
  

  
Abstract—In this article we consider N spherical caps of 

area 4 pπ were uniformly distributed over the surface of a unit 

sphere. We study the random intersection graph NG
constructed by these caps. We prove that for

, 0 and 2  c
p c

Nα α= > > , the number of edges in graph NG
 

follow the Poisson distribution. 
 

Index Terms—Connectivity distance, edges, spherical caps, 
wireless LAN, wired LAN. 
 

I. INTRODUCTION 
Sensor Network poses a number of challenging problems 

such as converge, connectivity and tracking. We are 
considering a typical network consisting two major physical 
components. First, we have “station". A station is an endpoint 
of connection with a wireless interface used to access the 
network. Typical examples of stations are laptop, mobile etc. 

Second the “access point". An access point has one 
wireless interface and one wired interface. The wired 
interface is effective between different access points and the 
wireless interface is effective between the stations and the 
access point. It is therefore the access point that connects the 
wireless LAN to the wired LAN. Also the radio propagation 
effects limit the range of wireless transmission. This range 
can be increased by increasing the transmission power.  

We deployed some access point on the surface of unit 
sphere. The transmission range of a access point draw a 
“spherical cap" on the surface of unit sphere and every 
station with in this spherical cap can communicate with the 
access point. Also we consider that the station is free to move 
on the surface of this unit sphere. If the two spherical caps 
intersect, it provides a covered path by which a mobile station 
can move from one access point to the other access point 
without disconnecting from the network. 
Our model can be representing as a random intersection 
graph. Random intersection graphs were introduce in [8], and 
defined as:  

Let us consider a set V  with n vertices and another set of 
objects W  with m  objects. Define a bipartite graph 

* ( , , )G n m p  with independent vertex sets V and .W  Edges 
between v V∈ and w W∈ exists independently with 
probability .p  The random intersection graph ( , , )G n m p

derived from * ( , , )G n m p is defined on the vertex set V  with 
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vertices 1 2,v v V∈ are adjacent if and only if there exists 

some w W∈  such that both 1v  and 2v  are adjacent to w in 
* ( , , )G n m p .  
In our model we consider the set of access point as vertex 

sets V and W are the set of points in the transmission range 
of different access points on the surface of unit sphere. The 
cover path between to access points is considered as an edge. 
Also we define vW  be a random subset of W such that each 

element of vW is adjacent to v V∈ . Any two vertices 

1 2,v v V∈ are adjacent if and only if 
1 2v vW W φ∩ ≠ , and 

edge set ( )E G is define as:  

( ){ }( ) , : , ,  .
i ji j i jE G v v v v V W Wv v φ= ∈ ∩ ≠  

Dudley [5], derived the distribution of the degree of a 
vertex of random intersection graph. Also show that if n  be 

the number of vertices and nα⎢ ⎥⎣ ⎦  be the number of objects, 

the vertex degree changes sharply between  1, 1α α< =  and 
1α > . Bhupendra Gupta [3], derived the strong threshold for 

the connectivity between any two arbitrary vertices of vertex 
set V , and determines the almost sure probability bounds for 
the vertex degree of a typical vertex of random intersection 
graph. 

 

II. OUR MODEL 
In this paper we considered the random intersection graph 

generated by the spherical caps on the surface of a 
3-dimensional unite sphere. 

Let 1 2, , ..., NC C C  be the spherical caps and 

1 2, , ..., NX X X  are their respective centers on the surface of a 

unit sphere. Let 1 2, , ..., NX X X  are uniformly distributed 
over the surface of unit sphere. Now define a random 
intersection graph NG  on the surface of unite sphere, with 

vertex set { }1 2, , ...,N NX X Xχ =  and edge set 

{ }: , .N i j i jX X C C i jε φ= ∩ ≠ ≠  

The aim of this paper is to investigate the evolution of 
edges in the graph NG  with vertex set 

{ }1 2, , ..., , 1, 2, ...N NX X X Nχ = = where the vertices are 
independently and uniformly distributed on the surface of a 
unit sphere. H. Maehara [6] gives the asymptotic results for 
the various properties of random intersection graph of 
random spherical caps on surface of unit sphere. Also 
Bhupendra Gupta [2] gives the strong threshold function
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 for the coverage of the surface of a unit 

sphere by the spherical caps. Bhupendra Gupta has shown 

that for large N , if 
1

log 2
pN

N
>  the surface of sphere is 

completely covered by N  caps almost surely, and if 
1

log 2
pN

N
≤  a partition of the surface of sphere is remains 

uncovered by N caps almost surely. 
 

III. SUPPORTING RESULTS 

Let 1 2, , ..., NC C C  be the spherical caps on the surface of a 

unit sphere with their centers 1 2, , ..., NX X X  and uniformly 
distributed over the surface of unit sphere. We defined a 
random intersection graph NG  on the surface of unite sphere, 

with vertex set { }1 2, , ...,N NX X Xχ =  and edge set 

{ }: , .N i j i jX X C C i jε φ= ∩ ≠ ≠
  
 

Let ( )p p a=  be the probability at a point ' 'x  on the 
surface of unit sphere is covered by a specified spherical cap 
of angular radius ' 'a . Then the area of the spherical cap of 
angular radius ' 'a  is equal to 4 .pπ  

Poisson Approximation: 

Let | |ε  denote the cardinality of the edge set i.e., the 

number of edges in the graph NG . Define an indicator 
function 

1,    , ;
,

0,    otherwise  
i j

i

C C i jφ
ε

∩ ≠ ≠
=
⎧ ⎫
⎨ ⎬
⎩ ⎭                                

 (1) 

i.e., if iX  is an end point of an edge, then 1iξ =  and 

hence ,i
i I

ε ξ
∈

= ∑  where { }: ,i jI i X X i jε= ∈ ≠ is the 

index set. 

[ ]
1 1

2

4 (1 )
2

       2 ( 1) (1 ) 2 (1 ).          

n n

i i
i i

N
E E E p p

N N p p N p p

ε ξ ξ
= =

= = = −∑ ∑

= − − ≤ −

⎛ ⎞⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

       

(2) 

The total variation distance between two integer valued 
random variables X  and Y  is define as 

                   ( , ) ( ) ( )TV X Y
u

d X Y Sup F u F u
∈Ω

= −  

The following theorem gives upper bound of TVd  of 
binomial and Poisson random variables. 

Theorem 1: (Arratia 1989 [1]): Suppose ,i i Iξ ∈  is a 
finite collection of Bernoulli random variables. Set 

[ ] [ ]1 ,i i ip E Pξ ξ= = = and .ij i jp E ξ ξ= ⎡ ⎤⎣ ⎦  
Let 

,i
i I

pλ
∈

= ∑  and suppose λ is finite. Let .i
i I

ε ξ
∈

= ∑  Then 

( )

{ }
1

\

, ( )

min(3, ) .
i i

TV

ij i j
i I j i i I j

d Po

p p p

ε λ

λ −

∈ ∈ ∈ ∈
≤ +∑ ∑ ∑ ∑

⎛ ⎞
⎜ ⎟
⎝ ⎠N N

 

where iN is the adjacency neighborhood of i , i.e. the set 

{ } { }: ,i ji j I X X ε∪ ∈ ∈  

where ( )Po λ denote Poisson random variable with 
parameter λ . 
 

IV. MAIN RESULTS 
The following theorem gives the distribution of number of 

edges of the surface of a unit sphere.  

Theorem 2: For ( ) ,
c

p p a
Nα= = where 0c > and 

2.α > Then for sufficiently large N , 

                          ( ), ( ) 0,  TVd Poε λ →
                          

(3) 

i.e., the number of edges in graph NG  is a Poisson random 

variable with parameter .i
i I

pλ
∈

= < ∞∑  

Proof: First we consider  

                   [ ] [ ]1 .i i ip E Pξ ξ= = =                                (4)                   

We know there exists an edge between iX and jX if and 

only if ,i jC C φ∩ ≠  i.e. the distance between iX  and jX  is 

less than 2 .a  Now consider another spherical cap iD  

centered at iX  and of radius 2 .a  

               
[ ]1                   

              (2 ).

i i j

j i

P P C C

P X D p a

ξ φ= = ∩ ≠

= ∈ =

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

             (5) 

Now by using the equation (2.1) of [2] we have 

                         ( )2( ) sin / 2 .       p p a a= =
                    

(6) 

Using (6) in (5), we get  

          
[ ] ( )2 1

1 sin ( ) 1-cos(2a)
2

              4 (1 ).                           

iP a

p p

ξ = = =

= −                   

 (7) 

Using (7) in (4), we get 

                         [ ] 4 (1 ).           i ip E p pξ= = −
                 (8) 

Now consider 

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

432



  

( ) ( )
( )

( ) ( )
( )

( )

1, 1,

1, 1,

2

1

    ,

        

    

        

    4( 1) (1 ) - 4 (1- )

    16 ( 1) (1

ij i j i j

n n

i l k j
l l i k k j

i j

n n

i l k j
l l i k k j
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2
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N p p
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Now by Theorem 1, we have 

( )

{ }
1

\

, ( )

min(3, ) .
i i

TV

ij i j
i I j i i I j

d Po

p p p

ε λ

λ −
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≤ +∑ ∑ ∑ ∑
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⎜ ⎟
⎝ ⎠N N

 

Using eqs. (8) and (9), we get 
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2
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2

1

2
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min(3, )
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2
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i
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Taking 
c

p
Nα= and 2α > in above, we get 

           ( ), ( ) 0,        as  .TVd Po Nε λ → → ∞  
 

V. CONCLUSION  
Theorem 2 shows that the total variation Difference 

between and ( )Poε λ  converges to 0. This implies that the 
number of edge on the surface of unit sphere follows Poisson 
distribution with parameter .i

i I
pλ

∈
= ∑
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