

Abstract—The Cerebellar Model Articulation Controller

(CMAC) neural network is an associative memory that is
biologically inspired by the cerebellum, which is found in the
brains of animals. The standard CMAC uses the least mean
squares algorithm (LMS) to train the weights. Recently, the
recursive least squares (RLS) algorithm was proposed as a
superior algorithm for training the CMAC online as it can
converge in one epoch, and does not require tuning of a learning
rate. However, the RLS algorithm was found to be very
computationally demanding. In this work, the RLS
computation time is reduced by using an inverse QR
decomposition based RLS (IQR-RLS) algorithm which is also
parallelized for multi-core CPUs. Furthermore, this work
shows how the IQR-RLS algorithm may be regularized which
greatly improves the generalization capabilities of the CMAC.

Index Terms—CMAC, inverse QR-RLS, regularization,
recursive least squares.

I. INTRODUCTION
The Cerebellar Model Articulation Controller (CMAC)

was invented by Albus [1] in 1975. The CMAC is modeled
after the cerebellum which is the part of the brain responsible
for fine muscle control in animals. It has been used with
success extensively in robot motion control problems [2, 3].

In the standard CMAC, weights are trained by the least
mean square (LMS) algorithm. Unfortunately, the LMS
algorithm requires many training epochs to converge to a
solution. In addition, a learning rate parameter needs to be
carefully tuned for optimal convergence. Recently, the
recursive least squares (RLS) algorithm was proposed for use
in the CMAC [2]. The RLS algorithm does not require tuning
of a learning rate, and will converge in just one epoch. This is
especially advantageous for online learning used in methods
such as feedback error learning [3]. In order to achieve such
advantages, the price paid is an 2()wO n computational
complexity, where wn is the number of weights in the CMAC.
While fast ()wO n RLS algorithms exist, they are only suitable
for input vectors which exhibit a time-shifting property [4].
This property does not exist in the CMAC. However, it is
shown in [5] that by using a QR-decomposition based RLS
algorithm, computation time can be reduced by half for a
univariate CMAC. In this paper we show that the
computation time can be further reduced for univariate and

Manuscript received May 29, 2012; revised July 27, 2012
The authors are with the Department of Electrical and Electronic

Engineering, University of Auckland, Auckland, New Zealand (e-mail:
clau070@aucklanduni.ac.nz; g.coghill@auckland.ac.nz).

additionally multivariate CMACs by using an inverse QR
decomposition RLS (IQR-RLS) algorithm, tailoring it for the
CMAC and finally parallelizing it for use on multi-core CPUs.
While the complexity remains 2()wO n , the new algorithm is
fast enough to solve small problems at a reasonable speed.

Secondly, it is well known that the standard CMAC can
have significant generalization error [6-9]. In [9] a
regularization term was applied to the LMS cost function
which reduced the generalization error. In this paper we
apply the regularization term to the RLS cost function, and
derive a new IQR-RLS algorithm which computes a
regularized weight vector in one epoch.

This paper is organized as follows. In Section II a brief
introduction to the CMAC is presented. In Section III, the
IQR-RLS algorithm is explained, and a special algorithm
tailored for the CMAC is presented. Section III presents a
method for parallelizing the IQR-RLS algorithm for
multi-core CPUs. In Section V the regularized IQR-RLS
algorithm is derived, and the algorithm and results presented.
Finally, in section VI the conclusions are presented.

II. BRIEF OVERVIEW OF THE STANDARD CMAC
The CMAC can be considered as a mapping

S M A P→ → → . Where S M→ is a mapping from a dn
-dimensional input vector 1 2[]

d

T
ny y y=y where

iy ∈ to a quantized vector 1 2[]
d

T
nq q q=q where

iq ∈ .
The mapping M A→ is a non-linear recoding from vector

q into a higher dimensional binary vector called the
association vector, 1 2[]

w

T
nx x x=x where wn is the

number of weights in the CMAC and {0,1}ix ∈ . The number
of weights in the CMAC can be large but the association
vector x will only contain m ‘1’s, where m is the number of
layers in the CMAC (a selectable parameter which controls
generalization).

In the mapping A P→ the association vector is used to
select and add m values from an array of weights

1 2[]
w

T
nw w w=w where iw ∈ to form the output.

This can be viewed as an inner product calculation Tx w.
Learning in the CMAC corresponds to adjusting the value

of the weights in order to produce a correct output for an
input. In the standard CMAC, the LMS algorithm shown in
(2.1) is used for this purpose, where k is the training sample
iteration, β is the learning rate, ()d k is the desired output,
and () (1)T k k −x w is the actual CMAC output.

A Regularized Inverse QR Decomposition Based
Recursive Least Squares Algorithm for the CMAC

Neural Network
C. W. Laufer and G. Coghill

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

481

Fig. 1. A two-input CMAC example with four layers and 64 weights.

()() (1) () () () (1)T Tk k k d k k k
m
β= − + − −w w x x w (2.1)

In Fig. 1 a visualization of a two input (2dn =) CMAC is

shown with quantized input [4 8]T=q , and 64wn = . Here
4m = layers are used, which correspond to the four weight

tables on the right of the figure. We can see that the input
vector slices through the four layers on both axes. The sliced
letters for each layer activate a certain weight in its
corresponding weight table. Here weights Bc, Fg , Jk and No
are activated. If put into activation vector form it will appear
as,

0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

TAa Ba Bc Fg Jk No Pp⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

x (2.2)

We can also sparsely store this vector by simply storing the

addresses of the activated weights,

 []9 25 41 57activatedAddresses = (2.3)

III. THE INVERSE QR-RLS ALGORITHM FOR THE CMAC
QR-decomposition is a method for decomposing a matrix

into two matrices, one orthogonal and the other upper
triangular. It is useful for solving the linear least squares
problem recursively [10] in a more numerically stable
manner compared with standard RLS. Usually, using QR
methods will degrade computational performance. However,
the paper in [5] tailors the QR-RLS algorithm specifically for
the CMAC resulting in halving the computation time.
Unfortunately, the tailored algorithm is only suitable for
univariate CMACs as the authors assume the association
vector uses a method where the m ‘1’s are contiguous, which
cannot be the case for multi-input CMACs.

If the weight vector is required to be updated after every
presented training sample, as it is required in the CMAC, a
costly matrix back substitution step of 2()wO n time complexity
needs to be carried out each time. We can avoid this back
substitution step entirely by using an inverse QR-RLS
algorithm, which instead allows the weights to be calculated
directly. In ALGORITHM I we present an IQR-RLS algorithm

that was derived in [11] which uses the Givens rotation
method to perform the QR-decomposition, but has here been
tailored for the CMAC in order to increase computational
speed.

Where ()ia k , ()ijr k and () ()i
ju k are the individual entries of

()ka , ()kR and ()ku respectively. Note that δ is a constant
that is usually set between 10 and 10000. Larger values give
theoretically better results, though it was found that setting δ
too large causes floating point inaccuracies. A value of 100
was found to work well.

A. Optimizations
There are three speed improvements that are implemented

in ALGORITHM I. The first improvement involves (3.5). The
activatedAddresses array contains the array addresses of the
m ‘1’s in the association vector like what is shown in (2.3).
This array will have been calculated previously as part of the
CMAC addressing algorithm which is not shown here but can
be found in [6]. Here the address where the first ‘1’ appears in
the association vector is recorded. The for loop in (3.6) then
begins its computation from this address. This is because the
()ka vector calculated in (3.3) will be zero up until the

address of the first ‘1’ in ()kx , as T−R is lower triangular. If
()ia k is zero then ()s k will equal zero, and ()c k will equal

one resulting in no change for ()ijr k and ()ju k , rendering any
calculation redundant. g

ALGORITHM I: IQR-RLS ALGORITHM FOR THE CMAC
(0) , (0) , (0) (1),

0.001
w w

T
n nδ δ

ρ

−
×= = = >>

<

w 0 x 0 R I
 (3.1)

:for each training sample k (3.2)
() (1) ()Tk k k−= −a R x (3.3)

(0)() , () 1k kα= =u 0 (3.4)
1()start activatedAddresses k= (3.5)

: wfor i start n= (3.6)
()givens (3.7)

() () () (1)Te k d k k k= − −x w (3.8)

()

()()
()wn

e kz k
kα

= (3.9)

() (1) () ()k k z k k= − −w w u (3.10)

MACRO: ()givens
(()))iif a k ρ> (3.11)

2() (1) 2() () ()i i
ik k a kα α −⎡ ⎤= +⎣ ⎦ (3.12)

()
()

()
()

i
i

a k
s k

kα
−

= (3.13)

(1)

()
()()

()

i

i
kc k

k
α
α

−
= (3.14)

1:for j i= (3.15)
(1)() () (1) () (1)i

ij ij jr k c k r k s k u k−= − − − (3.16)
() (1)() () () () (1)i i
j j iju k c k u k s k r k−= + − (3.17)

The second improvement follows on from this where the

calculation of (3.12) - (3.17) is gated by (3.11), and thus is
only performed if the absolute value of ()ia k is greater than
ρ which is set to a small value just above zero. Values of

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

482

()ia k are often zero due to the sparseness of the CMAC input
which leaves T−R sparse, and the sparseness of the
association vector. We set ρ to be slightly larger than zero
because during the matrix-vector multiplication in (3.3),
values are often added and subtracted to form the sum of zero.
Due to floating point inaccuracies the result will not equal
exactly zero, hence the threshold. Furthermore, increasing ρ
beyond the floating point inaccuracy boundary acts to
decrease the accuracy of the solution and increase
computation speed. Generally, a value for ρ between
0.000001 and 0.001 worked well.

Thirdly, a sparse matrix-vector multiplication can be
performed with (3.3) because ()kx or the association vector
is sparse, and the addresses of the ‘1’s are known from the
activatedAddresses array. Thus, only m values for each row
of T−R need to be added.

It can be seen from (3.6) that computation time will
increase with an increase in the number of weights required
by the CMAC. We can combat this disadvantage for larger
problems by using hash mapping to specify the number of
weights to use.

B. Results
A two input sinc function was modeled on an Intel i5 CPU

using the CMAC. Fig. 3 shows the computation times
recorded for a particular number of weights compared against
other RLS algorithms used in the CMAC. The number of
weights used by the CMAC was controlled by modifying the
quantization resolution used. IQR-RLS was found to be the
fastest of the RLS algorithms. Although it was previously
said that the QR-RLS algorithm can halve the computation
time of the standard RLS algorithm, we did not implement
those speed enhancements from [5] as they would restrict the
CMAC to a single input only. The QR-RLS algorithm was
then many times slower than standard RLS.

Compared with the LMS algorithm which requires less
than one microsecond per iteration, RLS is much slower.
However, many epochs are required for the LMS algorithm
to converge, which is not desirable in online learning.

IV. PARALLELIZED IQR-RLS ALGORITHM
The QR-RLS algorithm is naturally and optimally

parallelized on a systolic array as is seen in [5]. The IQR-RLS
algorithm from ALGORITHM I can also be parallelized in the
same manner. A systolic array implementation of IQR-RLS
is shown in Fig. 2 In this figure, each circle represents a
processing element that also stores the values of T−R . The
circles in the left most column implement (3.12) - (3.17), and
all other circular processing elements implement (3.16) and
(3.17). The square boxes calculate the weights using (3.8) -
(3.10).

Often access to systolic array hardware is not available,
and only PCs are available. Parallelization on a PC may be
performed by emulating the systolic array computation
structure with threading. However, this would introduce
many threading overheads, and would potentially perform
poorly. Here a simpler method is proposed to parallelize the
IQR-RLS algorithm on a PC with a multi-core CPU by using
the systolic array visualization.

In a visual sense, ALGORITHM I sequentially updates the
()i
ju and ijr values in the systolic array row by row. It is,

however, equally valid to update the ()i
ju and ijr values column

by column instead. If the column by column method is used,
since each column is independent from one another in terms
of other value dependencies (apart from c and s), it is
possible to update each column simultaneously and without
memory sharing bottlenecks. As it is a simple exercise to
parallelize ALGORITHM I, we do not present the algorithm
explicitly, but instead describe how it may be parallelized in
two steps below.

The first step that needs to be performed is sequential in
nature. First, realize that the c and s values are constant
across each row. Thus the values of c and s must first be
sequentially calculated for each row and stored in an array.
The value ()wnα is also calculated and stored as a by-product
from calculating c and s.

In step two we realize that we can update ()i
ju and ijr column

by column. Since each column is independent of one another,
each column can be updated in a separate thread, one for each
core on the CPU. We can further optimize by combining
computation of shorter columns together to equalize thread
computation times and by writing code to skip any
calculations on rows where the ia value is below the
threshold ρ .

Additionally, fine grained parallelism on a modern CPU
can be achieved by using ‘Streaming SIMD Extensions’
(SSE). Currently, SSE instructions allow two double
precision, and four single precision multiplications to be
performed simultaneously. This is especially useful for the
inner loop calculations (3.16) and (3.17).

A. Results
The algorithm was used to model a two input sinc function

and was run on a 4-core Intel i5 processor. It was found that
parallelization slightly slowed down computation for small
problems due to threading overheads, but decreased
computation times for larger problems. We can expect for
this algorithm to become automatically faster as processor
core counts increase. A computational time comparison
between the sequential and parallel versions of IQR-RLS is
plotted in Fig. 3. The parallel algorithm implements both
threading and SSE based parallelization.

Fig. 2. Parallel systolic array implementation of the IQR-RLS algorithm

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

483

V. REGULARIZED IQR-RLS
The work in [6-9] shows that the generalization error of the

CMAC can be significant. In [9] a method called
‘regularization’ is presented for the LMS algorithm, which
considerably reduces the generalization error.
Regularization combats a design flaw in the CMAC by
forcing activated weights to be similar, thus preventing
certain weights dominating the contribution to the output
calculation. Here we apply the same regularization concept
but instead to the IQR-RLS algorithm. A partial
mathematical derivation is given below based of the
derivations found in [11]. First from [9] we use the least
squares cost function ()kε where k is the number of training
samples as,

2

2

1
: () 1

() () ()

() () ()
j

T
k

i j
j x k

d i i k

k d i w k
m

ε
λ=

=

⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦
⎜ ⎟= ⎡ ⎤⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠

∑
∑

x w

 (5.1)

The first term in (5.1) is the error between the desired and

actual CMAC output. The second term is the regularization
term which adds to the cost if the activated weights are
different to one another in value. The constant λ is used to
control the amount of regularization and it was found setting
it to the reciprocal of δ generally worked well. In order to
easily solve this problem, (5.1) must be written in
vector-matrix form. Define vectors ()kw , ()kd , ()kh and
matrices ()kX , ()kΣ as,

 1 2 1

() () () ()
w

w

T

n n
k w k w k w k

×
⎡ ⎤= ⎣ ⎦w (5.2)

 [] 1() (1) (2) () T
kk d d d k ×=d (5.3)

 [] 1() (1) (1) (2) (2) () ()
w

T
n kk k k ×=h G q G q G q (5.4)

 []() (1) (2) ()
w

T
k nk k ×=X x x x (5.5)

 []() (1) (2) ()
w w

T
n k nk k ×=Σ G G G (5.6)

where,

 1

() () ()()
w

T

n

d k d k d kk
m m m ×

⎡ ⎤= ⎢ ⎥⎣ ⎦
q (5.7)

 ()() ()
w wn n

k diag k
×

⎡ ⎤= ⎣ ⎦G x (5.8)

()()diag kx creates an w wn n× zero matrix with the entries of

()kx along the main diagonal. Using (5.2) - (5.8) we can
rewrite the cost function as,

 2 2() () () () () () ()k k k k k k kε λ= − + −d X w h Σ w (5.9)

where T=a a a . Equation (5.9) can be rewritten as a single
term by defining matrix ()kA and vector ()ky as

()

()
()

()
w wk n k n

k
k

kλ + ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

X
A

Σ
 (5.10)

() 1

()
()

()
wk n k

k
k

kλ + ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

d
y

h
 (5.11)

using (5.10) and (5.11) to rewrite ()kε then gives,

2() () () ()k k k kε = −y A w (5.12)

Now from [11] we see that since ()kA is ()w wk n k n+ × , there
exists a () ()w wk n k k n k+ × + orthogonal matrix ()kQ such
that,

()

() ()
k

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R
Q A

0
 (5.13)

where ()kR is the w wn n× upper triangular Cholesky factor,
and 0 is an (())w w wk n k n n+ − × zero matrix. Similarly,

()

() ()
()
k

k k
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

z
Q y

v
 (5.14)

where ()kz is a 1wn × vector, and ()kv is a (()) 1w wk n k n+ − ×
vector. Since ()kQ is orthogonal, pre-multiplying each term
in (5.12) does not change the value of the norm,

2() () () () () ()k k k k k kε = −Q y Q A w (5.15)

Substituting (5.13) and (5.14) into (5.15) gives the desired
form,

2

() () ()
()

()
k k k

k
k

ε
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

z R w
v

 (5.16)

It can be seen that the norm will be minimized if,

 () () ()k k k=R w z (5.17)

With (5.17) the weights can be solved for with back

substitution. For IQR-RLS we need the
1()k−R matrix

however, so the derivation continues. Now the problem
becomes how to update (1)k −R to ()kR and (1)k −z to ()kz .

First, consider the non-regularized solution. In the
non-regularized solution, ()kA and ()ky in (5.12) are
replaced with ()kX and ()kd . Thus, in [11] it is shown that
an (1) (1)w wn n+ × + orthogonal matrix ()kT exists that will
perform the non-regularized update by updating using the
latest entry of ()kX and ()kd , which are ()kx and ()d k
respectively,

(1) ()

()
()T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.18)

(1) ()

()
() ()

k k
k

d k k
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.19)

However, with regularization, (5.12) uses ()kA and ()ky

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

484

which is a composition of two matrices and two vectors
respectively, so we must update with the latest entries of

()kX , ()kd and the latest entries of ()kΣ , ()kh multiplied by
λ which are ()kλG and () ()k kλG q respectively. There

must then exist an (2 1) (2 1)w wn n+ × + matrix ()kT such that,

(1) ()

() ()

()

T T

k k

k k

kλ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R R

T x 0
0G

 (5.20)

and similarly to update (1)k −z to ()kz ,

(1) ()

() () ()
()() ()

k k
k d k k

kk kλ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

z z
T ζ

φG q

 (5.21)

Unfortunately, if (5.20) and (5.21) are used, we cannot

proceed with the same derivations found in [11] as the
derivations are suited only to a (1) (1)w wn n+ × + ()kT matrix.
We, however, realize that ()kR may be calculated iteratively
if we define () ()

wn k k≡R R , () ()
wn k k≡z z and write ()kG

and ()kq in column form,

 1 2() () () ()
w

T
nk k k k⎡ ⎤= ⎣ ⎦G g g g (5.22)

1 2() () () () () () () ()
w

T
nk k k k k k k k⎡ ⎤= ⎣ ⎦G q g q g q g q

 (5.23)

then we first update using ()kx and ()d k ,

 0
0

(1) ()
()

()T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.24)

 0
0

(1) ()
()

() ()
k k

k
d k k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.25)

and using 1()kg to ()

wn kg we iteratively update until we have
()

wn kR ,

 0 1
1

1

() ()
()

() T

k k
k

kλ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.26)

1() ()

()
()

w w

w

w

n n
n T

n

k k
k

kλ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.27)

and using 1() ()k kg q to () ()

wn k kg q we iteratively update until
we have ()

wn nz ,

 0 1
1

11

() ()
()

()() ()

k k
k

kk kλ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.28)

1() ()

()
()() ()

w w

w
ww

n n
n

nn

k k
k

kk kλ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.29)

It is now clear that we need not continue with the derivation,

as the regularizing equations (5.26) - (5.29) are in the same
form as (5.18) and (5.19). Instead we can simply perform the
final IQR-RLS update algorithm given in [11] for ()kx and

()d k as is done in ALGORITHM I and then perform the
algorithm wn more times, but by replacing ()kx with 1()kg to

()
wn kg and ()d k with 1() ()k kg q to () ()

wn k kg q .

ALGORITHM II: REGULARIZED IQR-RLS ALGORITHM FOR THE

CMAC
First perform one run of ALGORITHM I, but replace line (3.10)
with (5.30) instead.

() () ()k z k k=Temp u (5.30)

Then while still inside training sample loop (3.2),
1/λ δ= (5.31)

1:for h m= (5.32)
()hp activatedAddresses k= (5.33)

() () ()T
pk k kλ −=a R g (5.34)

(0)() , () 1k kα= =u 0 (5.35)
: wfor i p n= (5.36)
()givens (5.37)

()

() () () (1) ()
()

()w

p p
n

k k k k k
k

k

λ

α

⎡ ⎤− −⎣ ⎦+ =
g q g w u

Temp

(5.38)

() (1) ()k k k= − −w w Temp (5.39)

In ALGORITHM II the regularized IQR-RLS algorithm for
the CMAC is presented.

A. Optimizations
Running the IQR-RLS algorithm wn times for each row

would slow the entire algorithm down significantly. However,
an important observation to make is that only m rows of ()kG
will not be the zero vector. The zero vector rows can be
ignored as they would produce a zero ()ka vector. Thus
instead of running the algorithm wn times more for
regularization, it need only be run m more times, which is
reflected in the for loop in (5.32).

Another major optimization performed in ALGORITHM II is
related to (5.33). Here we realize that we can start loop (5.36)
from address p of the 'h th ‘1’ in the association vector. This
is because ()p kg is essentially the association vector with
every entry, other than the 'p th entry masked as zero,
therefore every ()ia k value before the 'p th address will be
zero making performing the givens macro redundant, as was
explained in section III.A.

B. Results
It was found that the regularized RLS algorithm is able to

compute the regularized weight vector in one epoch. In Fig. 4
we see the output of a non-regularized CMAC on the left,
modeling a sine function with the IQR-RLS algorithm. The
CMAC sampled the sine function every 30 degrees, used a
quantization resolution of 100, and had 10 layers. There is
severe interpolation/generalization error between training
samples. The figure on the right shows the CMAC trained on
the same sine wave, but with regularization turned on. The
CMAC output is now almost a perfect sine wave.

With regularization, training times take a hit. Fig. 3 shows
a computation time comparison for the regularized IQR-RLS

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

485

algorithm.

Fig. 3. Computation time per training sample vs. number of weights in the
CMAC for various RLS-CMAC implementations. The number of weights

was controlled by altering the quantization resolution.

Fig. 4. Non-regularized CMAC output (left) and regularized CMAC output

(right) for a sine wave modelling test.

VI. CONCLUSION
In this paper it was shown that the IQR-RLS algorithm is a

superior choice over QR-RLS and standard RLS for training
the CMAC neural network in one epoch. It was shown how
the IQR-RLS algorithm can be optimized for use in the
CMAC, and also how it can be parallelized for multicore
CPUs through multithreading, and through the use of SSE
instructions. The final experimental results show that the
algorithm runs at improved speeds compared to previously

suggested RLS algorithm for the CMAC. This paper also
presented a newly derived IQR-RLS algorithm that
implements regularization which helps to reduce the
generalization error of the CMAC.

REFERENCES
[1] J. S. Albus, "New Approach to Manipulator Control: The Cerebellar

Model Articulation Controller (CMAC)," Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME, vol. 97 Ser G,
pp. 220-227, 1975.

[2] T. Qin, et al., "A Learning Algorithm of CMAC Based on RLS,"
Neural Processing Letters, vol. 19, pp. 49-61, 2004.

[3] M. K. Hiroaki Gomi, "Learning Control for a Closed Loop System
using Feedback-Error-Learning," in Proceedings of the 29th
Conference on Decision and Control Honolulu, Hawaii, 1990.

[4] D. T. M. Slock and T. Kailath, "Numerically stable fast transversal
filters for recursive least squares adaptive filtering," IEEE
Transactions on Signal Processing, vol. 39, pp. 92-114, 1991.

[5] T. Qin, H. Zhang, Z. Chen, and W. Xiang, "Continuous CMAC-QRLS
and its systolic array," Neural Processing Letters, vol. 22, pp. 1-16,
2005.

[6] R. L. Smith, "Intelligent Motion Control with an Artificial
Cerebellum," Doctorate, Electrical and Electronic Engineering,
University of Auckland, Auckland, 1998.

[7] J. Pallotta and L. G. Kraft, "Two dimensional function learning using
CMAC neural network with optimized weight smoothing," in
Proceedings of the American Control Conference, San Diego, CA,
USA, 1999, pp. 373-377.

[8] M. Brown, C. J. Harris, and P. C. Parks, "The interpolation capabilities
of the binary CMAC," Neural Networks, vol. 6, pp. 429-440, 1993.

[9] G. Horvath and T. Szabo, "Kernel CMAC With Improved Capability,"
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 37, pp. 124-138, 2007.

[10] J. A. Apolinário and M. D. Miranda, "Conventional and Inverse
QRD-RLS Algorithms," in QRD-RLS Adaptive Filtering, J. A.
Apolinário, Ed.: Springer US, 2009, pp. 1-35.

[11] S. T. Alexander and A. L. Ghirnikar, "Method for recursive least
squares filtering based upon an inverse QR decomposition," IEEE
Transactions on Signal Processing, vol. 41, pp. 20-30, 1993.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

486

