

Abstract—Query Optimization is at the core for contribution

towards performance improvements in application systems. A
lot of ideas have been proposed towards Query Optimization
and there is lot of On-going research happening in this area.
Virtually every commercial query optimizer chooses the best
plan for a query using a cost model which is based on
cardinality estimation. If cardinality estimation is inaccurate,
then this may result in optimizer to choose a sub-optimal plan.
But once the optimizer chooses an optimal plan for execution
based on the approach of POP, the need for generating an
optimal plan for subsequent execution of the same query at a
later point in time can be minimized/reduced/exempted by
storing the execution plan. This paper proposes a Model for
building Dynamic Indexes & Storage and Re-Use of Optimal
Query plans generated thru Progressive Optimization (POP)
for performance gains. This approach is an extension to the
work implemented in “Robust Query Processing through
Progressive Optimization”. This paper proposes a model to
build Learning system within the database to analyze the
stream of incoming queries and project viable indexes as
against the initial indexes created by the Administrator and also
store and re-use of Optimal Query Plans generated thru
Progressive Query Optimization (POP).

Index Terms—QoS, PoP.

I. INTRODUCTION
Every enterprise relies on good decision-making for its

sustainable and predictable growth in the market. Good
business decisions are based on the analysis of huge amount
of data. Therefore every enterprise (big or small) strives to
ensure data integrity, availability of data and also has the
need to cater to high degree of concurrent access to data. As
organizations continue to evolve by expanding their
operations by way of venturing into new business initiatives,
small company acquisition that complement to their business
capabilities, these result in increase of data volumes, leading
for the need of high performance and scalable systems.

A. Motivations
In any automated business process, Performance of

software systems is at the core of Customer satisfaction. It is
quite obvious that any application system that meets all

Manuscript received May 17, 2012; revised May 30, 2012.
Sreekumar Vobugari and D. V. L. N. Somayajulu are with Department of

Computer Science and Engineering at National Institute of Technology,
Warangal, India (email: Sreekumar_vobugari@nitw.ac.in;
somadvlns@gmail.com)

B. M. Subraya is with Education & Research Unit of Infosys Limited,
Mysore, India (email:Subraya@gmail.com)

business requirements but fails to meet required
Nonfunctional aspects (QoS parameters) will indeed lead to
greater customer dissatisfaction. For non-real time
application systems, though the business users expect for the
best performance (one of the Non Functional Requirement)
which is a nice to have feature, for real time machine critical
application systems, Performance of the software system in
terms of response time or through put becomes the qualifying
criteria for acceptance of the application system by business
users for Production roll-out. Adding to these challenges is
the lack of standardized approaches for capturing and
measurement of Performance requirements in application
systems. Hence, given the criticality and limitations, we
believe that looking for innovative approaches towards
performance gains in the form of totally new ideas or
improvements proposed to the existing ideas[1,2,3,4] that can
bring in substantial improvements will surely be a
differentiating factor to mitigate the “Performance” issue in
software systems addressing the needs of larger audiences of
IT industry.

B. Performance Engineering Fundamentals
For any mid-sized or larger applications, the Performance

of the application systems is dependent on the quality of
Architecture definition & implementation aspects. The
objective of having more emphasis on Performance aspects is
to avoid cost overruns by taking proactive measures than
reactive approach. From an Application system perspective,
Fig. 1 depicts a scenario of a reactive approach.

Fig. 1. Performance influence in software life cycle stages

From the above figure, two points are very clear and they

are:
 Absence of proactive approach adds to Costs.
 Later the reaction, higher the costs.

Clearly, we believe that there is a need for a Performance

Management Process to overcome the crisis originating out
of performance issues as depicted above. Based on our

A Model for Building Dynamic Indexes & Storage and
Re-use of Optimal Query Plans Generated thru Progressive

Optimization (POP)

Sreekumar Vobugari, D. V. L. N. Somayajulu, and B. M. Subraya

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

471

experiences acquired thru Project executions and Consulting
assignments to various customers, following the
Performance Management Process at each SDLC phase can
surely mitigate the risks originating out of Performance
Issues. A Comprehensive view of Performance Management
Process is shown in Fig. 2 below.

Fig. 2. Performance management process in software life cycle stages

While this is a fact, quiet notably, it is observed that the

Performance tuning at the Database level is also an important
criterion for success of any application. Since, our emphasis
in this paper is dealing with performance aspects at Database
side, we tend to limit our discussion to Databases without
getting into the Architecture & design of the application
systems.

From database perspective, performance can be viewed
from multiple perspectives. Two important perspectives of
Performance from the end user’s need are ‘Response Time’
& ‘Throughput’.

Response Time is the elapsed time to provide the result to
the end user since the time a SQL request is triggered.
Throughput is the volume of processing done in a stipulated
amount of time. Usually, throughput is measured in terms of
number of records processes per minute/hour.

C. Database Performance Requirement Analysis
Overview
In this section, we attempt to address on three important

aspects which should be considered for Database
Performance Requirement analysis. They are:

 Types of Applications
 Geographical Dispersion
 Gathering & Analyzing Workload

Types of Applications: One of the important aspects to be
dealt with during Performance Requirement Analysis phase
is to classify the Application in to one of the following
categories:

 OLTP – Demand for high throughput and
 Insert/Update intensive.
 DSS/OLAP – Converts large amount of information
 into user-defined reports.
 Hybrid – Demand for high throughput and
 Insert/Update intensive.
Geographical Dispersion: This is another important aspect

to be dealt with for Performance Requirement Analysis phase.
This aspect deals with the deployment strategy of the
application specially addressing parameters such as

Availability and Reliability. The considerations in this aspect
are:

 Distributed application
 Centralized application

Though this aspect caters the needs of Availability and/or
Reliability, it has profound impact on Performance. Hence,
the need to consider this aspect during Performance
Requirement Analysis phase.

Gathering & Analyzing workload: This is yet another
important aspect to be considered for effective Performance
Requirements Analysis phase. The following are some of the
important activities to be performed as part of Analyzing
Workload patterns:

 Analyze on Transaction volumes & usage patterns
 Analyze on Data volumes

Forecast on estimated growth in transactions & data
volumes

 Analysis on Response-time and throughput
requirements

 Analysis of total number of databases & applications to
be hosted on the server

 Analyze on Load and nature of existing databases &
applications

 Analysis on Resource consumption by each database &
application.

Above stated activities will be done as part of
due-diligence. However, accomplishment of certain activities
related to achieving Response-time/Throughput/Optimal
resource consumption can be addressed thru Query
optimization techniques.

The goal behind Query optimization is to facilitate the
Query Optimizer in generation of optimal Query plans in
terms of optimal resource utilizations.

D. Our Research Outline
In this paper, we propose an approach that emphasizes on 3

important ideas that should help improve overall database
system performance.

 Enable Database to analyze the stream of incoming
queries and project viable indexes as against the
initial indexes created by the Administrator [9].

 Storing and re-using of Optimal Query plans that are
generated by POP [1,2]. Here we propose to use the
idea/s of existing POP models and extend this model
for saving and re-using the Optimal Query plans
generated by POP.

 Once the Query plans are stored, perform certain
Pattern’s identification using Data mining
techniques by applying principles of ‘Classification’
& ‘Association rules’.

II. RELATED WORK
Query optimization is at the core for contribution towards

performance improvements in application systems. A lot of
ideas have been proposed towards Query optimization and
there is a lot of on-going research happening in this area. One
of the ideas proposed by Volker Markl, Vijayshankar Raman
and team [1] is “Robust Query Processing through
Progressive Optimization” which helps in efficient execution

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

472

of Queries by evaluating cardinality estimations dynamically.
Query Optimizers choose the best Query Execution Plan

for a Query using a cost model that relies heavily on accurate
Cardinality estimation. Hence, it is important that cardinality
estimations should be accurate which will otherwise lead to
selection of sub-optimal plans leading to performance issues.
Cardinality estimation errors should be avoided to overcome
the above stated issue.

Most modern query optimizers determine the best plan for
executing a given query by mathematically modeling the
execution cost for each of many alternative QEPs and
choosing the one with the cheapest estimated cost. The
execution cost is largely dependent upon the number of rows
(the row cardinality) that will be processed by each operator
in the QEP, so the optimizer first estimates this incrementally
as each predicate is applied by multiplying the base table’s
row cardinality by a filter factor or selectivity for each
predicate in the Query[5,6,7,8].

POP is a technique to make Query Execution Plan’s (QEP)
robust, by repeatedly re-optimizing a Query during run-time
if the cardinalities estimated during optimization prove to be
significantly incorrect. Current Optimizers depend heavily
upon the Cardinality estimations. There can be possibility for
errors in cardinality estimations. Errors can be due to:

 Inaccurate Statistics
 Invalid assumptions (e.g. Attribute Independence)

The idea behind POP is to “lazily trigger re-optimization
during execution if cardinality counts indicate current plan is
suboptimal”. POP introduces:

 Checkpoint (CHECK) operator to compare actual Vs
estimated cardinality.

 Key Idea: Pre-compute cardinality ranges for which
plan is Optimal.

The CHECK operator will help in identifying if a plan is
sub-optimal.
Progressive Query Optimizer will

 Find out cardinality range for which plan is optimal
during Optimization time.

 Check at run-time to ensure cardinality range.
 Stop plan execution and re-optimize if the cardinality

range is violated.
 When POP encounters violation of CHECK operator, it

triggers re-optimization taking observed cardinality into
account during previous run. POP also exploits intermediate
results where beneficial and limits the number of re
optimizations with default = 3.

III. MODEL FOR BUILDING DYNAMIC INDEXES & STORAGE
& REUSE OF POP PLANS

Our model for generation of indexes dynamically and
Storage & Reuse of POP plans is based on a real-time
scenario. Basis this scenario, we propose the following:

 Idea to handle the scenario
 Problem relevance to IT industry
 Conceptual Architecture for the proposed idea
 Objectives to be met thru idea implementation
 Expected outcomes

A. Scenario
Suppose that a particular Transaction Processing system

(OLTP) has set of queries say ‘n’. Assume that on Day-1, the
business users have executed transactions that resulted in
running ‘n-10’ queries.

At a later point in time (on the same day or subsequent day),
users have executed transactions that resulted in triggering
say ‘n-2’ queries.

B. Idea to Handle the Proposed Scenario
System shall store stream of queries issued by the user and

analyze the pattern of the queries [9] and identify for each
table the columns on which the queries are frequently issued.
Accordingly, DBMS shall drop the unused indexes and
create indexes for the frequently used columns used in Query
conditions.

Also, for each query that is initiated by the user, POP [1, 2]
will identify the best optimal plan (Progressively i.e., during
Run time) and execute the Query. We propose to save the
optimal plan identified by POP for every query that is
executed in the database. For all subsequent initiations of the
same queries by the user/s, the DB manager shall pick the
stored optimal plan and re-execute.

Doing so, in an ideal scenario (with an assumption that the
cardinality of the tables involved in the Joins would not have
changed drastically), the proposed idea will reduce the cost
of Query execution and also brings in significant
performance gains.

Additionally, we also propose to perform certain Pattern’s
identification using data mining techniques by applying
principles of ‘Classification’ & ‘Association rules’ etc on the
Queries that have been initiated by the user community.

C. Problem Relevance to IT Industry
Performance of software systems is at the core of

Customer Satisfaction. It is quite obvious that any application
system that meets all the business requirements but fails to
meet Performance Quality of Service (QoS) parameter will
indeed lead to greater customer dissatisfactions.

Performance aspect of any application system will be dealt
in multiple ways and they are:

 Application Architecture definition phase
 Database design phase

Hence, for large enterprise application projects, in addition
to a set of Application architects, a dedicated Data Architect/s
will be assigned whose aim is to focus purely on Database
side.

A well designed database, in addition to providing robust
data retrieval mechanisms (e.g. Using Java-Oracle Objects to
facilitate easy data transmission where data is hierarchical in
nature) across layers, should also consider implementing
effective Query Optimization techniques. Doing so will lead
to complementing towards meeting of overall performance
expectations of the target end-user community.

Hence, our proposal to dynamically build indexes and to
store & Reuse of Optimal Query plans generated thru
Progressive optimizations will contribute towards meeting
the Performance QoS parameter in any software system.
Further, we are hopeful that this POC will result in a Solution
that is generic to most of the Database servers that are

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

473

available in the market.

D. Conceptual Architecture
Fig. 3 below gives the proposed Conceptual architecture

for the implementation of ‘Model for building Dynamic
Indexes and Storage & Reuse of Optimal Query Plans’ idea.

Fig. 3. Conceptual Architecture For Performance Improvement Model

 The lines in RED color indicate the path of re using the

already saved optimal plan for execution.
 The lines in BLUE color indicate the path of Query

optimizer generating a plan and executing and
re-optimizing on the fly if the plan is found to be
non-optimal.

E. Objectives of the Idea Implementation
This section proposes the objectives of the model to realize

the idea. The objectives are very much aligned to
Performance gains of the application system. Below are the
envisaged objectives:
 Analyzing Stream of input queries and identifying new

indexes those are potential for database system
performance.

 Creation of newly identified indexes as per the above step.
 Materialization of Optimal Query plans based on

Progressive Optimization technique for each initiated
query.

 For every optimal plan saved against each query, also
record the current cardinality basis which the Optimal
Query plan has been chosen by POP.

 Re-use the saved optimal plans for subsequent Query
executions, thus resulting in reduction of time by
avoiding the Query Optimizer to generate plans and
identify the optimal plan for execution.

 Perform certain statistical analysis in identifying the trends
in change of optimal plans for each query by POP due to
change in cardinality in the tables involved in joins.

F. Expected Outcomes
The expected outcomes of this research proposal are to

quantify the performance gains by virtue of implementing
this model. We wish to run set of sample queries on:
 Database with POP and capture the Cost metrics in terms

of CPU utilization and number of I/O block transfers.
 Execute the same set of queries in a similar database

(consisting of POP implementation) and with the ability
to save POP chosen optimal query plans and collect the
Cost metrics.

Once we have captured the Cost metrics for 2 different
cases stated above, the difference in the cost metrics should
indicate the proposed performance gains.

IV. CONCLUSION
In this paper we introduce a conceptual architecture that

addresses performance improvement for software systems at
the database tier in three stages. The first stage emphasizes on
tuning of Index objects of the database system based on the
analysis of queries submitted by the users. The second stage
emphasizes on improvements in Access methods. The third
stage emphasizes at storing the shortlisted query plan along
with current cardinality in persistent storage and suggesting
to reuse the query plan for subsequent execution of the
respective query initiated through Online system provided
the difference between the stored cardinality and actual
cardinality is marginal.

REFERENCES
[1] V. Markl and V. Raman, “Robust Query Processing through

Progressive Optimization,” presented at SIGMOD 2004, France, June
13-18, 2004.

[2] V. Raman, V. Markl, D. Simmen, G. Lohman and H. Pirahesh,
“Progressive Optimization in Action,” presented at VLDB Conference,
Toronto, Canada, 2004.

[3] P. Bizarro, N. Bruno and D.J. DeWitt, “Progressive Parametric Query
Optimization,” presented at Microsoft Research, August 2006.

[4] H. Kache, W. Han, V. Markl, V. Raman and S. Ewen, “Progressive
Query Optimization for Federated Queries in DB2,” presented at
VLDB Conference, Seoul, Korea, September 12-15, 2006.

[5] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price,
“Access path selection in a relational DBMS,” presented at
SIGMOD'79, Boston, May 1979.

[6] A. V. Gelder. “Multiple Join Size Estimation by Virtual Domains”,
presented at 12th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of database systems, Washington, D.C., USA, May 25-28,
1993, pp. 180-189.

[7] A.N. Swami and K.B. Schiefer, “On the Estimation of Join Result
Sizes,” presented at EDBT, UK, March 1994.

[8] R. Ahad, K.V.B. Rao, and D. McLeod, “On estimating the cardinality
of the projection of a database relation,” ACM Transactions on
Database Systems, Vol. 14, Issue 1. March 1989, pp. 28 – 40.

[9] Y. E. Ioannidis, T. Saulys and A.J. Whitsitt, “Conceptual Learning in
Database Design,” ACM Transaction on Information System, vol. 10,
No.3, July 1992, pp. 265 – 293.

Sreekumar Vobugari is currently pursuing PhD
program in department of computer science and
engineering at the National Institute of Technology,
Warangal, A.P, India. He holds a Master of
Engineering Degree in computer science from
Jadavpur University, Kolkata, 1998 and a Bachelor
of Engineering in computer science and engineering
from Gulbarga University, 1992.

He has over 17 years of IT industry experience
and has played various roles such as Programmer,

Module Lead, Database Architect, Project manager etc.. for various global
customers during his stint working for some of the major Software consulting
companies in India. His has published a Conference papers titled ‘An
approach for Database Size Estimation’ in IEEE-International Advance
Computing Conference, 2009 Patiala India followed by ‘Index Tuning

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

474

through Query Evaluation Mechanism Based on Indirect Domain
Knowledge’ in UKSim 14th International Conference on Computer Modeling
and Simulation,2012, Cambridge,UK. He has filed a Defensive Publication
on ‘System and Method for defect tracking in software projects’. His
research interest is around Performance Engineering, Software Architectures
and Large scale distributed data processing.

 D. V. L. N. Somayajulu is a Professor in
Department of Computer Science and Engineering
at the National Institute of Technology (NIT),
Warangal, AP, India. He holds a PhD in Computer
Science and Engineering from the Indian Institute
of Technology, Delhi, India.

He has over 25 years of Academic and Industry
experience. He has headed the Computer Center at
NIT Warangal and has been Head, Department of

Computer Science for over 4 years. He has been awarded the Best Engineer
of the Year in 2007

His area of interest is around Database Performance, Data mining and
eLearning. He has carried out various Software projects sponsored by
Government of India and has organized various Conferences and workshops.

Currently he is guiding and mentoring 6 PhD students in various fields of
Databases. Some of his publications are ‘Ontology Matching schema
integration using node ranking’ at International Conference on Semantic
Web and Web Services, June, 2006, ‘Sentiment Classification of text reviews
using novel feature selection with reduced over-fitting’ at International al
conference on Internet Technologies and Secured Transactions, November,
2010.

B. M. Subraya is a Vice President at Education and
Research Unit of Infosys Limited, India. He hold a
PhD degree in Computer Science and Engineering
from the Indian Institute of Technology, Delhi,
India. He has over 25 years of experience in
Academic and Research areas. He has spearheaded
the inception the Foundation Program for the fresh
engineers entering into Infosys at their Global
Education Center at Mysore. He has several

International publications to his credit and has authored a booked titled ‘An
Integrated Approach to Web Performance Testing, A Practitioner’s Guide’.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

475

