression framework for the spline function example. The 
three key packages in the example are (1) the existing 
codebase, that may have been developed not for the purpose 
of regression learning, (2) RL (Regression Learning), which 
is system package of the framework, and (3) the 
usageExample, which instantiates some classes in the 
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codebase and then do as regression learning .  The codebase 
contains all source code implementing the computational 
process.  There is no regression learning related code in this 
package.  The codebase in the example models the spline 
function with data members of two knots, br1 and br2 and 
three different set of intercepts and slopes, (a, b), (c, d) and (e, 
f), i.e., models the function ݂(ݔ) =  ൝ܽ + ݔ     ݔܾ < ܿ               1ݎܾ + ≥ 1ݎܾ     ݔ݀ ݔ < 2݁ݎܾ + ≥ 2ݎܾ     ݔ݂  (2)                     ݔ

In the usageExample package, let us assume that Coefs 
(parameters of spline function) is not priori known, and we 
would like to learn them using a given training set.  To do that, 
the user can define its own learning behavior by extending an 
abstract class RegressionLearning which belongs to the 
system package RL.  We use the class simpleregression to 
exemplify the user’s learning behavior in the example.  
Simpleregression class has a Coefs object as data member, 
which we would like to learn. It defines a constructor and a 
learnedFunction(Scanner scanner) method. Method 
learnedFunction describes a functional form written using 
standard Java, while method constructor describes the set 
of adjustable parameters to that function.  Note that the 
constructor method of simpleregression uses the method 
paramToLearn(double min, double max) to specify the 
learning parameters (coefficients and knots) of the Coefs 
object to be learned. The min and max here can specify a 
value range for the learning parameters to be chosen.  The 
learning parameters are unknown in the constructor. 
Simpleregression class overrides the abstract method 
learnedFunction(Scanner scanner) of its super class, 
to represent the functional form used in learning.  This 
method reads from the scanner object, as input, the X values 
of training examples and returns their Y values as output. 
Note that the output Y depends on the object Coefs, which 
contain unknown parameters to be learned.  Both the 
constructor and learnedFunction methods can make use 
of an existing Java code base. 

The parameter scanner is defined as a Java utility class 
Scanner and used to read a set of training.  The Scanner 
object that encodes a set of training examples, in the form

),,,( 1 nn fxx K .  In the spline function example, each data point 
is composed of pairs of X and Y values.  The size of training 
set is decided by the information the user has collected. If the 
size of the table is not big enough, the model selection 
technique (cross validation) of machine learning will be used 
to filter the noise of learning sets [7].  

The simpleRegressionUsage class is used to show the 
actual execution of the spline funciton example.  The main 
method is defined in this class.  Two variables min_Bound 
and max_Bound are used to specify the range of coefficients 
to be chosen and assigned in the main method.  Intuitively, 
the special regression semantics of the 
simpleRegressionUsage constructor is as follows. It 
constructs a simpleRegressionUsage object, in which all the 
invocations of paramToLearn method are replaced with 
actual values of type double, for which the function defined 
by the learnedFunction method would best approximate the 
set of training examples. After that, the main method will be 
executed as a regular Java program. The values of all 
parameters and knots will be printed out.   The running result 

of spline function example, i.e., the values of parameters and 
knots is displayed in Fig. 3. 

 

 

Figure 3: Running Results 
 
To implement regression learning, the compiler of 

CoReJava framework involves two steps. First, it analyses 
the structure of the learnedFunction method to 
automatically generate a constraint optimization problem, in 
which constraint variables correspond to paramToLearn, and 
the objective function to be minimized is the summation of 
squares of errors w.r.t. the training set, and then solves the 
optimization problem using the non-linear optimization 
solver AMPL / SNOPT [8].   AMPL is a comprehensive and 
powerful algebraic modeling language for linear and 
nonlinear optimization problems, in discrete or continuous 
variables.  Second, regression framework constructs a regular 
myLearning object, in which all paramsToLearn are replaced 
with the optimal learned parameters, and then continues with 
regular Java semantics. The constructed optimization 
problem is solved by an external solver such as AMPL / 
SNOPT.  That is why it inherits the solver’s limitations, 
namely, it can only be solved when the resulting constraint 
domain is supported by the solver, and furthermore, may 
return only a local, rather than global, minimum of the 
corresponding non-linear regression problem. 

 
Figure 4: Code Snippet for learnedFunction method 

 
The learnedFunction in Fig. 4 represents the decision 

structure for the linear spline function of spatial housing 
prices model.  In this method, the number of knots in the 
model is given as two however the thing not known is the 
exact values of the knots.  That’s why in the function cf.br1 
and cf.br2 are assigned as non-deterministic value type 
within the range [0, 15].  The nested “if” and “else” decision 
structures are used to calculate the value of dependent 
variable Y according to the range in which the input value X 
lies.  If it belongs to the first part of the spline function, i.e. X 
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is less than the value of first knot, Y will be calculated using 
the first function ܻ = ܽ + ܾܺ.  Similarly, the value of Y can 
be calculated if X falls in the interval of the first knot and the 
second knot, or X falls in the range of the second knot and the 
end of input domain.  In the “if” condition expression of the 
example, two knots are involved.  These two variables are of 
non-deterministic data type.   After the constraint 
optimization problem is generated for the learnedFunction 
method, a binary variable will be automatically generated for 
each non-deterministic variable in the conditional expression.   
Furthermore, each binary variable in the condition expression 
will increase the search space of the optimization problem by 
double.  If given N data inputs and M “if” statements in the 
learnedFunction, there will be totally N*M of binary 
variables will be generated and then the searching space will 
be of complexity ܱ(2ே∙ெ). 

Due to the exponentially increasing complexity of 
searching space, it will take unreasonable amount of time to 
solve the above constraint problem.  Most times, the solution 
for the regression learning even can’t be found due to the 
limitation of the mathematical solver.  Better strategy need to 
be proposed to decrease the complexity of searching space.  
Combinatorial restructuring is proposed first in section III 
and then Heaviside restructuring is proposed in section IV. 

III. COMBINATORIAL RESTRUCTURING 

A. Piecewise Regression Problem Definition 
We focus on regression learning of the piecewise function 

in (1) where (݌ଵ, ,ଶ݌ … , (௞݌  are parameters of “case” 
functions and (ܾଵ, ܾଶ, … , ܾ௞ିଵ) are bound parameters which 
we call “knots”.    We assume a training data set  {(ݔ௡, ௡݂)}, ݊ = 1, . . , ܰ is given.  The purpose of learning is to 
find the parameters (݌ଵ, ,ଶ݌ … , (௞݌  which can best 
approximate the function set ( ଵ݂, ଶ݂, … , ௞݂), and at the same 
time find the values for the  (ܾଵ, ܾଶ, … , ܾ௞ିଵ). 

B. Proposed Learning Approach 
For the generic least squared regression learning of 

CoReJava, the learning objective is min ∑ ,̂݌)݂) ෠ܾ, (௜ݔ − ௜)ଶே௜ୀଵݕ      (3) 

The optimization would require N*M binary variables 
because of the piecewise form of the function ݂(݌, ܾ, (ݔ , 
which corresponds to the search space of  ܱ(2ே∙ெ).  To 
understand the idea of proposed combinatorial restructuring, 
we start with the simplest case, in which there is a single knot ܾଵ, i.e., ݂(݌ଵ, ,ଶ݌ ܾଵ, (ݔ =  ൜ ଵ݂(݌ଵ, ݔ     (ݔ < ܾଵଶ݂(݌ଶ, ଶܾ     (ݔ ≤  (4)              ݔ

Assume that without loss of generality, (ݔଵ, ,ଶݔ . . ,  ே) areݔ
sorted in an ascending order.   In the combinatorial 
restructuring, instead of solving (3), we propose to solve N+1 
problems, corresponding to the following value intervals of ܾଵ, (-∞,ݔଵ], (ݔଵ, ,ேିଵݔ) ,… ,[ଶݔ ,ேݔ) ே], andݔ ∞).  Thus, the 
ith problem will be ݉݅݊ ෍(݂(̂݌, ෠ܾ, (௜ݔ − ௜)ଶேݕ

௜ୀଵ = 

min (∑ ( ଵ݂(̂݌, ෠ܾ, (௜ݔ − ௜)ଶ௞௜ୀଵݕ + ∑ ( ଶ݂(̂݌, ෠ܾ, (௜ݔ −ே௜ୀ௞ାଵ                       (5)                                                    ( 2(݅ݕ 

Note that in the above form, we do not need binary 
variables to represent the piecewise selection since ܾଵ can 
only satisfy one of the N+1 cases, it will be suffice to solve 
N+1 problem (5) and select the solution that gives the 
minimum.  This approach will decrease the searching 
complexity from  ܱ(2ே∙ெ) to ܱ(ܰ௉) where P is the number 
of parameters, N is the size of data inputs and M is the 
number of “if” branches in the learnedFunction of the 
regression learning. 

Consider a more general function format (1), N data points 
in the training data set and ݇ − 1 knots. Each knot has N+1 
possible value intervals (-∞,ݔଵ], (ݔଵ, ,ேିଵݔ) ,… ,[ଶݔ ,ேݔ) ே], andݔ ∞).  The function definition assumes that ܾଵ < ܾଶ <⋯ < ܾ௞ିଵ .  Let us index the intervals 1, … , ܰ .  If ܾଵϵ൫ݔ௜భ,  ௜భାଵ൧, we say that ܾଵresides in the interval ݅ଵ.  Noteݔ
that ݔ଴ = −∞, so if ݅ଵ=0, −∞ < ܾଵ ≤ ଵ.  More generally, if ܾଵ resides on interval ݅ଵݔ , ܾଶ resides on interval ݅ଶ, …, and ܾ୩ିଵ resides on interval ݅௞ିଵ, we know that 

 
The idea is that under the constraints in (6), for input points 

{௝ݔ}  ݆ = 1, . . , ݅ଵ , ݂൫̂݌, ෠ܾ, =௜൯ݔ  ଵ݂൫݌ଵ, ௝൯ݔ ,…, and for input 
points {ݔ௝}  ݆ = ݅௞ିଵ, … , ݊ , ݂൫̂݌, ෠ܾ, =௜൯ݔ  ௞݂൫݌௞, ௝൯ݔ .  Thus, 
under the constraint (6), the problem ݉݅݊ ∑ ,ො݌)݂) ෠ܾ, (݅ݔ −ே௜ୀଵ2(݅ݕ can be rewritten as ݉݅݊݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ (∑ ൫ ଵ݂൫݌ଵ, ௝൯ݔ − ௜൯ଶݕ +                         ௜భ௝ୀଵ                                 ∑ ൫ ଶ݂൫݌ଶ, ௝൯ݔ − ௜൯ଶݕ +௜మ௝ୀ௜భାଵ  … … +                                  ∑ ൫ ௞݂൫݌௞, ௝൯ݔ − ௜൯ଶ௡௝ୀ௜ೖషభାଵݕ )       (7) 

 

 
Figure 5: Combinatorial Regression Learning Algorithm 

 
This gives rise to our algorithm: enumerate all possible 

index selection ݅ଵ, … , ݅௞ିଵ  for ܾଵ, . . , ܾ௞ିଵ respectively, and 
for each selection solve the problem (7).  This idea is 
summarized in the combinatorial restructuring algorithm in 
Fig. 5.  
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Claim: the combinatorial restructuring algorithm 
guarantees optimality of the regression problem (1), and 
requires solving ܥேାଵ௞ିଵ continuous optimization problems in 
the complexity of ܱ(ܰ௣). 

C. Piecewise Surface Regression Model 
We now extend the functional form (1) to a 

multi-dimensional case, with the following form 
 

൞ ଵ݂(݌ଵෞ, (ොݔ)ො)   zݔ < ܾଵ          ଶ݂(݌ଶෞ, ො)    ܾଵݔ ≤ z(ݔො) < ܾଶ… . .௞݂(݌௞ෞ, ො)    ܾ௞ିଵݔ  ≤ z(ݔො)       (8) 

where ݔො = ,ଵݔ) … , (௡ݔ  and z(ݔෝ)  = ∑ ௜௡௜ୀଵݔ௜ݓ where ∑ ௜ଶݓ = 1௡௜ୀଵ .  Note that while this functional form is of 
multi-dimensional input space, its cases of piecewise 
functions are expressed with a fixed linear combination z(ݔෝ), 
i.e., the axis (ݓଵ, … ,  ௡).  For this case we will sort theݓ
learning set ൛(ݔఫෝ , ݆ ௝)ൟݕ = 1, . . ܰ  by the value ݖ൫ݔఫෝ ൯  and 
assume without loss of generality, that ݖ(ݔଵෞ), … .  is in  (௡ෞݔ)ݖ
increasing order.  The combinatorial restructuring algorithm 
for this case is given in Fig. 6. 
 

 
 

Figure 6: Combinatorial Regression Learning Algorithm for a 
Multi-dimensional Case 

  
We can have the similar claim for this case as to the 
piecewise function in (1).  The combinatorial restructuring 
algorithm guarantees optimality of the regression problem (8), 
and requires solving ܥேାଵ௞ିଵcontinuous optimization problems 
in the complexity of ܱ(ܰ௣). 

IV. HEAVISIDE RESTRUCTURING OF REGRESSION LEARNING 

A. Problem Definition 
Same to combinatorial restructuring, we focus on 

regression learning of the piecewise function in (1) where (݌ଵ, ,ଶ݌ … , (௞݌  are parameters of “case” functions and (ܾଵ, ܾଶ, … , ܾ௞ିଵ) are bound parameters which we call “knots”. 
We assume a training data set  {(ݔ௡, ௡݂)}, ݊ = 1, . . , ܰ  is 
given.  The purpose of learning is to find the parameters (݌ଵ, ,ଶ݌ … , ) ௞) which can best approximate the function set݌ ଵ݂, ଶ݂, … , ௞݂), and at the same time find the values for the  

(ܾଵ, ܾଶ, … , ܾ௞ିଵ).   The learning objective is expressed as (3), 
which can be rewritten as  ݉݅݊݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ (∑ ൫ ଵ݂൫݌ଵ, ௝൯ݔ − ௜൯ଶ௫ೕழ௕భݕ +                                ∑ ൫ ଶ݂൫݌ଶ, ௝൯ݔ − ௜൯ଶݕ  … … + ௕భஸ௫ೕழ௕మ                                  ∑ ൫ ௞݂൫݌௞, ௝൯ݔ − ௜൯ଶ ௕ೖషభழ௫ೕݕ )     (9) 

 
In (9), both (݌ଵ, ,ଶ݌ … , (௞݌  and (ܾଵ, ܾଶ, … , ܾ௞ିଵ)  are 

non-deterministic variables to be searched during the 
optimization.  The sum of least squared errors is composed of 
multiple itemized summations of least squared errors for 
every individual piece of the piecewise function ݂(݌,  As  .(ݔ
described in Fig. 4, in learnedFunction method, a nested “if” 
and “else” statements are constructed to express every single 
piece of piecewise linear function.  Given N data inputs and 
M “if” statements in learnedFunction method, the searching 
space will be of complexity ܱ(2ே∙ெ) .  To lower the 
complexity, it is not necessarily to express the piecewise 
linear function in multiple pieces and each piece has a 
different functional form.  However, it can be expressed as 
one unified function instead.  Consequentially, we can 
remove “if” and “else” statements in the learnedFunction 
method.  We call this approach Heaviside restructuring. 

B. PWLR Expressed in Unified Functions 
The piecewise linear function in (1) can be expressed a 

single, continuous unified function by applying Heaviside 
function (known as the Unit Step function), which is defined 
as: ܷ(ݔ) = ൜ ݔ ݂݅   0 < ݔ ݂݅    01 ≥ 0                             (10) 

 
We can perform the transformation by switching on and 

switching off the appropriate functions at the right time.  
After transformation, the function in (1) can be rewritten as: 

,݌)݂  (ݔ =  ଵ݂(݌ଵ, (ݔ − ଵ݂(݌ଵ, (ݔ ∗ ݔ)ܷ  − ܾଵ) +  ଶ݂(݌ଶ, (ݔ ݔ)ܷ ∗ − ܾଵ) − ଶ݂(݌ଶ, (ݔ ∗ ݔ)ܷ  − ܾଶ) +  … + ௞݂(݌௞, (ݔ ݔ)ܷ ∗ −  ܾ௞ିଵ)                                           
                                                                                      (11) 
 
The learning objective for the Heaviside restructuring can 

be expressed as: ݉݅݊         ݌ଵ, . . , ,௞,ܾଵ݌ . . , ܾ௞ିଵ ෍( ଵ݂(݌ଵ, (ݔ −  ଵ݂(݌ଵ, (ݔ ∗ ݔ)ܷ  − ܾଵ)ே
௜ୀଵ+  ଶ݂(݌ଶ, (ݔ ∗ ݔ)ܷ  − ܾଵ) − ଶ݂(݌ଶ, ∗(ݔ ݔ)ܷ  − ܾଶ) +  … + ௞݂(݌௞, (ݔ ∗ ݔ)ܷ  − ܾ௞ିଵ)−                                                      ௜)ଶݕ

                                                                                      (12) 
 
Given the number of “knots” as k-1, the total number of 

terms in the unified function will be 2k + 1.  When the 
Heaviside function is converted to constraint optimization 
problem in CoReJava framework, it requires the function to 
be optimized is differentiable.  A differentiable 
approximation of the Heaviside function is called sigmoid 
function, defined as: 

(ݔ)ߪ  =  ଵଵା௘షೌೣ                                  (13) 

Correspondingly equation (11) will be rewritten as: 
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,݌)݂    (ݔ = ଵ݂(݌ଵ, (ݔ − ଵ݂(݌ଵ, (ݔ ∗ ݔ)ߪ − ܾଵ) + ଶ݂(݌ଶ, (ݔ ݔ)ߪ∗ − ܾଵ) − ଶ݂(݌ଶ, (ݔ ∗ ݔ)ߪ − ܾଶ) + ⋯ + ௞݂(݌௞, (ݔ ݔ)ߪ        ∗ − ܾ௞ିଵ)   

                                                                              (14) 

 The variable α is a predefined constant which has been 
assigned as 10 in our experiments.  However, the value of α 
can be changed for different experiment set-ups.  The 
sigmoid function is implemented as a Java class Produce 
which is depicted in Fig. 7.   
 

 
Figure 7: Class representation of sigmoid function 

 
The learnedFunction is implemented a different way in 

the Heaviside restructuring.  We do not need binary variables 
to represent the piecewise selection any more since nested “if” 
and “else” statements have been replaced by a single 
assignment statement.  This approach will decrease the 
searching complexity from  ܱ(2ே∙ெ) where N is the number 
of data inputs and M is the number of “if” statements in the 
learnedFunction, to ܱ(ܰ௉ା௄) where P is the number of 
parameters and K-1 is the number of knots. 

 

 
 

Figure 8: Code Snippet for unifedlearnedFunction 
 
Claim: the Heaviside restructuring algorithm decreases the 

searching complexity to polynomial degree while its learning 
outcome approximates optimal solution. 

V. EXPERIMENTAL STUDY 
The experiment is designed to compare different 

approaches of regression learning – generic CoReJava 
regression learning, combinatorial restructuring and 
Heaviside restructuring. Two matrices are adopted for 
evaluation.  One is the execution time (in milliseconds), and 
the other is RMS (root mean square error) [10].  In our case, 
RMS error is equal to the sum of squared error differences 
between the observed dependent variable Y and the value ෠ܻ  
which is returned from the learnedFunction.  The quality of 
regression learning is evaluated by the RMS error.  The lower 
the RMS errors, the better the learning quality.   

To construct the training data sets, we generate four 
piecewise linear functions f1, f2, f3, and f4, which have 1, 2, 
3 and 4 knots correspondingly.  The number of sample data 
points generated for f1, f2, f3 and f4 are 50, 75, 100 and 125.  
For each function fi, sample data points (ݔ௜, ݅ (௜ݕ = 1,2, . . , ܰ 
according to the model ݕ = (ݔ)݂݅ + ߝ  , being ߝ a normal 
random variable with zero mean and standard deviation equal 
to 0.5.  The experiments are run in windows vista with 
1.60GHZ processor and 3GB memory.  The supporting 
software is Java 6, AMPL/SNOPT and Eclipse 3.5. 

Table I compares the execution time among different 
approaches.  We can observe that for generic CoReJava 
regression learning, where non-deterministic knot variables 
are involved in the “if” condition, its execution time increase 
dramatically as the number of knots increase, from 456 ms 
for one knot to 13002 ms for four knots.  However, the 
execution time for single running of combinatorial 
restructuring is trivial, around 10 ms compared to that of 
generic learning in CoReJava framework.    Although the 
single running of combinatorial restructuring takes trivial 
time, the exhaustive search strategy for the combinatorial 
restructuring makes the situation worse. As the number of 
knots increase, all the possibilities of knots combination from 
the input data set increases dramatically as well.  When the 
number of knots reaches four, it shows that the total running 
time for combinatorial restructuring reaches a substantial 
amount of time, around 10଼ milliseconds.  This makes the 
combinatorial restructuring a less competitive strategy. In the 
view of execution time, Heaviside restructuring is a 
promising method in that it takes a little bit longer than a 
single run of combinatorial restructuring. 

 
TABLE I: EXECUTION TIME IN MILLISECONDS FOR DIFFERENT APPROACHES 

       Approach 
 
 
 
Number  
of  knots 
 

Generic 
CoReJava
Regressio
n  
Learning 

Combinatorial 
restructuring 

Heaviside 
Restructuring 
 

Each 
Run 

No. of Runs 

K = 1 (50 data 
points) 

456 9 49 14 

K = 2 (75 data 
points) 

1012 10 76 * 75 / 2=2850 14 

K = 3 (100 
data points) 

4006 10 101 * 100 * 99 / 3 
*2=166650 

14 

K = 4 (125 
data points) 

13002 10 126*125*124*12
3/4*3*2*1≈ 10଻ 

15 

 
Table II summarizes the RMS error returned by each 

approach.  We can observe for the generic CoReJava 
regression, the learning qualify is very poor with regarding to 
the RMS errors. For function f3 and f4, the RMS errors are 
2544.346 and 15578.966, which actually means that feasible 
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solution cannot be found by generic CoReJava regression 
learning due to the limitation of external optimization solver.  
However, the combinatorial restructuring guarantees 
optimality and locates the optimal feasible solution by 
minimizing the RMS error for piecewise linear functions, f1, 
f2, f3 and f4.  That is why we prefer the combinatorial 
restructuring for optimal feasible solution by sacrificing the 
amount of execution time.  RMS error for Heaviside 
restructuring is a little bit above the combinatorial 
restructuring but outperforms the generic CoRejava 
regression learning.   

 
TABLE II: RMS ERROR COMPARISON AMONG DIFFERENT APPROACHES 

                       
        Approach   
 
Number  
of  knots 
 

Combinatorial 
Restructuring 

Generic  
CoReJava 
Regression 
Learning 

Heaviside 
Restructuring 
 

K = 1 (50 data 
points) 

13.947 366.826 18.227 

K = 2 (75 data 
points) 

17.940 758.216 21.904 

K = 3(100 data 
points) 

19.862 2544.346 23.647 

K = 4 (125 
data points) 

30.317 15578.966 34.879 

 
As the size of data set scales up, the execution time for 

combinatorial restructuring becomes very expensive.  
Combining both matrices (time and RMS), Heaviside 
restructuring is an efficient and applicable method for the 
piecewise regression learning problems.  

 

VI. CONCLUSION AND FUTURE WORK 
Spline functions (piecewise linear regression problems) 

are depicted as Java programs in CoReJava framework.  It is 
initially solved by the generic regression learning in 
CoReJava framework.  Due to exponentially increased 
searching complexity and limitation of external optimization 
solver, we propose a combinatorial restructuring which 
decreases the complexity of learning, at the same time 
guarantees the optimality.  However, the exhaustive search 

strategy for the combinatorial restructuring makes the 
execution expensive.  Heaviside restructuring furthermore 
decreases the searching complexity of learning to polynomial 
of the size of learning set and takes a little more execution 
time than a single run of combinatorial restructuring.  It can’t 
achieve the optimal solution due to the fact that it is the 
differentiable approximation of the piecewise functions. 
However, the RMS for Heaviside restructuring is close to the 
value of combinatorial restructuring. 

Many research questions remain open. They include (1) 
decreasing the number of combinations of knots heuristically; 
(2) extending single-dimensional piecewise linear model to 
general higher-dimensional piecewise surface regression by 
clustering and classification; (3) adjusting the sigmoid 
function to achieve the better approximation of piecewise 
functions; and (4) special-purpose hybrid optimization 
algorithms suitable for learning that originates from a 
simulation process described as an OO program.   
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