
 
 

 

  
Abstract— In this contribution a multi-objective genetic 

programming algorithm (MOGP) is used to perform symbolic 
regression. The genetic programming (GP) algorithm used is 
specifically designed to evolve mathematical models of 
predictor response data that are “multigene” in nature, i.e. 
linear combinations of low order non-linear transformations of 
the input variables. The MOGP algorithm simultaneously 
optimizes the dual (and competing) objectives of maximization 
of ‘goodness-of-fit’ to data and minimization of model 
complexity in order to develop parsimonious data based 
symbolic models. The functionality of the multigene MOGP 
algorithm is demonstrated by using it to generate an accurate, 
compact QSAR (quantitative structure activity relationship) 
model of existing toxicity data in order to predict the toxicity of 
chemical compounds. 
 

Index Terms— genetic programming, multi-objective 
optimization, symbolic regression, QSAR, toxicity, T. 
pyriformis.  

I. INTRODUCTION 
  Genetic programming [1] is a biologically inspired 

machine learning method that evolves computer programs to 
perform a specified task. It does this by randomly generating 
an initial population of computer programs (represented by 
tree structures) and then mutating and crossing over the best 
performing trees to create a new population. This process is 
iterated until the population contains programs that solve the 
task well. An excellent, free to download introduction and 
review of the GP literature is provided by [2]. 

When GP is used to create empirical mathematical models 
of data acquired from a process or system, it is commonly 
referred to as symbolic regression. In contrast to classical 
regression analysis, in which the user must specify the 
structure of the model, GP automatically evolves both the 
structure and the parameters of the mathematical model. 
Symbolic regression has had successful academic [3] and 
industrial applications [4]. 

The purpose of this paper is to describe the use of a 
multi-objective genetic programming (MOGP) algorithm to 
perform symbolic regression. The GP algorithm used 
employs a variant of symbolic regression called multigene 
symbolic regression [5], [6], [7], [8] that evolves linear 
combinations of non-linear transformations of the input 
variables. The multigene approach can often yield more 
 

Manuscript received March, 22nd, 2011.  
Charles Hii is with the School of Chemical Engineering and Advanced 

Materials at the University of Newcastle, Newcastle-upon-Tyne, UK.  
Dominic P. Searson is with the School of Chemical Engineering and 

Advanced Materials at the University of Newcastle, Newcastle-upon-Tyne, 
UK. (e-mail: d.p.searson@ncl.ac.uk). 

Mark J. Willis is with the School of Chemical Engineering and Advanced 
Materials at the University of Newcastle, Newcastle-upon-Tyne, UK. (phone 
+44 191 222 7242; e-mail mark.willis@ncl.ac.uk). 

 

accurate and compact models than those obtained using 
"standard" GP for symbolic regression. However, the 
multigene approach has not hitherto explicitly utilized model 
complexity as a goal of model development. Hence, to 
optimize the multiple objectives of ‘goodness of fit’ to data 
and model complexity simultaneously the well known 
NSGA-II multiple objective method [9] is incorporated into 
the existing multigene symbolic regression algorithm.  

This paper is structured as follows. Section II provides a 
brief overview of Genetic Programming. Section III 
introduces the multigene symbolic regression method that 
our existing GP software (GPTIPS) implements. Next, in 
section IV, the NSGA-II algorithm is briefly described. In 
section V the GPTIPS software is briefly discussed. In 
sections VII-X, the capabilities of the multigene MOGP 
algorithm are demonstrated by using it to evolve an accurate, 
compact mathematical model to predict the toxicity of 
chemical compounds using a data set from the literature 
containing over 1000 compounds along with measured 
toxicity values. Finally, in section XI we provide some 
concluding remarks. 

II. GENETIC PROGRAMMING 
  The evolutionary computational (EC) method of GP 

evolves populations of symbolic tree expressions to perform 
a user specified task. A brief description of GP is provided 
here.  

In GP, each tree expression can be thought of as being 
analogous to the DNA of an individual in natural evolution. 
The evolution of the expressions occurs over a number of 
generations (iterations) and each new generation of 
individuals is created from the existing population by direct 
copying as well as performing operations on the individuals 
analogous to the alterations to DNA sequences that naturally 
occur during sexual reproduction and mutation. This is 
accomplished by evaluating each individual in the current 
population to determine its ‘fitness’ (i.e. its performance on 
the user specified objective function or functions) and 
performing probabilistic selection and recombination of 
individuals biased towards those that are relatively fit 
compared to the other individuals in the population.  

At the beginning of each run, a population of symbolic 
expressions is randomly generated. This is accomplished 
using a simple tree building algorithm that randomly selects 
nodes, with replacement, from a pool comprising primitive 
functions (e.g. addition, subtraction, the hyperbolic tangent, 
natural logarithm, exponential, etc.), the input variables as 
well as randomly generated constants. These nodes are 
randomly assembled into tree structured symbolic 
expressions, subject to user-defined tree size and/or depth 
constraints. After evolving the population for a number of 
generations by copying, mutation and recombination 
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operations, the tree expression with the best fitness is usually 
selected as the best solution to the problem. 

Two principal genetic recombination operators are used in 
GP: sub-tree crossover and sub-tree mutation. Sub-tree 
crossover is an operation performed on two parent trees that 
generates two offspring. For each expression, a sub-tree is 
randomly selected. These sub-trees are then exchanged to 
create two new expressions to go into the next generation. 
Sub-tree mutation operates on a single parent expression and 
generates a single offspring expression. First, a randomly 
selected sub-tree of the parent is deleted. Then, a new 
sub-tree is randomly generated using the same tree building 
algorithm that was used to build the initial population of 
expressions. The resulting offspring expression is then 
inserted into the new population. The mutation operation is 
used relatively infrequently compared to the crossover 
operation and its purpose is to maintain genetic diversity over 
the course of the run and to prevent premature convergence to 
unsatisfactory solutions. 

In GP, the choice of the primitive functions is domain 
dependent and in symbolic regression, where there is little or 
no prior knowledge of the underlying relationships, 
mathematical operators such as those described above are 
typically employed with a high degree of success [6], [7]. In 
practice, it is often best to perform some initial runs with a 
few simple primitives (e.g. addition, multiplication and 
subtraction) and then incrementally add other non-linear 
primitives—such as the hyperbolic tangent function—to 
evaluate whether more accurate and compact symbolic 
expressions may be evolved. 

III. MULTIGENE SYMBOLIC REGRESSION 
  Symbolic regression is usually performed by using GP to 

evolve a population of trees, each of which encodes a 
mathematical equation that predicts a (N × 1) vector of 
outputs y using a corresponding (N × M) matrix of inputs X 
where N is the number of observations of the response 
variable and M is the number of input (predictor) variables, 
i.e. the ith column of X comprises the N input values for the 
ith input variable and is referred to as the input variable xi. 

In contrast, in multigene symbolic regression each 
symbolic model (i.e. each member of the GP population) is a 
weighted linear combination of the outputs from a number of 
GP trees, where each tree may be considered to be a “gene” in 
the overall genome. The mathematical form of the multigene 
representation is shown below (for N =1).  

ݕ  = ෍ ݀௜ܩ௜ + ݀଴௡
௜ୀଵ  (1)

 
where y is the predicted output, Gi is the value of the ith gene 
and is, in general, a function of one or more of the input 
variables, di is the ith weighting coefficient, n is the number 
of genes and d0 is a bias/offset term.  

For example, the multigene model shown in Fig. 1 predicts 
an output variable y using input variables x1, x2 and x3.This 
model structure contains non-linear terms (e.g. the hyperbolic 
tangent) but is linear in the parameters with respect to the 
coefficients d0, d1 and d2. In practice, the user specifies the 
maximum number of genes Gmax a model is allowed to have 

and the maximum tree depth Dmax any gene may have and 
therefore can exert control over the maximum complexity of 
the evolved models. In particular, we have found that 
enforcing stringent tree depth restrictions (i.e. maximum 
depths of 4-6 nodes) allows the evolution of relatively 
compact models that are linear combinations of low order 
non-linear transformations of the input variables. 
 

 
 

Fig. 1. Example of a multigene symbolic model. 
 
For each model, the linear coefficients are estimated from 

the training data using ordinary least squares techniques as 
follows: 

The output of the ith gene in any given multigene 
individual will be an (N × 1) vector gi. These output vectors 
can be grouped together (along with a column containing 
"ones" to represent the bias/offset term) into a (N × (n+1)) 
matrix G.  

The ((n+1) × 1) coefficient vector d (containing the 
coefficients d0, ..., dn) may then be computed using the least 
squares normal equation to minimise (in the least squares 
sense) the prediction error of the output training data y: 

܌  = ሺ۵୘۵ሻିଵ۵୘(2) ܡ
 
Computationally, however, this method of computing d is 

unsuitable because duplicate genes in an individual can cause 
rank deficiency in G. To remedy this, in practice, the 
Moore-Penrose pseudo-inverse  ሺ۵T۵ሻ# is computed using 
the singular value decomposition (SVD) and used in place of  ሺ۵T۵ሻ−1in Equation 2. 

Hence, it can be seen that multigene GP combines the 
power of classical linear regression with the ability to capture 
non-linear behaviour without needing to pre-specify the 
structure of the non-linear model. The work in [6] showed 
multigene symbolic regression can be more accurate and 
computationally efficient than the standard GP approach for 
symbolic regression, and [7] showed that the multigene 
approach can be successfully embedded within a non-linear 
partial least squares algorithm. 

In GPTIPS, there are two types of crossover operators: 
high level crossover and the "standard" GP subtree crossover, 
which is  referred to here as low level crossover. In low level 
crossover, a gene is selected randomly from each parent 
individual and then standard subtree crossover is performed 
to create two offspring new genes. The parent genes are 
discarded and the new offspring genes then replace the parent 
genes in the otherwise unaltered individual in the new 
population.  

The initial population is constructed by creating 
individuals that contain randomly generated GP trees with 
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between 1 and Gmax genes. During a GP run, genes are 
acquired and deleted using two point high level crossover. 
This allows the exchange of genes between individuals and it 
is used in addition to the “standard” GP recombination 
operators. A two point high level crossover is performed as in 
the following example: 

 The first parent individual contains the genes (G1 G2 G3) 
and the second contains the genes (G4 G5 G6 G7) where Gmax 
= 5. Two randomly selected crossover points are created for 
each individual. The genes enclosed by the crossover points 
are denoted by < … >. 

 
(G1 < G2 > G3)   (G4 < G5 G6 G7 >) 
 
The genes enclosed by the crossover points are then 

exchanged resulting in the two new individuals below. 
 
(G1 G5 G6 G7 G3)   (G4 G2) 
 
Two point high level crossover allows the acquisition of 

new genes for both individuals but also allows genes to be 
removed. If an exchange of genes results in any individual 
containing more genes than Gmax then genes are randomly 
selected and deleted until the individual contains Gmax genes. 

IV. MULTI-OBJECTIVE GP 
  Multi-objective genetic programming (MOGP) [10] is an 

extension of GP. In standard GP algorithms, typically only 
one objective is optimized; for symbolic regression this is 
usually a measure of ‘goodness-of-fit’ to the training data, 
typically expressed as sum of squared errors (SSE), mean 
squared error (MSE) or root mean squared error (RMSE). 
One problem with using the single objective of 
‘goodness-of-fit’ is that models will be evolved that fit the 
training data well at the expense of complexity. Such models 
are usually not robust, e.g. they may not predict accurately 
given new data.  

Unfortunately, GP is prone to evolving overly complex 
models due to the tendency (called "bloat") to acquire model 
terms that provide little or no effect on the final prediction. 
This effect can be mitigated, to some extent, in multigene 
regression by restricting tree depths and observing the 
statistical significances of the genes in the evolved models 
but even then, the evolution of overly complex models can 
still be problematic.   

However, a MOGP algorithm can be used to 
simultaneously optimize more than one objective. For 
symbolic regression, this is useful because a second objective 
can be specified: i.e. maximize ‘goodness-of-fit’ and 
minimize model complexity. There have been many 
multi-objective optimization techniques reported in the 
literature. NSGA-II [9] and SPEA2 [11] are the two of the 
more popular algorithms. In this work, the NSGA-II 
algorithm is incorporated into GPTIPS. The structure of this 
algorithm is shown in Fig. 2.  

The NSGA-II algorithm is used at the end of each 
generation of the multigene GP algorithm. First, it classifies 
the individuals from both the new and old population 
according to their position on the Pareto front. Fig. 3 shows 
how the Pareto front is categorised using the dual objectives 
of fitness and complexity (in terms of symbolic regression it 

desirable to have high fitness and low complexity). Pareto 
front level 1 consists of a set of Pareto optimal solutions. The 
solutions that are on the level 1 front are not dominated by 
any other solution, e.g. in symbolic regression any model that 
lies on the level 1 front is not outperformed by any other 
model in the population in terms of both prediction error and 
complexity. The solutions that comprise Pareto front level 2 
are not dominated by any other solutions; apart from those in 
Pareto front level 1 and so on. 
 

 
 

Fig. 2. Flowchart of the NSGA-II algorithm. 
 

Next, NSGA-II requires the calculation of a “crowding 
factor” for each individual. This is the average distance of a 
solution from the nearest solutions (either side) on the same 
Pareto front. This is also shown in Fig. 3 for a solution on the 
level 1 front.  

 

 
Fig. 3. Pareto optimal fronts (model fitness vs. complexity). 

 
The crowding factor is used to increase the diversity of the 

population giving less priority to the solutions that are 
crowded together during the ranking process in NSGA-II. 
This gives the GP algorithm the ability to attempt to explore 
other possible solutions within the search space and limit the 
convergence of the algorithm to local maxima or minima. 
Once the crowding factor has been calculated for all the 
solutions, the solutions are then ranked according to their 
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position (those on level 1 are ranked above those on level 2 
and so on) and solutions that are on the same Pareto front are 
ranked according to their crowding factor. The top 50% of the 
population survive to the next generation while the rest are 
discarded. 

V. GPTIPS 
The GP algorithm used in this work is based on a modified 

version of GPTIPS 1.0 [5], a free, open source MATLAB 
toolbox for performing genetic programming and symbolic 
regression. GPTIPS and documentation is available for 
download1. Included with GPTIPS are several multigene 
symbolic regression demos, of varying complexity, with 
pre-configured parameter files to allow users to experiment 
with different parameter settings and some artificial and 
"real" data sets. 

Although users can create their own GP applications and 
fitness functions in GPTIPS, it was written with the primary 
intent of  make it easy to perform multigene symbolic 
regression and so a number of MATLAB functions for 
facilitating this process are included within GPTIPS. 

GPTIPS also provides several methods of mutating trees 
which are described in Section VI.  

The user can set a wide variety of GPTIPS parameters, for 
instance, the relative probabilities of each of the 
recombinative processes (mutation and crossover). These 
processes are grouped into categories called events, i.e. the 
user can specify the probability of crossover events, direct 
reproduction events and mutation events. These must sum to 
one. The user can then specify the probabilities of the event 
subtypes, e.g. the probability of a two point high level 
crossover taking place once a crossover event has been 
selected, or the probability of a subtree mutation once a 
mutation event has been selected. However, GPTIPS 
provides default values for each of these probabilities so the 
user does not need to explicitly set them. 

VI. GPTIPS FEATURES 
  GPTIPS is a predominantly command line driven open 

source toolbox that requires only a basic working knowledge 
of MATLAB. A run is configured by a simple configuration 
M file and there are a number of command line functions to 
facilitate post-run analyses of the results. Whilst not an 
exhaustive list, GPTIPS currently contains the following 
configurable GP features: tournament selection & plain 
lexicographic tournament selection, elitism, three different 
tree building methods (full, grow and ramped half and half) 
and six different mutation operators:  
 
(1) subtree mutation  
(2) mutation of constants using an additive Gaussian 
perturbation  
(3) substitution of a randomly selected input node with 
another randomly selected input node  
(4) set a randomly selected constant to zero  
(5) substitute a randomly selected constant with another 
randomly generated constant  
(6) set a randomly selected constant to one.  
 

 
1 http://sites.google.com/site/gptips4matlab/. 

Also, GPTIPS can, without modification in the majority of 
cases, use nearly any built in MATLAB function as part of 
the function set for a run. The user can also write bespoke 
function node M files and fitness functions; hence GPTIPS 
can be used to solve problems other than non-linear 
modeling/symbolic regression. 

In addition, GPTIPS has a number of features that are 
specifically aimed at the creation, analysis and simplification 
of multigene symbolic regression models. These include:  

 
 (1) use of a ‘holdout’ validation set during training to   
mitigate the effects of overfitting  
(2) graphical display of the results of symbolic regression for 
any multigene model in the final population  
(3) mathematical simplification of any model  
(4) conversion to LaTeX format of any model  
(5) conversion to PNG (portable network graphics) file of the 
simplified equation of any model  
(6) conversion of any model to standalone M file for use 
outside GPTIPS  
(7) graphical display of the statistical significance of each 
gene in a model 
 (8) functions to reduce the complexity of any model using 
“gene knockouts” to explore the trade off of model accuracy 
against complexity  
(9) graphical population browser to explore the trade off 
surface of complexity/accuracy  
(10) graphical input frequency analysis of individual models 
or of a user specified fraction of the population to facilitate 
the identification of input variables that are relevant to the 
output. 
 

The Symbolic Math toolbox (a commercial toolbox 
available from the vendors of MATLAB) is required for the 
majority of the post run simplification and model conversion 
features and the Statistics Toolbox (also a commercial 
toolbox available from the vendors of MATLAB) is required 
for the display of gene statistical significance. The core 
functionality of GPTIPS and the ability to evolve multigene 
models does not, however, require any specific toolboxes. 

VII. QSAR 
  QSAR (Quantitative Structure Activity Relationships) is 

a well established technique for deriving structure property 
relationships for chemical compounds that can be used to 
predict the properties of novel chemical structures. Chemical 
compounds can be represented by a large number of 
computed numerical values, called “descriptors”, each of 
which in some way characterises the structure of the 
compound.  

The idea of QSAR is to build empirical or semi-empirical 
models that relate the descriptors of a compound to some 
physical, chemical or biological property. Software packages 
are available to compute descriptor values for compounds 
with a known structure. Many of these are commercial 
products (e.g. DRAGON) but there are also free/open source 
packages (e.g. the Chemical Development Kit (CDK; [12]). 

QSAR uses a data set of known chemical compounds and a 
measured endpoint for each compound. The measured 
endpoint is the property of interest. Typical properties of 
interest are those related to pharmaceutical drug development. 
These include biological activities representing the ability of 
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a compound to perform its desired function (e.g. IC50, the 
concentration of a compound required to inhibit a particular 
biological or biochemical function by half) and the ADME 
properties (adsorption, distribution, metabolism and 
excretion) which characterise the behaviour of a of a 
pharmaceutical drug compound within the organism.  

The prediction of chemical toxicity is another chemical 
property that is of vital importance in both pharmaceutical 
drug development and managing the environmental risk of 
chemical compounds. In the latter case there are legal 
regulatory structures (e.g. the REACH regulations in the 
European Union - EC 1907/2006) that specify that QSAR 
models should play a part in managing this risk in order to 
reduce the costs of experimental toxicity measurement.  

One method for experimentally evaluating chemical 
toxicity is the measurement of the growth inhibition of 
ciliated protozoan T. pyriformis. There are freely available 
aquatic toxicity data for more than 1000 compounds, due to 
the efforts of Schultz and colleagues [13]. The authors of [14] 
have used this to compile a data set of 1093 unique 
compounds and have developed a number of predictive 
QSAR models using various descriptor packages and 
modelling methodologies.  

Here, the use of the MOGP to evolve a predictive model of 
chemical toxicity using this data set is demonstrated (using 
the descriptors from the commercial DRAGON package) and 
the results compared with those published in [14] and [8]. 

VIII. DATA 
  The T. pyriformis toxicity values (i.e. the response y data) 

are measured as the logarithm of the 50% growth inhibition 
concentration log(IGC50-1). The data available for training 
QSAR models contains 644 compounds and 449 compounds 
are used as an external test/validation data set to verify the 
predictive ability of the models.  

For each compound 1664 DRAGON descriptor values are 
used as the predictor data (i.e. the input X data contains 1664 
input variables) - compound structures, toxicity and 
descriptor values are, at time of writing, available from the 
EU CADASTER website at http://www.cadaster.eu/node/65. 
128 compounds (approximately 20%) in the training data set 
were randomly selected for use as a holdout validation data 
set leaving the training data containing 516 compounds.  

In GPTIPS, holdout validation is performed as follows: at 
the end of each generation, the “best” individuals – those on 
the Pareto front - (as evaluated on the training data) are then 
evaluated on the holdout validation set. 

IX. GPTIPS RUN SETTINGS 
  GPTIPS (version 1.0) was modified as outlined in Section 

III for multi-objective use. A GPTIPS run with the following 
settings was performed:  

 
Population size = 500 
Number of generations = 500 
Tournament size = 10 
 Dmax = 6  
Gmax = 20 
Function node set = {plus, minus, times, protected divide, 
square, protected square root, protected log, exponent, sin, 

cosine}. 
Terminal node set = {1664 DRAGON descriptors x1 – x1664, 
ephemeral random constants in the range [-10 10]}.  

The default GPTIPS multigene symbolic regression 
function was used in order to minimize the root mean squared 
error (RMSE) on the training data. Model complexity, which 
was also minimized, was taken as the total number of nodes 
in a GP model. 

The following recombination operator event probabilities 
were used: 
  
crossover events = 0.85  
mutation events = 0.1  
direct reproduction = 0.05.  

 
The following sub-event probabilities were used:  
 

high level crossover = 0.2  
low level crossover = 0.8  
subtree mutation = 0.9 
 replace input terminal with another random terminal = 0.05,  
Gaussian perturbation of random constant = 0.05 (with 
standard deviation of Gaussian = 0.1).  
 

These settings are based on those used by Searson et al in 
[8]. 

X. RESULTS 
  Fig. 4 shows an example of the fitness (RMSE) against 

complexity plot obtained at the end of a MOGP run and gives 
an example of a model chosen from the Pareto optimal front. 
It may be observed that the model chosen, with best fitness 
for training and validation datasets, is achieved at a higher 
complexity to others on the front. In general, another 
selection from the Pareto optimal models (e.g. a simpler 
model with slightly poorer predictive ability) may in some 
cases be preferable. 
 

 
 

Fig. 4. Fitness (RMSE) against total number of model nodes. 
 
The authors of [14] report their results in terms of MAE 

(mean absolute error) for two test sets (referred to in their 
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paper as Validation set 1 (339 compounds) and Validation set 
2 (110 compounds) that comprise the whole test set used 
here.  

In order to compare with results [14] and [7], the mean 
absolute error (MAE) is calculated. In terms of MAE, the 
evolved model has MAE(training) = 0.2934, MAE(holdout) 
= 0.3376 and MAE(test) = 0.3944. This compares to our 
earlier results, that used a single objective algorithm 
minimizing ‘goodness of fit’ to the data [7] of MAE(training) 
= 0.3292, MAE(holdout) = 0.3573 and MAE(test) = 0.3518. 

 While the chosen model has a relatively lower 
performance on the testing data as compared the model 
obtained in [7], in terms of the second objective (model 
complexity) a very compact, linear model has been obtained 
containing 8 variables automatically selected from 1664 
possible variables. Other models in the population contained 
both linear and non-linear terms. 

In [14] the results of a number of individual models (and 
ensemble models) are reported, built using various descriptor 
packages and modelling techniques. Some of these models 
consider the “applicability domain” (AD) of the compounds 
(i.e. whether the compounds lie in the region of descriptor 
space deemed to be suitable for generating a prediction) 
whereas others do not employ AD considerations. In general, 
models that consider AD give more accurate predictions but 
only the results of the non AD models using the DRAGON 
descriptors are repeated here.  

The first DRAGON descriptor based model is a support 
vector machine (SVM; [15]) regression that yields 
MAE(Validation set 1) = 0.37 and MAE(Validation set 2) = 
0.42. This corresponds to an MAE(test) = 0.38. The second 
DRAGON based model is a k- nearest neighbour (k-NN) 
approach that achieves MAE(Validation set 1) = 0.29, 
MAE(Validation set 2) = 0.43 corresponding to MAE(test) = 
0.32. Hence it can be seen that the evolved model has 
achieved predictive performance of the order of the current 
state of the art empirical modelling methodologies while 
ensuring that a low complexity structure is obtained. In this 
case, a linear model with a small number of descriptors from 
the 1664 available. 

XI. CONCLUSIONS 
  In this article we have used the multigene symbolic 

regression capabilities of GPTIPS in conjunction with the 
NSGA-II [8] multi-objective algorithm and demonstrated it 
with an application in which a population of predictive 
symbolic QSAR models of T. pyriformis aqueous toxicity 
was evolved. This population contained a well defined Pareto 
front of models that trade off complexity against accuracy. 
For the best performing model (in terms of RMSE) it was 
demonstrated that the model is still very compact and offers 
similar high performance to recently published QSAR 

models of the same data.  
We hope we have shown that multigene symbolic 

regression is an alternative and complementary approach to 
existing empirical modelling and data analysis techniques 
and that the multi-objective extension allows the 
simultaneous optimization of two competing objectives of 
model ‘goodness of fit’ to data and model complexity. It is 
also an approach that is facilitated by the free GPTIPS 
toolbox for MATLAB, a program that is used widely in 
academia and industry.  

As a result of the work described in this paper, we hope to 
eventually release an updated version of GPTIPS, with 
support for multi-objective symbolic regression. 
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