

Abstract— In this contribution a multi-objective genetic

programming algorithm (MOGP) is used to perform symbolic
regression. The genetic programming (GP) algorithm used is
specifically designed to evolve mathematical models of
predictor response data that are “multigene” in nature, i.e.
linear combinations of low order non-linear transformations of
the input variables. The MOGP algorithm simultaneously
optimizes the dual (and competing) objectives of maximization
of ‘goodness-of-fit’ to data and minimization of model
complexity in order to develop parsimonious data based
symbolic models. The functionality of the multigene MOGP
algorithm is demonstrated by using it to generate an accurate,
compact QSAR (quantitative structure activity relationship)
model of existing toxicity data in order to predict the toxicity of
chemical compounds.

Index Terms— genetic programming, multi-objective
optimization, symbolic regression, QSAR, toxicity, T.
pyriformis.

I. INTRODUCTION
 Genetic programming [1] is a biologically inspired

machine learning method that evolves computer programs to
perform a specified task. It does this by randomly generating
an initial population of computer programs (represented by
tree structures) and then mutating and crossing over the best
performing trees to create a new population. This process is
iterated until the population contains programs that solve the
task well. An excellent, free to download introduction and
review of the GP literature is provided by [2].

When GP is used to create empirical mathematical models
of data acquired from a process or system, it is commonly
referred to as symbolic regression. In contrast to classical
regression analysis, in which the user must specify the
structure of the model, GP automatically evolves both the
structure and the parameters of the mathematical model.
Symbolic regression has had successful academic [3] and
industrial applications [4].

The purpose of this paper is to describe the use of a
multi-objective genetic programming (MOGP) algorithm to
perform symbolic regression. The GP algorithm used
employs a variant of symbolic regression called multigene
symbolic regression [5], [6], [7], [8] that evolves linear
combinations of non-linear transformations of the input
variables. The multigene approach can often yield more

Manuscript received March, 22nd, 2011.
Charles Hii is with the School of Chemical Engineering and Advanced

Materials at the University of Newcastle, Newcastle-upon-Tyne, UK.
Dominic P. Searson is with the School of Chemical Engineering and

Advanced Materials at the University of Newcastle, Newcastle-upon-Tyne,
UK. (e-mail: d.p.searson@ncl.ac.uk).

Mark J. Willis is with the School of Chemical Engineering and Advanced
Materials at the University of Newcastle, Newcastle-upon-Tyne, UK. (phone
+44 191 222 7242; e-mail mark.willis@ncl.ac.uk).

accurate and compact models than those obtained using
"standard" GP for symbolic regression. However, the
multigene approach has not hitherto explicitly utilized model
complexity as a goal of model development. Hence, to
optimize the multiple objectives of ‘goodness of fit’ to data
and model complexity simultaneously the well known
NSGA-II multiple objective method [9] is incorporated into
the existing multigene symbolic regression algorithm.

This paper is structured as follows. Section II provides a
brief overview of Genetic Programming. Section III
introduces the multigene symbolic regression method that
our existing GP software (GPTIPS) implements. Next, in
section IV, the NSGA-II algorithm is briefly described. In
section V the GPTIPS software is briefly discussed. In
sections VII-X, the capabilities of the multigene MOGP
algorithm are demonstrated by using it to evolve an accurate,
compact mathematical model to predict the toxicity of
chemical compounds using a data set from the literature
containing over 1000 compounds along with measured
toxicity values. Finally, in section XI we provide some
concluding remarks.

II. GENETIC PROGRAMMING
 The evolutionary computational (EC) method of GP

evolves populations of symbolic tree expressions to perform
a user specified task. A brief description of GP is provided
here.

In GP, each tree expression can be thought of as being
analogous to the DNA of an individual in natural evolution.
The evolution of the expressions occurs over a number of
generations (iterations) and each new generation of
individuals is created from the existing population by direct
copying as well as performing operations on the individuals
analogous to the alterations to DNA sequences that naturally
occur during sexual reproduction and mutation. This is
accomplished by evaluating each individual in the current
population to determine its ‘fitness’ (i.e. its performance on
the user specified objective function or functions) and
performing probabilistic selection and recombination of
individuals biased towards those that are relatively fit
compared to the other individuals in the population.

At the beginning of each run, a population of symbolic
expressions is randomly generated. This is accomplished
using a simple tree building algorithm that randomly selects
nodes, with replacement, from a pool comprising primitive
functions (e.g. addition, subtraction, the hyperbolic tangent,
natural logarithm, exponential, etc.), the input variables as
well as randomly generated constants. These nodes are
randomly assembled into tree structured symbolic
expressions, subject to user-defined tree size and/or depth
constraints. After evolving the population for a number of
generations by copying, mutation and recombination

Evolving Toxicity Models using Multigene
Symbolic Regression and Multiple Objectives

Charles Hii, Dominic P. Searson and Mark J. Willis

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

30

operations, the tree expression with the best fitness is usually
selected as the best solution to the problem.

Two principal genetic recombination operators are used in
GP: sub-tree crossover and sub-tree mutation. Sub-tree
crossover is an operation performed on two parent trees that
generates two offspring. For each expression, a sub-tree is
randomly selected. These sub-trees are then exchanged to
create two new expressions to go into the next generation.
Sub-tree mutation operates on a single parent expression and
generates a single offspring expression. First, a randomly
selected sub-tree of the parent is deleted. Then, a new
sub-tree is randomly generated using the same tree building
algorithm that was used to build the initial population of
expressions. The resulting offspring expression is then
inserted into the new population. The mutation operation is
used relatively infrequently compared to the crossover
operation and its purpose is to maintain genetic diversity over
the course of the run and to prevent premature convergence to
unsatisfactory solutions.

In GP, the choice of the primitive functions is domain
dependent and in symbolic regression, where there is little or
no prior knowledge of the underlying relationships,
mathematical operators such as those described above are
typically employed with a high degree of success [6], [7]. In
practice, it is often best to perform some initial runs with a
few simple primitives (e.g. addition, multiplication and
subtraction) and then incrementally add other non-linear
primitives—such as the hyperbolic tangent function—to
evaluate whether more accurate and compact symbolic
expressions may be evolved.

III. MULTIGENE SYMBOLIC REGRESSION
 Symbolic regression is usually performed by using GP to

evolve a population of trees, each of which encodes a
mathematical equation that predicts a (N × 1) vector of
outputs y using a corresponding (N × M) matrix of inputs X
where N is the number of observations of the response
variable and M is the number of input (predictor) variables,
i.e. the ith column of X comprises the N input values for the
ith input variable and is referred to as the input variable xi.

In contrast, in multigene symbolic regression each
symbolic model (i.e. each member of the GP population) is a
weighted linear combination of the outputs from a number of
GP trees, where each tree may be considered to be a “gene” in
the overall genome. The mathematical form of the multigene
representation is shown below (for N =1).

ݕ = ෍ ݀௜ܩ௜ + ݀଴௡
௜ୀଵ (1)

where y is the predicted output, Gi is the value of the ith gene
and is, in general, a function of one or more of the input
variables, di is the ith weighting coefficient, n is the number
of genes and d0 is a bias/offset term.

For example, the multigene model shown in Fig. 1 predicts
an output variable y using input variables x1, x2 and x3.This
model structure contains non-linear terms (e.g. the hyperbolic
tangent) but is linear in the parameters with respect to the
coefficients d0, d1 and d2. In practice, the user specifies the
maximum number of genes Gmax a model is allowed to have

and the maximum tree depth Dmax any gene may have and
therefore can exert control over the maximum complexity of
the evolved models. In particular, we have found that
enforcing stringent tree depth restrictions (i.e. maximum
depths of 4-6 nodes) allows the evolution of relatively
compact models that are linear combinations of low order
non-linear transformations of the input variables.

Fig. 1. Example of a multigene symbolic model.

For each model, the linear coefficients are estimated from

the training data using ordinary least squares techniques as
follows:

The output of the ith gene in any given multigene
individual will be an (N × 1) vector gi. These output vectors
can be grouped together (along with a column containing
"ones" to represent the bias/offset term) into a (N × (n+1))
matrix G.

The ((n+1) × 1) coefficient vector d (containing the
coefficients d0, ..., dn) may then be computed using the least
squares normal equation to minimise (in the least squares
sense) the prediction error of the output training data y:

܌ = ሺ۵୘۵ሻିଵ۵୘(2) ܡ

Computationally, however, this method of computing d is

unsuitable because duplicate genes in an individual can cause
rank deficiency in G. To remedy this, in practice, the
Moore-Penrose pseudo-inverse ሺ۵T۵ሻ# is computed using
the singular value decomposition (SVD) and used in place of ሺ۵T۵ሻ−1in Equation 2.

Hence, it can be seen that multigene GP combines the
power of classical linear regression with the ability to capture
non-linear behaviour without needing to pre-specify the
structure of the non-linear model. The work in [6] showed
multigene symbolic regression can be more accurate and
computationally efficient than the standard GP approach for
symbolic regression, and [7] showed that the multigene
approach can be successfully embedded within a non-linear
partial least squares algorithm.

In GPTIPS, there are two types of crossover operators:
high level crossover and the "standard" GP subtree crossover,
which is referred to here as low level crossover. In low level
crossover, a gene is selected randomly from each parent
individual and then standard subtree crossover is performed
to create two offspring new genes. The parent genes are
discarded and the new offspring genes then replace the parent
genes in the otherwise unaltered individual in the new
population.

The initial population is constructed by creating
individuals that contain randomly generated GP trees with

0.41 x1

*

+

tanh

*

x2 x3

0.45 x3

*

+

sqrt

x2

))23232110 sqrt((0.45)tanh((0.41 xxdxxxddy ++++=

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

31

between 1 and Gmax genes. During a GP run, genes are
acquired and deleted using two point high level crossover.
This allows the exchange of genes between individuals and it
is used in addition to the “standard” GP recombination
operators. A two point high level crossover is performed as in
the following example:

 The first parent individual contains the genes (G1 G2 G3)
and the second contains the genes (G4 G5 G6 G7) where Gmax
= 5. Two randomly selected crossover points are created for
each individual. The genes enclosed by the crossover points
are denoted by < … >.

(G1 < G2 > G3) (G4 < G5 G6 G7 >)

The genes enclosed by the crossover points are then

exchanged resulting in the two new individuals below.

(G1 G5 G6 G7 G3) (G4 G2)

Two point high level crossover allows the acquisition of

new genes for both individuals but also allows genes to be
removed. If an exchange of genes results in any individual
containing more genes than Gmax then genes are randomly
selected and deleted until the individual contains Gmax genes.

IV. MULTI-OBJECTIVE GP
 Multi-objective genetic programming (MOGP) [10] is an

extension of GP. In standard GP algorithms, typically only
one objective is optimized; for symbolic regression this is
usually a measure of ‘goodness-of-fit’ to the training data,
typically expressed as sum of squared errors (SSE), mean
squared error (MSE) or root mean squared error (RMSE).
One problem with using the single objective of
‘goodness-of-fit’ is that models will be evolved that fit the
training data well at the expense of complexity. Such models
are usually not robust, e.g. they may not predict accurately
given new data.

Unfortunately, GP is prone to evolving overly complex
models due to the tendency (called "bloat") to acquire model
terms that provide little or no effect on the final prediction.
This effect can be mitigated, to some extent, in multigene
regression by restricting tree depths and observing the
statistical significances of the genes in the evolved models
but even then, the evolution of overly complex models can
still be problematic.

However, a MOGP algorithm can be used to
simultaneously optimize more than one objective. For
symbolic regression, this is useful because a second objective
can be specified: i.e. maximize ‘goodness-of-fit’ and
minimize model complexity. There have been many
multi-objective optimization techniques reported in the
literature. NSGA-II [9] and SPEA2 [11] are the two of the
more popular algorithms. In this work, the NSGA-II
algorithm is incorporated into GPTIPS. The structure of this
algorithm is shown in Fig. 2.

The NSGA-II algorithm is used at the end of each
generation of the multigene GP algorithm. First, it classifies
the individuals from both the new and old population
according to their position on the Pareto front. Fig. 3 shows
how the Pareto front is categorised using the dual objectives
of fitness and complexity (in terms of symbolic regression it

desirable to have high fitness and low complexity). Pareto
front level 1 consists of a set of Pareto optimal solutions. The
solutions that are on the level 1 front are not dominated by
any other solution, e.g. in symbolic regression any model that
lies on the level 1 front is not outperformed by any other
model in the population in terms of both prediction error and
complexity. The solutions that comprise Pareto front level 2
are not dominated by any other solutions; apart from those in
Pareto front level 1 and so on.

Fig. 2. Flowchart of the NSGA-II algorithm.

Next, NSGA-II requires the calculation of a “crowding
factor” for each individual. This is the average distance of a
solution from the nearest solutions (either side) on the same
Pareto front. This is also shown in Fig. 3 for a solution on the
level 1 front.

Fig. 3. Pareto optimal fronts (model fitness vs. complexity).

The crowding factor is used to increase the diversity of the

population giving less priority to the solutions that are
crowded together during the ranking process in NSGA-II.
This gives the GP algorithm the ability to attempt to explore
other possible solutions within the search space and limit the
convergence of the algorithm to local maxima or minima.
Once the crowding factor has been calculated for all the
solutions, the solutions are then ranked according to their

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

32

position (those on level 1 are ranked above those on level 2
and so on) and solutions that are on the same Pareto front are
ranked according to their crowding factor. The top 50% of the
population survive to the next generation while the rest are
discarded.

V. GPTIPS
The GP algorithm used in this work is based on a modified

version of GPTIPS 1.0 [5], a free, open source MATLAB
toolbox for performing genetic programming and symbolic
regression. GPTIPS and documentation is available for
download1. Included with GPTIPS are several multigene
symbolic regression demos, of varying complexity, with
pre-configured parameter files to allow users to experiment
with different parameter settings and some artificial and
"real" data sets.

Although users can create their own GP applications and
fitness functions in GPTIPS, it was written with the primary
intent of make it easy to perform multigene symbolic
regression and so a number of MATLAB functions for
facilitating this process are included within GPTIPS.

GPTIPS also provides several methods of mutating trees
which are described in Section VI.

The user can set a wide variety of GPTIPS parameters, for
instance, the relative probabilities of each of the
recombinative processes (mutation and crossover). These
processes are grouped into categories called events, i.e. the
user can specify the probability of crossover events, direct
reproduction events and mutation events. These must sum to
one. The user can then specify the probabilities of the event
subtypes, e.g. the probability of a two point high level
crossover taking place once a crossover event has been
selected, or the probability of a subtree mutation once a
mutation event has been selected. However, GPTIPS
provides default values for each of these probabilities so the
user does not need to explicitly set them.

VI. GPTIPS FEATURES
 GPTIPS is a predominantly command line driven open

source toolbox that requires only a basic working knowledge
of MATLAB. A run is configured by a simple configuration
M file and there are a number of command line functions to
facilitate post-run analyses of the results. Whilst not an
exhaustive list, GPTIPS currently contains the following
configurable GP features: tournament selection & plain
lexicographic tournament selection, elitism, three different
tree building methods (full, grow and ramped half and half)
and six different mutation operators:

(1) subtree mutation
(2) mutation of constants using an additive Gaussian
perturbation
(3) substitution of a randomly selected input node with
another randomly selected input node
(4) set a randomly selected constant to zero
(5) substitute a randomly selected constant with another
randomly generated constant
(6) set a randomly selected constant to one.

1 http://sites.google.com/site/gptips4matlab/.

Also, GPTIPS can, without modification in the majority of
cases, use nearly any built in MATLAB function as part of
the function set for a run. The user can also write bespoke
function node M files and fitness functions; hence GPTIPS
can be used to solve problems other than non-linear
modeling/symbolic regression.

In addition, GPTIPS has a number of features that are
specifically aimed at the creation, analysis and simplification
of multigene symbolic regression models. These include:

 (1) use of a ‘holdout’ validation set during training to
mitigate the effects of overfitting
(2) graphical display of the results of symbolic regression for
any multigene model in the final population
(3) mathematical simplification of any model
(4) conversion to LaTeX format of any model
(5) conversion to PNG (portable network graphics) file of the
simplified equation of any model
(6) conversion of any model to standalone M file for use
outside GPTIPS
(7) graphical display of the statistical significance of each
gene in a model
 (8) functions to reduce the complexity of any model using
“gene knockouts” to explore the trade off of model accuracy
against complexity
(9) graphical population browser to explore the trade off
surface of complexity/accuracy
(10) graphical input frequency analysis of individual models
or of a user specified fraction of the population to facilitate
the identification of input variables that are relevant to the
output.

The Symbolic Math toolbox (a commercial toolbox
available from the vendors of MATLAB) is required for the
majority of the post run simplification and model conversion
features and the Statistics Toolbox (also a commercial
toolbox available from the vendors of MATLAB) is required
for the display of gene statistical significance. The core
functionality of GPTIPS and the ability to evolve multigene
models does not, however, require any specific toolboxes.

VII. QSAR
 QSAR (Quantitative Structure Activity Relationships) is

a well established technique for deriving structure property
relationships for chemical compounds that can be used to
predict the properties of novel chemical structures. Chemical
compounds can be represented by a large number of
computed numerical values, called “descriptors”, each of
which in some way characterises the structure of the
compound.

The idea of QSAR is to build empirical or semi-empirical
models that relate the descriptors of a compound to some
physical, chemical or biological property. Software packages
are available to compute descriptor values for compounds
with a known structure. Many of these are commercial
products (e.g. DRAGON) but there are also free/open source
packages (e.g. the Chemical Development Kit (CDK; [12]).

QSAR uses a data set of known chemical compounds and a
measured endpoint for each compound. The measured
endpoint is the property of interest. Typical properties of
interest are those related to pharmaceutical drug development.
These include biological activities representing the ability of

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

33

a compound to perform its desired function (e.g. IC50, the
concentration of a compound required to inhibit a particular
biological or biochemical function by half) and the ADME
properties (adsorption, distribution, metabolism and
excretion) which characterise the behaviour of a of a
pharmaceutical drug compound within the organism.

The prediction of chemical toxicity is another chemical
property that is of vital importance in both pharmaceutical
drug development and managing the environmental risk of
chemical compounds. In the latter case there are legal
regulatory structures (e.g. the REACH regulations in the
European Union - EC 1907/2006) that specify that QSAR
models should play a part in managing this risk in order to
reduce the costs of experimental toxicity measurement.

One method for experimentally evaluating chemical
toxicity is the measurement of the growth inhibition of
ciliated protozoan T. pyriformis. There are freely available
aquatic toxicity data for more than 1000 compounds, due to
the efforts of Schultz and colleagues [13]. The authors of [14]
have used this to compile a data set of 1093 unique
compounds and have developed a number of predictive
QSAR models using various descriptor packages and
modelling methodologies.

Here, the use of the MOGP to evolve a predictive model of
chemical toxicity using this data set is demonstrated (using
the descriptors from the commercial DRAGON package) and
the results compared with those published in [14] and [8].

VIII. DATA
 The T. pyriformis toxicity values (i.e. the response y data)

are measured as the logarithm of the 50% growth inhibition
concentration log(IGC50-1). The data available for training
QSAR models contains 644 compounds and 449 compounds
are used as an external test/validation data set to verify the
predictive ability of the models.

For each compound 1664 DRAGON descriptor values are
used as the predictor data (i.e. the input X data contains 1664
input variables) - compound structures, toxicity and
descriptor values are, at time of writing, available from the
EU CADASTER website at http://www.cadaster.eu/node/65.
128 compounds (approximately 20%) in the training data set
were randomly selected for use as a holdout validation data
set leaving the training data containing 516 compounds.

In GPTIPS, holdout validation is performed as follows: at
the end of each generation, the “best” individuals – those on
the Pareto front - (as evaluated on the training data) are then
evaluated on the holdout validation set.

IX. GPTIPS RUN SETTINGS
 GPTIPS (version 1.0) was modified as outlined in Section

III for multi-objective use. A GPTIPS run with the following
settings was performed:

Population size = 500
Number of generations = 500
Tournament size = 10
 Dmax = 6
Gmax = 20
Function node set = {plus, minus, times, protected divide,
square, protected square root, protected log, exponent, sin,

cosine}.
Terminal node set = {1664 DRAGON descriptors x1 – x1664,
ephemeral random constants in the range [-10 10]}.

The default GPTIPS multigene symbolic regression
function was used in order to minimize the root mean squared
error (RMSE) on the training data. Model complexity, which
was also minimized, was taken as the total number of nodes
in a GP model.

The following recombination operator event probabilities
were used:

crossover events = 0.85
mutation events = 0.1
direct reproduction = 0.05.

The following sub-event probabilities were used:

high level crossover = 0.2
low level crossover = 0.8
subtree mutation = 0.9
 replace input terminal with another random terminal = 0.05,
Gaussian perturbation of random constant = 0.05 (with
standard deviation of Gaussian = 0.1).

These settings are based on those used by Searson et al in
[8].

X. RESULTS
 Fig. 4 shows an example of the fitness (RMSE) against

complexity plot obtained at the end of a MOGP run and gives
an example of a model chosen from the Pareto optimal front.
It may be observed that the model chosen, with best fitness
for training and validation datasets, is achieved at a higher
complexity to others on the front. In general, another
selection from the Pareto optimal models (e.g. a simpler
model with slightly poorer predictive ability) may in some
cases be preferable.

Fig. 4. Fitness (RMSE) against total number of model nodes.

The authors of [14] report their results in terms of MAE

(mean absolute error) for two test sets (referred to in their

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

34

paper as Validation set 1 (339 compounds) and Validation set
2 (110 compounds) that comprise the whole test set used
here.

In order to compare with results [14] and [7], the mean
absolute error (MAE) is calculated. In terms of MAE, the
evolved model has MAE(training) = 0.2934, MAE(holdout)
= 0.3376 and MAE(test) = 0.3944. This compares to our
earlier results, that used a single objective algorithm
minimizing ‘goodness of fit’ to the data [7] of MAE(training)
= 0.3292, MAE(holdout) = 0.3573 and MAE(test) = 0.3518.

 While the chosen model has a relatively lower
performance on the testing data as compared the model
obtained in [7], in terms of the second objective (model
complexity) a very compact, linear model has been obtained
containing 8 variables automatically selected from 1664
possible variables. Other models in the population contained
both linear and non-linear terms.

In [14] the results of a number of individual models (and
ensemble models) are reported, built using various descriptor
packages and modelling techniques. Some of these models
consider the “applicability domain” (AD) of the compounds
(i.e. whether the compounds lie in the region of descriptor
space deemed to be suitable for generating a prediction)
whereas others do not employ AD considerations. In general,
models that consider AD give more accurate predictions but
only the results of the non AD models using the DRAGON
descriptors are repeated here.

The first DRAGON descriptor based model is a support
vector machine (SVM; [15]) regression that yields
MAE(Validation set 1) = 0.37 and MAE(Validation set 2) =
0.42. This corresponds to an MAE(test) = 0.38. The second
DRAGON based model is a k- nearest neighbour (k-NN)
approach that achieves MAE(Validation set 1) = 0.29,
MAE(Validation set 2) = 0.43 corresponding to MAE(test) =
0.32. Hence it can be seen that the evolved model has
achieved predictive performance of the order of the current
state of the art empirical modelling methodologies while
ensuring that a low complexity structure is obtained. In this
case, a linear model with a small number of descriptors from
the 1664 available.

XI. CONCLUSIONS
 In this article we have used the multigene symbolic

regression capabilities of GPTIPS in conjunction with the
NSGA-II [8] multi-objective algorithm and demonstrated it
with an application in which a population of predictive
symbolic QSAR models of T. pyriformis aqueous toxicity
was evolved. This population contained a well defined Pareto
front of models that trade off complexity against accuracy.
For the best performing model (in terms of RMSE) it was
demonstrated that the model is still very compact and offers
similar high performance to recently published QSAR

models of the same data.
We hope we have shown that multigene symbolic

regression is an alternative and complementary approach to
existing empirical modelling and data analysis techniques
and that the multi-objective extension allows the
simultaneous optimization of two competing objectives of
model ‘goodness of fit’ to data and model complexity. It is
also an approach that is facilitated by the free GPTIPS
toolbox for MATLAB, a program that is used widely in
academia and industry.

As a result of the work described in this paper, we hope to
eventually release an updated version of GPTIPS, with
support for multi-objective symbolic regression.

REFERENCES
[1] Koza J.R., Genetic programming: on the programming of computers

by means of natural selection, The MIT Press, USA, 1992.
[2] Poli R., Langdon W.B. & McPhee N.F., A field guide to genetic

programming, Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[3] Alfaro-Cid E., Esparcia-Alcázar A.I., Moya P., Femenia-Ferrer B.,
Sharman K., Merelo J.J., Modeling pheromone dispensers using
genetic programming. In Lecture Notes in Computer Science, Vol.
5484/2009, 635-644, 2009.

[4] Kordon, A.K., Future trends in soft computing industrial applications,
Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
7854-7861, 2006

[5] Searson, D., GPTIPS: Genetic programming & symbolic regression for
MATLAB, http://gptips.sourceforge.net, 2009.

[6] Hinchliffe M.P., Willis M.J., Hiden H., Tham M.T., McKay B., Barton,
G.W., Modelling chemical process systems using a multi-gene genetic
programming algorithm. Genetic Programming: Proceedings of the
First Annual Conference (late breaking papers), 56-65, 1996.

[7] Searson D.P., Willis M.J., Montague G.A., Co-evolution of non-linear
PLS model components, Journal of Chemometrics, 2, 592-603, 2007.

[8] Searson, D., Leahy, D.E., Willis, M., GPTIPS:An open source genetic
programming toolbox for multigene symbolic regression, International
MultiConference of Engineers and Computer Scientists (IMEC 2010),
Vol I., Hong Kong, 2010.

[9] Deb, K., Pratap, A., Argawal, S., Meyarivan, T., A fast and elitist
multi-objective genetic algorithm: NSGA-II, IEEE Transactions on
Evolutionary Computation, 10(4) , 181-197, 2002.

[10] Rodriguez-Vazquez , K., Fonseca, C.M., Fleming P.J., Multiobjective
genetic programming: a nonlinear system identification application,
Proceedings of the Genetic Programming 1997 Conference (late
breaking papers), 207-212, 1997.

[11] Zitzler, E., Laumanns, M., Thiele, L., SPEA2: Improving the strength
pareto evolutionary algorithm., Swiss Federal Institute of Technology:
Technical Report TIK-103, 2001.

[12] Steinbeck C., Han Y., Kuhn S., Horlacher O., Luttmann E.,
Willighagen E., The Chemistry Development Kit (CDK): An
open-source java library for chemo- and bioinformatics, J. Chem. Inf.
Comput. Sci., 43, 493 - 500, 2003.

[13] Schultz T.W.; Yarbrough J.W., Woldemeskel M., Toxicity to
Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates,
Cell Biol. Toxicol., 21, 181-189, 2005.

[14] Zhu H., Tropsha A., Fourches D., Varnek A., Papa E., Gramatica P.,
Oberg T., Dao P., Cherkasov A., Tetko I.V., Combinatorial QSAR
modeling of chemical toxicants tested against Tetrahymena pyriformis,
J. Chem. Inf. Model.,48, 766 -784, 2008.

[15] Vapnik, V.N., The nature of statistical learning theory, second edition,
Springer-Verlag, New York, 2000.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

35

