
  

  
Abstract—Hydrogen bonds (H-bonds) play a key role in both 

the formation and stabilization of protein structures. However, 
H-bonds greatly vary in stability. Different local interactions 
may reinforce or weaken an H-bond. This paper describes 
inductive learning methods to train a protein-independent 
probabilistic model of H-bond stability from molecular 
dynamics (MD) simulation trajectories. The training data 
describes H-bond occurrences at successive times along these 
trajectories by the values of 32 attributes. A trained model is 
constructed in the form of a regression tree. Experimental 
results demonstrate that such models can predict H-bond 
stability quite well. In particular, their performance is roughly 
20% better than that of models based on H-bond energy alone. 
In addition, they can accurately identify a large fraction of the 
least stable H-bonds in a given conformation. The paper 
discusses several extensions that may yield further 
improvements. 
 

Index Terms—Molecular dynamics, machine learning, 
regression tree.  
 

I. INTRODUCTION 
A hydrogen bond (H-bond) corresponds to the attractive 

electrostatic interaction between a covalent pair D—H of 
atoms, in which the hydrogen atom H is bonded to a more 
electronegative donor atom D, and an electronegative 
acceptor atom A. Due to their strong directional character, 
short distance ranges, and their relatively large number in a 
folded protein, H-bonds play a key role in both the formation 
and stabilization of protein secondary and tertiary structures 
[1], [2], [3].  

Unlike covalent bonds, H-bonds greatly vary in stability. 
They can form and break while a protein deforms. For 
instance, the transition of a folded protein from a 
non-functional substate to a functional (e.g., binding) 
substate may require some H-bonds to break and others to 
form [4]. The intrinsic strength of an individual H-bond has 
been studied from an energetic viewpoint [5], [6], [7], [8], [9]. 
But energy alone may not be a very good predictor of H-bond 
stability. Other local interactions may reinforce or weaken an 
H-bond. Moreover, several “redundant” H-bonds may 
reinforce one another by rigidifying the same group of atoms. 
To better understand the possible deformation of proteins in 
their folded states, it is desirable to create models that can 
reliably predict the stability of an H-bond not just from its 
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energy, but also from its local environment.  
In this paper we apply inductive learning methods to train a 

protein-independent probabilistic model of H-bond stability 
from a training set of molecular dynamics (MD) simulation 
trajectories of various proteins. The input to the training 
procedure is a data table in which each row gives the value of 
several (32) attributes, called predictors, of an H-bond and its 
local environment at a given time t  in a trajectory, as well as 
the measured stability of this H-bond over an interval of 
time ( ),t t + Δ . The output is a function σ  of a subset of 
predictors that estimates the probability that an H-bond 
present in the conformation1 c  achieved by a protein will be 
present in any conformation achieved by this protein within a 
time interval of duration Δ . The value of Δ  defines the 
timescale of the prediction. 

Section 0 gives a precise statement of the problem 
addressed in this paper. Section III presents the machine 
learning approach that is used to solve this problem. Section 
IV describes details of the training algorithm. Section V 
describes our experimental setup. Section VI discusses test 
results obtained with models trained using our method. 
Section VII suggests future developments that may lead to 
improving trained models. 

 

II. PROBLEM STATEMENT 
Let c  be the conformation of a protein P  at some time 

considered (with no loss of generality) to be 0 and H  be an 
H-bond present in c . Let ( )M c  be the set of all physically 
possible trajectories of P  passing through c  and π  be the 
probability distribution over this set. We define the stability 
of H  in c  over the time interval Δ  by a 
function : ( , , ) [0,1]H cσ Δ → : 

( ) 0

1( , , ) ( , , ) ( )q M cH c I q H t dt qσ π
Δ

∈
⎡ ⎤Δ ⎢ ⎥Δ⎣ ⎦

∑ ∫      (1) 

where ( , , )I q H t is a Boolean function that takes value 1  if 
H is present in the conformation ( )q t at time t  along 
trajectory q , and 0 otherwise. The value ( , , )H cσ Δ  can 
be interpreted as the probability that H will be present in the 
conformation of P  at any specified time (0, )t ∈ Δ , given 
that P  is at conformation c  at time 0 .  

Our goal is to design a method for generating good 
approximations σ  of σ . We also want these 
approximations to be protein-independent, i.e., the argument 
 

1 A protein conformation defines the relative positions of all the atoms in 
the protein. 
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c  may be a confirmation of any protein. 
 

III. GENERAL APPROACH 
We use machine learning methods to train a stability model 

σ  from a given set Q  of MD simulation trajectories of 

various proteins. Each trajectory q Q∈  is a discrete 
sequence of conformations of a protein. These conformations 
are reached at times it i δ= × , 0,1,2,...i = , called ticks, 

whereδ  is typically on the order of the picoseconds.2 We 
detect the H-bonds3 which are present in each conformation 

)( iq t using the geometric criteria given in [11]. These 
criteria, shown in Fig. 1, specify conditions on distances and 
angles that must be satisfied by the atoms H (hydrogen), D 
(donor), A (acceptor), and AA (the atom covalently bonded 
to A) for the H-bond to be considered present. An H-bond in 
a given protein is uniquely identified across different 
conformations by its donor, acceptor, and hydrogen atoms. 
So, we call the presence of a specific H-bond H  in a 
conformation )( iq t  an occurrence of H  in )( iq t . 

For each occurrence of an H-bond H  in )( iq t  we 
compute a fixed list of predictors, some numerical, others 
categorical. Some are time-invariant, like the types of the 
donor and acceptor atoms and the number of residues along 
the main-chain between the donor and acceptor atoms. Others 
are time-dependent. Among them, some describe the 
geometry of H  in )( iq t , e.g., the distance between the 
hydrogen and the donor atoms and the angle made by the 
donor, hydrogen, and acceptor atoms. Others describe the 
local environment of H  in )( iq t , e.g., the number of other 
H-bonds within a certain distance from the mid-point of H. 
The complete list of 32 predictors used in our work is given in 
Appendix.  
 

 
Fig. 1. Constraints on H-bond geometry 

 
We train σ  as a function of these predictors. The 

predictor list defines a predictor space Σ  and every H-bond 
occurrence maps to a point in Σ . Given the input set Q  of 
trajectories, we build a data table in which each row 
corresponds to an occurrence h  of an H-bond present in a 
conformation )( iq t  contained in Q . So, many rows may 
correspond to the same H-bond at different ticks. In our 
experiments, a typical data table contains several hundred 
thousand rows. Each column, except the last one, 
 

2 MD simulation trajectories are computed by integrating the equations of 
motion with a time step on the order of the femtoseconds (10−15s) in order to 
take into account high-frequency thermal vibrations. However, to reduce the 
amount of stored data, they are usually sub-sampled at a time step on the 
order of the picoseconds (10-12s). 

3We only consider H-bonds inside a protein. We ignore H-bonds between 
a protein and the solvent. 

corresponds to a predictor p  and the entry ( , )h p  of the 

table is the value of p  for h . The entry in the last column is 
the measured stability y  of the H-bond occurrence in 

conformation )( iq t . More precisely, let H  be the H-bond of 

which h  is an occurrence. In addition, let /l δ= Δ , where 
Δ  is the duration over which we wish to predict the stability 
of h  (see Section II), and let m l≤  be the number of ticks 

kt , , ,1 2,k i i i l= + + … + , such that H  is present in 

)( kq t . The measured stability y  of h  is the ratio /m l . In 

the tests reported below we chose 50l = , as this value both 
provides a ratio /m l  large enough for the measured 
stability to be statistically meaningful, and corresponds to an 
interesting prediction timescale (50ps). Typically, most 
H-bond occurrences are quite stable: over 25% have 
measured stability 1, about 50% higher than 0.8, and only 
15% less than 0.3. 

 

IV. MODEL TRAINING 
We build σ as a binary regression tree using the CART 

(Classification and Regression Tree) method [12].  This 
well-studied machine learning approach has been one of the 
most successful in practice. Regression trees are often simple 
to interpret. Not only may this simplicity eventually lead to 
pertinent insights to better understand H-bond stability; it 
also allows us to perform many experiments, compare the 
generated trees, and analyze the relative importance of the 
predictors.  

One important issue to deal with is the violation of the IID 
property in the training data table. The IID property would 
require that H-bond occurrences follow a certain fixed 
probability distribution, and that each row of a data table 
input to the learning algorithm is sampled according to this 
distribution, independent of the other rows. The satisfaction 
of this property is critical for the trained model σ to predict 
reliably the stability of H-bonds in new protein 
conformations. However, it is likely to be violated, mainly 
because several H-bond occurrences in a data table 
correspond to the same H-bond. More specifically, two 
occurrences of the same H-bond along the same trajectory are 
more likely to be similar along several dimensions of the 
predictor space Σ  than two occurrences of distinct H-bonds, 
especially if these bonds belong to different proteins. This 
may result into correlations between predictor values and 
measured stability that are bond-specific and thus do not 
extend to other bonds. 

To address this issue, we apply a two-step split calculation 
procedure [13]. The training data table is divided at random 
into three tables 1T , 2T , and 3T  so that occurrences of the 
same bond are not split between the tables. The split predictor 
p  and the split value r  at a node N  are computed 

separately, using one of the two tables 1T  and 2T : 
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1) The best split value *
pr  is computed for each predictor 

p  using 1T : *
1arg max { ( , )}p rr w p r= , where 

1( , )w p r  denotes the score of split ( , )p r  on 1T .  

2) The best split predictor *p  is computed using 2T  with 
the best split values computed at the previous step: 

* *
2arg max { ( , )}p pp p rw= , where *

2 ( , )pw p r  

denotes the score of split *( , )pp r  on 2T .  

3) The selected split is *( , )pp r . 
Assume that the best split value computed in the first step 

is obtained for some predictor 'p . If this best value results 

from a bond-specific correlation between 'p  and measured 

stability in 1T , then this correlation is unlikely to happen 

again in 2T , since 1T  and 2T  describe disjoint sets of 

H-bonds. So, in the second step, predictor 'p  will likely 

have a small score *
2 ( , )pw p r  and so will not be selected as 

the split predictor.  
Finally, we reduce the complexity of the generated tree 

using the standard CART tree pruning procedure [12]. This 
procedure removes nodes from the tree iteratively and selects 
the pruned tree that minimizes the prediction error on table 

3T . 

V. EXPERIMENTAL SETUP 

A. MD Trajectories 
In the experiments reported below, we used 6 MD 

simulation trajectories picked from different sources and 
generated with different force fields: 1c9oA, 1e85A, 1g9oA_1, 
and 1g9oA_2 from [14], and 1eia and complex from [15]. In 
all of these trajectories the time interval δ between two 
successive ticks is 1ps. Each trajectory starts from a folded 
conformation resolved by X-ray crystallography. 

Trajectories obtained with different proteins allow us to 
test if a model σ trained with one protein can predict H-bond 
stability in another protein. Similarly, trajectories generated 
with different force fields allow us to test if a model σ trained 
with one force field can predict H-bond stability in 
trajectories generated with another force field.  

B. Data Tables 
From each trajectory we derived a separate data table in 

which the rows represent the detected H-bond occurrences. 
Table I lists the number of distinct H-bonds detected in each 
trajectory and the total number of H-bond occurrences 
extracted.  
 

TABLE I: NUMBER OF DISTINCT H-BONDS AND H-BOND OCCURRENCES 
DETECTED IN EACH TRAJECTORY 

Trajectory # H-bonds # occurrences 
1c9oA 263 363463 
1e85A 525 1253879 
1eia 757 379573 

1g9oA_1 374 558761 
1g9oA_2 397 544491 
Complex 1825 348943 

The measured stability y  of an H-bond H in )( iq t  is 
computed as described in Section III, as the ratio of the 
number of ticks where the bond is present in the time interval 
[ ],i it t l δ+ ×  in trajectory q  divided by the total number 

of ticks l  in this interval. 
The values of the time-varying predictors are subject to 

thermal noise. Since a model σ  will in general be used to 
predict H-bond stability in a protein conformation sampled 
using a kinematic model ignoring thermal noise (e.g., by 
sampling the dihedral angles φ , ψ , and χ ) [10], we chose 

to average the values of these predictors over 'l  ticks to 
remove thermal noise. More precisely, let h  be an H-bond 
occurrence in )( iq t .The value of a predictor stored in the 

row of the data table corresponding to h  is the average value 
of this predictor in 1 2( ), ( ), , ( )i l i l iq t q t q t′ ′− + − + … , where 

( ' )i l k it t l k δ′− + = − ×− . Experiments show that ' 50l =  
is near optimal. 

C. Performance Measures 
The performance of a regression model can be measured 

by the root mean square error (RMSE) of the predictions on a 
test dataset. Let 1 1 2 2, ), ( , ),{( , ), }( n nyx y xT yx …=  be 

a data table, where each ix , , ,1i n= … , denotes a vector of 

predictor values for an H-bond occurrence and iy  is the 
measured stability of the H-bond. For a given table T, the 
RMSE of a model σ  is defined by: 

21,( )(( )) i i iRM E yTS x
n

σ σ−= ∑  

As RMSE depends not only on the accuracy of σ, but also 
on the tableT , some normalization is necessary in order to 
compare results on different tables. So, in our tests we 
compute the decrease of RMSE relative to a base model 0σ . 
The relative base error decrease (or RBED) is then defined 
by: 
 0

0
0

( , ) ( , )
, 10( ,

, )
) 0%

(
RMSE T RMSE T

RMS
R E T

E
B D

T
σ σσ σ

σ
=

−
×   

In most cases, 0σ is simply defined by 0
1( ) i in

x yσ = ∑ , 

i.e., the average measured stability of all H-bond occurrences 
in the dataset. In other cases, 0σ  is a model based on H-bond 
energy. 
 

VI. EXPERIMENTS 

A.   Training on Data from Multiple Trajectories 
Here, we trained models on data tables obtained by mixing 

subsets of 5 data tables and we tested these models on the 
remaining data table. For each combination of 5 data tables, 
we trained 10 models by mixing different fractions of the 5 
data tables. For each model, the mixed data table was 
partitioned into the three tables 1T , 2T , and 3T : 60% of the 
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data went to 1T , 20% to 2T , and 20% to 3T . No two tables 
contain occurrences of the same H-bond. Furthermore, we 
trained 4 groups of models varying in the tree’s maximal 
depth (5 or 15) and in the fraction of H-bond occurrences 
taken from each data table (10% or 50%). So, in total, 240 
models were generated in this experiment. 

Table II shows the mean RBED value for each 
combination of data tables and each group of models. In rows 
3 through 8 we indicate the data table used for testing the 
models trained on a combination of the 5 other data tables. 
Fig. 2 shows the distribution of the RBED values for the 
models built with the settings of in the first data column of 
Table II (i.e., maximal depth of 5 and 10% from each data 
table). 

One can see that the variance of RBED values is quite 
small, meaning that the training process yields models that 
are stable in performance. The RBED values are lower for 
models tested on complex. In fact, the trajectory complex was 
generated for a complex made of a protein and a ligand,  

while all other trajectories were generated for a single 
protein. So, it is likely that complex contains H-bonds in 
situations that did not occur in any of the other trajectories. 

 
TSBLE II: MEAN RBED VALUES OBTAINED IN EXPERIMENT A 

Max tree depth 5 15 
Fraction of data 0.1 0.5 0.1 0.5 

1c9oA 46.92 47.07 47.24 46.87
1e85A 59.37 59.59 59.03 59.04
1eia 42.6 43.15 43.35 43.46

1g9oA_1 50.93 50.69 51.42 51.38
1g9oA_2 45.29 45.45 45.65 45.89
complex 37.9 38.08 38.07 38.38
Average 47.17 47.34 47.46 47.5

 

 
Fig. 2. Distribution RBED values for the models built with settings specified 

in the first data column of Table II 
 

These results suggest that we should try to train models 
with a larger set of trajectories. We actually did some 
experiments using a few additional trajectories, but with no 
noticeable improvement. Most likely these trajectories did 
not contain enough H-bonds in situations that did not already 
occur in the trajectories of Table I.  

Another observation is that deeper trees and larger data 
fractions tend to improve model accuracy, but the very small 
gain is not worth the additional model or computation 
complexity. 

B. Comparison with FIRST-Energy Model 
Here, the models are the same as those generated in 

Experiment A in the first data column of Table II (maximal 
depth of 5 and 10% from each data table). But we now 
compare them to a regression tree 0σ  built from the same 
training data using FIRST_energy as the only predictor 
(predictor #32 in Appendix). FIRST_energy is the value of 
the function used in FIRST [8] to evaluate the energy of an 
H-bond occurrence; it is a slightly modified version of the 
Mayo energy [5]. We compute RBED values as defined in 
Section V.C, where 0σ  is the regression tree based on 
H-bond energy only.  

Table III shows the mean RBED values. Tests on all 6 data 
tables show that the more complex models are significantly 
more accurate than the model based on FIRST_energy only. 
Overall, these results confirm that the stability of an H-bond 
occurrence depends not only on its energy, but also on other 
parameters.  

TABLE III: MEAN VALUES OF RBED COMPUTED IN EXPERIMENT B 
1c9oA 1e85A 1eia 1g9oA_1 1g9oA_2 complex
26.36 27.95 5.65 22.63 19.63 19.42

C. Identification of Least Stable H-Bonds 
Most H-bond occurrences tend to be stable. So, accurately 

identifying the weakest ones is important if one wishes to 
predict the possible deformation of a protein [10]. 

Here, we measure how well the models generated in 
Experiment A (again, in the first data column of Table II) 
identify the least stable H-bonds occurrences in the test data 
table. In each test table T, we first identify the subset S of the 
10% least stable H-bond occurrences (i.e., the H-bond 
occurrences with the smallest measured stability). Using a 
regression tree σ trained with a combination of data from the 
5 other tables, we then sort the H-bond occurrences in T in 
ascending order of predicted stability and we compute the 
fraction [0,1]w∈  of S  that is contained in the first 

100 %u×  occurrences in this sorted list, for successive 
values of [0,1]u ∈ . We call the function ( )w u  the 
identification curve of the least stable H-bonds for σ . 

Fig. 3 plots identification curves for 1c9oA table: the 
dotted curve is the ideal identification curve (the one that 
would be obtained with a model that perfectly predict the 
10% least stable H-bonds), the solid curve is obtained with 
one (randomly picked) regression tree computed in 
Experiment A, and the dashed curve is obtained by sorting 
H-bond occurrences in decreasing values of FIRST_energy. 

Fig. 3. Identification curves of the least stable bonds for 1c9Oa 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Total 

Id
en

tif
ie

d 

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

216



  

Table IV shows (0.1)w  value for each of the 6 test tables. 
One can see that the models computed in Experiment A 
perform well in general. For models tested on data tables 
other than complex, about 70% of the 10% truly least stable 
H-bond occurrences are actually among the 10% predicted as 
the least stable. However, several curves show a 
rather long tail of poorly ranked unstable bonds. For example, 
the set of the 50% least stable bonds predicted by the model 
tested on 1eia still misses about 5% of the truly least stable 
bonds. 
 

TABLE IV: IDENTIFICATION CURVE VALUE AT 0.1 
Protein 1c9oA 1e85A 1eia 1g9oA_1 1g9oA_2 complex
Model 0.73 0.77 0.65 0.77 0.68 0.50
FIRST 0.006 0.46 0.65 0.62 0.58 0.45

 

 
Not surprisingly, the results for complex are much less 

satisfactory. The regression models generated in Experiment 
A perform consistently better than the FIRST_energy-only 
models, but for 1eia the difference is small. 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper we have described machine learning methods 

to train regression trees modeling H-bond stability in a 
protein. The training and test data are in the form of tables 
whose rows describe H-bond occurrences at successive times 
along Molecular Dynamics simulation trajectories and 
columns give the values of various predictors.  

Test results demonstrate that trained models can predict 
H-bond stability quite well. In particular, we have shown that 
their performance is significantly better (roughly 20% better) 
than that of a model based on H-bond energy alone. We have 
also shown that they can accurately identify a large fraction 
of the least stable H-bonds in a given conformation. However, 
our results also suggest that better models could be obtained 
with a richer set of MD simulation trajectories. In particular, 
the trajectories used in our experiments might be too short to 
characterize the stability of H-bonds that break and form 

during a transition between sub states. 
We believe that the training methods could be improved in 

several ways: 
• To eliminate thermal noise, predictor values are averaged 

over time windows of 50 ticks, independent of the 
elapsed time between two ticks. It would be better to 
average predictor values before sub-sampling MD 
simulation trajectories (see Footnote 2). This would result 
in a much shorter averaging window, hence it would 
greatly reduce the risk of filtering out changes in 
predictor values that are important for H-bond stability. 
Unfortunately, in our trajectories we only had access to 
the data after sub-sampling. 

• More sophisticated learning techniques could be used. 
For example, instead of generating a single tree, we could 
generate an ensemble of trees, such as Gradient Boosting 
Trees [16] or Random Forests [17]. A regression tree 
could also be enriched by using splits on linear 
combinations of predictors and by fitting linear 
regression models at the leaves.  

• We could use rigidity analysis methods such as those 
described in [10] to decompose a protein into rigid groups 
of atoms (based on distance constraints imposed by 
covalent and hydrogen bonds present in the current 
conformation). This would allow us to apply Bayesian 
techniques to align the predicted stability of individual 
H-bonds in the same rigid group. By doing so, we could 
better predict the collective behavior of related H-bonds 
and avoid solitary incorrect predictions. 

• Finally, the notion of stability itself could be refined, for 
example by distinguishing between the case where an 
H-bond frequently switches on and off during a 
prediction window and the case where it rarely switches. 

 

Overall, we believe that considerable progress can still be 
made in learning more accurate and robust models of H-bond 
stability. 

APPENDIX: LIST OF PREDICTORS 
# Feature Name Feature Meaning Type4

Distance-related 
1 Dist_H_D Distance between H and donor (covalent bond length) N 
2 Dist_H_A Distance between H and acceptor (H-bond length) N 
3 Dist_A_AA Distance between acceptor and the atom it is covalently bonded to N 
4 Dist_D_A Distance between donor and acceptor N 
5 Dist_D_AA Distance between donor and AA N 
6 Dist_H_AA Distance between H and AA N 

Angle-related 
7 Ang_D_H_A Angle Donor-H-Acceptor N 
8 Ang_H_A_AA Angle H-acceptor-the atom the acceptor covalently bonded to N 
9 Ang_D_A_AA Angle donor-acceptor-the atom the acceptor covalently bonded to N 
10 Ang_planar Angle between plane D-H-A and H-A-AA N 

Atom 
11 Atom_type_D Donor atom type (e.g., O, N, S, C) C 
12 Atom_type_A Acceptor atom type (e.g., N, O, S) C 
13 Atom_type_AA AA atom type (e.g, P, C, S) C 

Residue 
14 Resi_name_H Donor residue name (3 letter code) C 
15 Resi_name_A Acceptor residue name (3 letter code) C 
16 Resi_type_H Donor residue type. Nonpolar (Ala, Val, Leu, Ile, Trp, Met, Pro), Polar_acidic (Asp, Glu), Polar_uncharged (Gly, C 

 
4N designates a numerical predictor and C a categorical predictor. 

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

217



  

Ser, Thr, Cys, Tyr, Asn, Gln), Polar_basic (Lys, Arg, His) 
17 Resi_type_A Acceptor residue type C 
18 Resi_sch_size_H Donor residue side-chain size, i.e., number of atoms in the side-chain N 
19 Resi_sch_size_A Acceptor residue side-chain size N 

Bond structure type 
20 Sec_type Secondary structure of the H-bond. MA (H-atom and O-atom are in same helix, middle portion), MB (same strand, 

middle), EA (same helix, end), EB (same strand, end), AL (helix-loop), BL (helix-loop), DA (different helices), SL 
(same loop), DL (different loops). Don't have DB (different strands) because it's hard to know which strand pairs 
with which strand to form the sheet. 

C 

21 Ch_type H and O are on mch or sch: MM (mch-mch), MS (mch-sch), SS (sch-sch) C 
22 Rgd_type SR (H and A are in the same rigid body), DR (different rigid body) C 
23 Range Difference in the residue numbers of donor and acceptor, i.e., abs(Residonor-Resiacceptor) N 
24 Hybrid_state Hybridization state (sp2-sp2, sp2-sp3, sp3-sp2, sp3-sp3) C 
25 Num_furcated_H Number of H-bonds share the H-atom as this H-bond N 
26 Num_furcated_A Number of H-bonds share the acceptor as this H-bond N 

Environment 
27 Num_potential_As Number of potential acceptors (N, O, or S) in 3Å of H (but not covalently bonded to it) besides the current acceptor N 
28 Num_hb_seqNbr Number of sequence-neighboring H-bonds, i.e., number of H-bonds of residues ±2 of Residonor and Resiacceptor N 
29 Num_hb_spaceNbr Number of space-neighboring H-bonds, i.e., number of H-bonds within 5Å of the mid-point of this H-bond N 
30 Num_hb_spaceRgdNbr Number of space-neighboring H-bonds in the same rigid-body, i.e., number of Num_hb_spaceNbr in the same 

rigid-body as this H-bond (cross-rigid = -100)5 
N 

31 Surface Average surface percentage of the H atom and acceptor N 
Energy 

32 FIRST_energy Modified Mayo potential implemented in FIRST [8] N 
5Here, we first use the FIRST software [TLR+01] to decompose the protein into rigid groups of atoms based on distance constraints imposed by covalent and hydrogen bonds present 
in the current conformation. Num_hb_spaceRgdNbr  is the number of H-bonds located within 5Å of the mid-point of the analyzed H-bond in the same rigid component. 
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