
  

  
Abstract—This paper presents a simulation-based 

performance evaluation of global-local hybrid ensemble 
(GLHE) in comparison to hundreds of classifiers which 
competed in the KDD 2004 Cup for the particle physics task.  
Simulations are performed on Weka machine learning software 
workbench.  Performance metrics include prediction accuracy, 
area under the receiver operating characteristic (ROC) curve, 
cross entropy, and Q-score.  Simulation results indicate that the 
difference between the performances of GLHE and the best 
submission for the KDD Cup 2004 particle physics task is 
relatively small for both prediction accuracy and area under the 
ROC curve.  The performance of GLHE for prediction 
accuracy is only 3.2% worse than that of the best submission.  
On average over the four metrics, GLHE is ranked 56.5 out of 
109.  Noting that GLHE has not been fine-tuned or optimized 
with respect to any adjustable parameters or otherwise while 
the competition entries most likely were, the results are 
promising in support of the claims for the robustness of GLHE 
performance. 
 

Index Terms—Ensemble classifier, global-local learner, 
classifier diversity, KDD 2004 Cup, machine learning.  
 

I. INTRODUCTION 
The success of ensembles of classifiers at improving the 

performance beyond single-classifier methods has led to 
increased research in the field [4].  Data manipulation 
ensembles, like bagging and boosting, have enjoyed 
widespread popularity and investigation in the past [17].  
More recently however, empirical studies have shown that 
multiple learning algorithm (hybrid) ensembles are 
consistently better performing [11], [12], [14]. 

Comparative performance studies show that the “No Free 
Lunch Theorem” [23] applies – that is, although some 
classifiers consistently have robust performance, none is best 
for every problem or dataset [2], [3], [12], [13], [16], [18], 
[19].  Consequently, approaching a new classification 
problem requires the selection of an appropriate classifier, 
according to the performance needs and project constraints.  
Possible techniques for classifier selection mainly rely on 
three procedures as empirical evaluation, dataset 
characterization, and robust classifiers as below and 
organized from the most to the least complex process. 

Empirical evaluation – A sample dataset is extracted from 
the problem.  A variety of classifiers (e.g. decision trees, 
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nearest neighbors, and ensembles) are run on this dataset and 
their performances are compared.  Once the best classifier(s) 
is identified, parameter tweaking is performed to optimize 
performance for the problem. Empirical evaluation 
guarantees that the best performing classifier of those 
available is chosen, which is essential for domains that 
require high performance.  One such field is the medical 
domain (e.g. predicting which patient is the best candidate for 
a kidney transplant).  However, empirical evaluation is also a 
resource intensive process.  Domain experts are needed to 
input knowledge of the problem, and machine learning 
specialists are needed to implement and configure parameters 
for each classifier.  Furthermore, some classifiers have long 
run-times for training, and executing multiple iterations to 
obtain results suitable for comparison can be very 
time-consuming. 

Dataset characterization – A sample dataset is extracted 
from the problem.  Characteristics of the dataset – such as 
number of classes, number of instances, proportion of 
numerical or categorical features, skewness, and entropy – 
are calculated.  Using these characteristics, a classifier is 
selected based on a repository (e.g. table) of exemplary 
dataset characteristics and best-performing classifiers for 
each dataset. 

One interesting approach to this technique presents the 
task as a classification problem [1].  First, a set of classifiers 
are executed on 100 datasets.  A new dataset is created with 
100 instances, one for each of the original datasets.  In this 
new dataset, an instance’s features are the characteristics of a 
dataset and the class is the best performing classifier for the 
original dataset.  Finally, a decision tree is used to create rules 
for predicting which classifier is best for new (previously 
unseen) dataset. 

This technique does not guarantee the best performing 
classifier, although the study suggests that the chosen 
classifier will likely perform well [1].  A benefit of using 
dataset characteristics for new problems is that there is less 
effort needed than performing a complete empirical 
evaluation.  Machine learning specialists are still required to 
create the initial repository dataset characteristics and 
classifier performance, but the remaining work of selecting a 
classifier for new problems can be performed solely by 
domain experts.  This technique also takes much less time 
than empirical evaluations.  There is a one-time calculation of 
characteristics before dataset characterization can be applied. 

Robust classifiers – Select a classifier that is known to 
perform competitively for a spectrum of datasets (ideally 
from the same domain as the new problem).  Ensembles are 
particularly good candidates, as they generally perform better 
than single-classifier methods.  Selecting a robust classifier is 
similar to using dataset characterization since they both are 
merely an approximation of the optimal performing classifier.  
Alternatively, the two techniques differ since there are no 
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dataset characteristic calculations required for robust 
classifier selection. 

There are benefits and detriments for each classifier 
selection technique.  For example, should time be spent 
testing and modifying classifiers to achieve the optimal 
performance or should an existing robust classifier be used 
with the risk of performing poorly for the problem at hand.  
Generally, these are issues of concern for real-world users, 
whereas the researchers are responsible for creating better 
empirical tests, dataset characterizations, and robust 
classifiers. 

In order to aid in the process of classifier selection, a 
design heuristic which aims to enhance robustness of 
performance for a hybrid ensemble was introduced in [4],  [8].  
This heuristic entails a mix of global and local learners in the 
base classifier composition of the ensemble.  Accordingly an 
ensemble based on such a heuristic is termed the global-local 
hybrid ensemble (GLHE).  In the following section, a brief 
overview of GLHE is provided and previous performance 
findings in the literature are reported.  The remaining sections 
of the paper offer a new dimension to the performance 
assessment of GLHE with respect to classifiers that competed 
in the KDD 2004 Cup for the particle physics task [10]. 

 

II. GLOBAL-LOCAL HYBRID ENSEMBLE (GLHE) 
The general architecture of the global-local hybrid 

ensemble is shown in Fig. 1 [4], [8].  The main feature of 
GLHE is the composition of the base classifiers.  There are n 
base-classifiers from a global learner with different 
parameterizations.  Likewise, there are m base-classifiers 
from a local learner with different parameterizations.  The 
global and local learning algorithms provide the main source 
of diversity (through heterogeneity), while instantiation of 
multiple classifiers from each learner (through homogeneity) 
gives the ensemble an opportunity to benefit from the better 
performing learner numerous times rather than once.  Any 
ensemble technique can be used to combine the 
base-classifier predictions. 

GLHE exploits two sources of diversity in its 
base-classifiers, heterogeneous and homogeneous.  
Heterogeneity is achieved by using two types of learning 
algorithms – one global and one local.  It is assumed that the 
intrinsic difference between global and local learning ensures 
high levels of diversity.  Homogeneity uses multiple 
parameterizations of the same learning algorithm to allow 
both global and local learners to explore their respective 
region of the hypothesis space while also creating additional, 
albeit small, diversity among the base-classifiers.  In previous 
studies, GLHE performance was compared to leading 
classifiers and found to be competitive and robust. 

In [8], an analysis of the global-local hybrid ensemble 
design was performed and compared to traditional hybrid 
ensemble designs on 46 UCI Machine Learning repository 
data sets.  The novel method showed benefits with respect to 
a variety of performance metrics, including prediction 
accuracy, CPU execution time, and diversity among the base 
classifiers.  A comparison of GLHE to popular data 
manipulation ensembles, bagging and boosting, was 
conducted for the same data sets in [9].  This study showed 
equivalent performance of GLHE against three ensembles 
and better performance than another three ensemble 

configurations.  Most importantly, [9] showed that GLHE is a 
reasonable alternative to the traditional practice of using 
bagging and boosting to support robust performance across 
multiple problem domains. 

 

III. KDD CUP 2004 AND PARTICLE PHYSICS TASK 
The Knowledge Discovery and Data Mining (KDD) Cup 

is an annual competition of data mining tasks, which is held 
in conjunction with the KDD Conference [10].  The 2004 
competition focused on optimizing a variety of performance 
measures for large classification problems.  We execute 
GLHE on one of the problems – particle physics task – and 
compare its performance to those that are reported from the 
competition results.  An important factor to note is that we do 
not employ extra effort (e.g., parameter tweaking or 
understanding the data), and simply apply the basic or default 
GLHE design.  The KDD Cup 2004 competitors, however, 
likely used many different techniques to optimize the 
performance of their classifiers for the problem. Thus, we are 
testing GLHE’s performance against classifiers that are 
specialized and finely-tuned for the given problem. 

The classification goal on the particle physics task from 
the KDD Cup 2004 is to differentiate between two types of 
particles that are generated in high energy collider 
experiments.  It is a binary classification problem with 78 
attributes.  The training dataset has 50,000 instances while 
the testing dataset possesses 100,000 instances; however, we 
use only the training data because the actual values of class 
membership or labels of the testing data are not available.  
This methodology is still acceptable however under the 
assumption that the training and testing data correlated to a 
large degree.  Therefore, the next best thing to do is to use 
10-fold cross validation as the sampling technique to estimate 
performance metric values. 

 

 
Fig. 1. Generic architecture of the GLHE classifier design. 

 
 
Four performance metrics are considered [10]. 
• Prediction accuracy 
• Area under the ROC curve  
• Cross entropy – similar to squared error, such that it is 

a measurement of how close predicted values are to 
target values. 
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• Q-Score – a domain-specific metric devised by 
researchers at the Stanford Linear Accelerator (SLAC) 
to measure the performance of predictions made for 
certain kinds of particle physics problems.  Smaller 
values indicate better performance. 

These metrics are intended to support a variety of different 
perspectives on performance.  Although one focus of the 
competition is to make researchers optimize their algorithms 
with respect to these different metrics, actual submission of 
results allows for a different set of predictions for each. 

The KDD CUP 2004 website has two sets of results: the 
first contains only those submissions for competition, while 
the second has submissions before and after the competition 
ended.  We chose the latter set to offer comparisons against, 
since it offers more classifiers for comparison.  A total of 155 
submissions were made, but only 109 of these reported on all 
four of the performance metrics. 

 

IV. SIMULATION STUDY 
GLHE requires global and local learner as well as 

homogeneous and heterogeneous diversities.  The types of 
learners and diversities drive the composition of base 
classifiers.  The heterogeneous diversity of the GLHE design 
comes from the use of two different types of base learning 
algorithms – one global and one local.  For this study, the 
global learner is J48, a port of the C4.5 decision tree classifier 
in Weka [22], and the local learner is IBk, a nearest neighbor 
classifier.  The categorization of these as global or local is 
consistent with the literature [15].  These learner choices 
constitute one of many options and is not intended to show 
any preference bias among all the options available for this 
decision making process.  The homogenous diversity of 
GLHE is achieved by varying the parameter settings for each 
learner to create multiple classifiers.  This requires three steps.  
First, the target number of classifiers from each learner is set.  
In this study, three classifiers are used from each learner.  
This sufficiently allows homogeneous tendencies to be 
incorporated while keeping the total number of 
base-classifiers at a reasonable level.  Second, the base 
parameter design for each learner is established.  For J48, the 
base parameters are Weka defaults.  For IBk, the base 
parameters are also Weka defaults with the exception of 
distance weighting which has a value of “1/distance”.  Third, 
different parameter settings are selected for each learner to 
create the classifiers.  For J48, the type of pruning is changed 
to one of standard pruning, reduced error pruning, and 
unpruned.  For IBk, the number of nearest-neighbors is 
varied among 1, 5 and 10.   

Simulations of GLHE with StackingC [20] as the combiner 
or meta learner were performed with Weka and the front-end 
utility for large experiments and evaluation [5], [6].  
Calculation of performance metrics was done with the 
software utility supplied by the competition organizers, 
called PERF [10].  The performance of GLHE, its average 
rank relative to the competition submissions, the 
performance of the best submissions, and the total number of 
submissions for each metric are given in Table 1.  The first 
observation is that the problem is relatively difficult to learn, 
since prediction accuracy of the best submission is just 70%.  

Secondly, the difference between GLHE’s performance and 
that of the best submission is small for both predication 
accuracy and area under the ROC curve – even though GLHE 
is ranked 77 for prediction accuracy, its performance is only 
3% worse as compared to that of the best submission.  
Considering each metric individually, GLHE appears to 
compete the best with regards to ROC, 56 out of 125, and the 
worst with regards to prediction accuracy, 77 out of 135.  On 
average over the four metrics, GLHE is ranked 56.5 out of 
109. 

It is important to reiterate how the contest works in order to 
put the performance of GLHE into an appropriate perspective. 
First, the competitors most likely pursued and implemented 
some fine-tuning of classifiers and/or data preprocessing to 
achieve the best possible performance.  Second, contestants 
could submit different sets of predictions for each 
performance metric, optimizing a classifier for each.  These 
advantages are evident from the multiple submissions 
(sometimes over 30) by contestants.  Furthermore, the winner 
of the contest used an approach with 639 predictors, 
including “data exploration, transformations, variable 
creation, modeling techniques, and customization of the 
predictions for four different evaluation criteria” [21].   
Accordingly, the contest submissions may perform better for 
the particle physics task, but those same classifiers may not 
perform well across a spectrum of datasets given that no 
counter evidence is reported in the literature.  On the other 
hand, global-local hybrid ensemble has been shown to 
exhibit a robust performance across a relatively larger 
spectrum of data sets or domains.  Interpretation of the 
performance results of GLHE in conjunction with other and 
more comprehensive results for testing its performance as 
reported in [4], [7-9] provides a more complete assessment: 
GLHE performance benefits from the heuristic design rule 
that promotes inclusion of both global and local base 
learners. 

 
TABLE I: PERFORMANCE AND RANK OF GLHE, BEST SUBMITTED 

PERFORMANCE, AND THE TOTAL SUBMISSION COUNT FOR EACH METRIC 
FROM THE KDD CUP 2004 PARTICLE PHYSICS TASK. 

Classifiers 
Performance Measures 

Accuracy ROC Cross 
Entropy Q Score

GLHE 0.70228 0.79066 0.78848 0.26036

KDD’04 Best 0.73436 0.83101 0.70854 0.33396

GLHE (rank) 77 56 47 46 
Total Submissions 
KDD’04 135 125 100 92 

 

V. CONCLUSIONS 
Comparative performance evaluation of global-local 

classification ensemble (GLHE) on the KDD Cup 2004 
particle physics dataset against more than a hundred entries 
on the four performance metrics was accomplished.  GLHE 
performed to surpass about half of the potentially 
highly-tuned entries in the competition although no 
optimization was pursued for any of its parameters, base 
learner composition or the ensemble meta learner.  
Simulation results suggest that GLHE demonstrated a 
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relatively robust performance on the KDD Cup 2004 particle 
physics dataset.  
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